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This article reviews the modeling challenges for performing Large Eddy Simulations 
of aero-nautical combustion chambers. Since the kerosene is injected in a liquid 

phase into the combustion chamber, the description of the atomization is of primary 
importance. The article first discusses the numerous numerical challenges encounte-
red during this process, which leads to the formation of small droplets that constitute 
a spray. The existing numerical and modeling methods to describe a spray of kerosene 
droplets are then presented. The article then focuses on the description of the com-
plex combustion kinetics. Hundreds of species and thousands of reactions have to be 
considered to predict ignition, flame stabilization and pollutant emissions. Due to leng-
thy computational times, detailed chemical schemes are too large to be directly used 
in CFD. This article then presents the major existing chemical reduction strategies. 
Significant interactions of the reactions layers with the flow vortices occur at the sub-
grid scale. The question of turbulent combustion modeling is therefore discussed in an 
LES context. Finally, the prediction of soot and NOx formation is presented. The review 
is illustrated by several examples representative of practical situations encountered in 
aeronautical combustors.

Introduction

The numerical simulation of aeronautical combustion chambers 
involves very complex physical phenomena. First of all, due to the 
high velocity of the airflow through the combustor, the reacting flow is 
highly turbulent. It can be numerically simulated using three levels of 
accuracy [1]: Reynolds Average Navier Stokes (RANS) simulations, 
predicting only mean flow characteristics; Large Eddy Simulations 
(LES), where turbulent large scales are explicitly calculated whereas 
the effects of smallest ones are modeled; Direct Numerical Simula-
tions (DNS), where the full instantaneous Navier-Stokes equations are 
solved without any model for turbulent transfer. DNS is extremely ex-
pensive in terms of computational resources and therefore in practice 
is limited to simplified geometries with reduced chemical kinetics (Ri-
chardson, 2010). LES offers significant advantages when compared 
to RANS techniques, because unsteady large-scale motions, impor-
tant for flame propagation, stabilization, flow mixing, and consequently 
chemical species predictions, are resolved. Also, by giving access to 
local and instantaneous data, it enables a better understanding and 

description of some complex unsteady phenomena, such as flame/tur-
bulence interactions and pollutant formation, which are not well cap-
tured by statistical quantities. Thanks to the development of massively 
parallel computers, LES of practical industrial combustors, exhibiting 
complex geometry features, is now achievable [2].

LES of turbulent flames in an aeronautical combustor is a challenging 
multi-physics problem. The kerosene is first injected in a liquid phase 
into the combustion chamber. Due to the velocity difference between 
the fuel jet and the coflowing air, the liquid jet undergoes complex 
atomization processes, which ultimately lead to the formation of small 
droplets. It then constitutes a spray that feeds the flame front with 
evaporated fuel. The droplet size and their spatial distribution directly 
impact the flame position. The combustion process is also very chal-
lenging from a chemical point of view. Hundreds of species and thou-
sands of reactions have to be considered in order to predict subtle 
phenomena, such as ignition or re-ignition, flame stabilization and 
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pollutant emissions. For computational time limitations, detailed che-
mical schemes are too large and chemical reductions strategies are 
needed to introduce reliable chemistry ingredients in LES. In practical 
combustion chambers the grid size is of the order of 1 mm. However, 
many physical phenomena occur at a smaller scale (i.e., at the so-
called “sub-grid” scale) and have to be modeled. This is especially 
the case of chemically reactive zones, whose thickness is of the order 
of 0.1 mm, and the case of interactions between the flame and the 
turbulence. The challenges are even greater in the case of pollutant 
predictions because of their considerably smaller concentrations and 
the many pathways leading to their formation or destruction. Pollutant 
mole fractions amount to a few tenths to a few hundreds ppms.

The objectives here are to give an overview of the modeling chal-
lenges encountered when performing LES of aeronautical combustion 
chambers. The state-of-the art of liquid atomization, spray descrip-
tion and combustion modeling is presented. For that purpose, this 
article is organized as follows: Issues relative to primary atomization 
are first presented. The description of the liquid spray is then dis-
cussed. Chemical kinetics of kereosene/air combustion is presented 
in § " Kerosen chemistry modeling ", whereas § " Turbulent com-
bustion models "  summarizes the challenge of introducing detailed 
chemistry phenomena in turbulent flow solvers. Finally, the question 
of pollutant formation is developed: the prediction of soot and NOx 
formation are presented.

Primary atomization modeling

Atomization is a highly non-linear phenomenon that occurs when 
liquid fuel is injected into the combustor [3]. Primary break-up is the 
early phase of the atomization process when the continuous liquid 
core is transformed into ligaments and large droplets.  The typical size 
of these features ranges between a few to a hundred microns. Re-
solving these features is presently out of reach in spray combustion 
simulations, which have to take into account the combustor geometry 
and the flame dynamics occurring at larger scales. Consequently, the 
impact of primary atomization on the spray formation needs to be 
modeled in aeronautical burner simulations.

Beyond this scale resolution issue, the simulation of primary atomi-
zation faces numerous numerical challenges: at the liquid/gas inter-
face, the density, the pressure and the viscosity are discontinuous. 
Dedicated algorithms have been developed over the last decades to 
accurately include these jump conditions in high-fidelity 3-D unsteady 
simulations. The Ghost-Fluid Method proposed by Fedkiw et al [4] 

has been widely adopted to take into account the pressure jump at 
the interface without any numerical smearing. This method requires 
the precise location of the gas/liquid interface during the simulation. 
Many algorithms have been developed to track the interface and to 
ensure a sufficiently accurate calculation of the interface curvature 
and a correct mass conservation [5, 6, 7, 8]. Most of these methods 
have been derived within the framework of finite-differences and their 
application has been limited to simple geometries.

Within the framework of the European project FIRST, the feasibility 
of primary atomization simulation in realistic geometries has been 
investigated. The Accurate Conservative Level Set method [8] has 
been implemented in an unstructured finite-volume solver named 
YALES2, which is dedicated to the simulation of turbulent combus-
tion in aeronautical burners. This methodology has been applied to 
several complex injectors. Two examples are shown in Figs. 1 and 
2. The first configuration consists in the so-called triple disk injec-
tor [9], whose particular injector geometry creates a liquid sheet that 
atomizes rapidly. For this configuration, three different Large-Eddy Si-
mulations were performed with various mesh resolutions. The finest 
mesh resolution, with 1.6 billion tetrahedra, enables the large-scale 
dynamics to be recovered as the ligament formation, but it is still not 
enough to capture all of the flow features from the experiment at the 
secondary atomization scale. The second configuration is a realistic 
injector provided by Turbomeca, SAFRAN Group.  In this configura-
tion, the prefilming inside an airblast swirl injector was investigated. 
Large-Eddy Simulations with 1.6 billion tetrahedra for 1/8th of the full 
geometry were conducted. Figure 2 shows the location of the inter-
face and the velocity magnitude at the interface. While the cell count is 
high, the mesh resolution at the interface is not fine enough and only 
large-scale dynamics of the liquid sheet are captured. In this particu-
lar case, where the gas Weber number is large and the liquid sheet 
has large displacements, primary atomization modeling would benefit 
from Adaptive Mesh Refinement (AMR) methods [10] to concentrate 
the degrees of freedom at the interface.

Spray description

The fuel droplets generated during the atomization process are 
convected by the air flow and constitute a spray phase which has a 
great impact on the full simulation. This phase will indeed prepare the 
flammable mixture for the combustion process. Many questions have 
to be asked beforehand, such as the simulation strategy, the choices 
of the physical models or the boundary conditions to be used, as well 
as the means of validation.

Figure 1 - Mesh refinement study of primary atomization at the exit of the triple disk injector.

Experiment

25M tets, 10 μm 200M tets, 5 μm 1.6B tets, 2.5 μm
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Figure 2 - Investigation of primary atomization in a realistic airblast swirl injector.

Simulation strategy

In order to describe the spray, the most commonly-used strategy is 
to consider a point-particle assumption, i.e., the droplet is smaller 
than any scale of the flow, and to use a Lagrangian Droplet Tracking 
method (LDT), for which individual droplets or parcels of droplets 
are transported by means of ODE systems on droplet state variables 
(position, velocity, size, etc.). To a lower extent, Eulerian methods 
that resolve statistical information, such as droplet concentration, are 
sometimes preferred for their intrinsic ability in parallel computing.

Lagrangian  approaches

Lagrangian approaches are widely used because they are viewed as a 
reference and they also seem more intuitive than Eulerian strategies. 
They are based on an ODE system that solves the time evolution of the 
droplet state. Depending on the point of view adopted, this description 
may be deterministic or probabilistic. In the deterministic framework, 
each numerical particle corresponds to a physical droplet, and the 
resulting set of droplets corresponds to an individual realization of the 
spray. From the probabilistic point of view, the ODE system is aimed 
at solving a Williams-Boltzmann equation [11] on the Number Den-
sity Function (NDF). The resulting set of droplets is thus a particular 
discretization of a set of realizations of the spray phase, similar to 
Monte-Carlo simulations [12, 13], and a stochastic description must 
be provided for droplet evolution [14, 15].

In LES of combustors, a stochastic point of view may be required 
[16], in which the parcels will represent sets of physical droplets. At 
this point, the choice of the best statistical representation in terms of 

parcels [13] is not straightforward and not necessarily unique, adding 
a degree of freedom to Lagrangian computations. Paulhiac [17] hi-
ghlights this issue and proposes strategies for the statistical distribu-
tion of parcels. However, the most effective solutions in the literature 
are case-dependent and a statistical convergence verification is still 
required for Lagrangian simulations. Aside from that, efforts on the 
parallel efficiency of Lagrangian simulations are certainly of interest, 
for example using task-oriented paradigms or dual-constraint decom-
position [18].

With regard to the numerical resolution, one important source of error 
is the projection strategy used to exchange droplet source terms with 
the gas phase. Actually, the classical point-particle approach cannot 
ensure mesh convergence. Strategies have been proposed in the lite-
rature [19, 20] to overcome this, using for instance Gaussian projec-
tion with a mesh-independent width. This kind of approach needs to 
be adapted to unstructured grid simulation, like in [17], and a more 
careful analysis and justification of the projection kernel, linked to the 
resolved scales for instance, needs to be carried out.

Finally, an interesting issue is the modeling of sub-grid scale effects 
on  two-way coupling between  carrier  phase  and  disperse phase. 
In the  literature, models  have  been devised to take into account the 
impact of sub-grid scales on the droplet motion [21, 16, 22], and 
have been applied to combustors simulations [23, 24]. However, no 
model has yet been developed to account for the effect of the disperse 
phase on the carrier phase sub-grid scale, either in the dynamics or 
in terms of temperature and composition. Such a development may 
be of great interest due to its link to the mixture formation and, conse-
quently, the combustion process. 

Figure 3 - Simulation of the MERCATO test rig of ONERA [34].  Vapor fuel mass fraction obtained with
(a) mono disperse and (b) multifluid models for non-reactive conditions.
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Eulerian Moment methods

Compared to Lagrangian methods, Eulerian approaches have the ad-
vantage of solving a fluid description similar to the gas phase, which 
enables the use of the same type of parallelism algorithm. Moreover, 
statistical convergence is intrinsically achieved, sine Eulerian methods 
directly solve the moments of the NDF. However, they come with two 
drawbacks compared to Lagrangian methods. First, moment methods 
need closures for the moment system, since for any moment set 
higher order moments are required to close the fluxes. The closure 
must be dictated by the physics of the problem and will induce a 
modeling error that does not exist for Lagrangian methods. Second, 
moment methods lead to a system of partial differential equations for 
which specific numerical methods have to be used in order to reduce 
numerical dissipation. For the simulation of aeronautical combus-
tors, the two most important issues are the description of the size 
polydispersion of the droplets and the robust and accurate numerical 
resolution of the moment system on unstructured grids and complex 
geometries.

Concerning the size polydispersion, injection strategies can lead to 
polydisperse sprays with droplet sizes ranging from one micron to 
200μm, and this polydispersion persists inside the combustion 
chamber. Simulations [25, 26] have exhibited the impact of size poly-
dispersion on the spray and, for instance, experiments from [27] have 
identified the polydispersion as a potential origin for flame stabilization 
or flame bifurcation because of size-conditioned dynamics. In the lite-
rature, many polydisperse Eulerian strategies are available, ranging 
from Multifluid methods that discretize the size space into sections, to 
high order moment methods, see [28, 29, 30, 31, 32] and references 
therein. However, even though high order moment methods have 
been used for automotive engines [33], the only method that has been 
used to describe the cold flow of an aeronautical configuration is the 
first order Multifluid method [26], see Fig. 3, which is still expensive 
since 10 sections are required. The second order Multifluid method 
of Laurent et al [32.1, 32.2, 32.3] used for solid propulsion in the 
CEDRE code is for now the most attractive strategy, which reduces 
the required number of sections.

Concerning the numerical resolution of the moment equations, several 
works have evidenced the difficulty to accurately and robustly solve 
moment equations in complex configurations and unstructured grids 
using conventional methods (see [35] and references therein). In fact, 
due to the droplet phase inhomogeneity induced by the injection and 
the turbulence, the disperse phase exhibits strong gradients and va-
cuum zones. This requires the use of stabilization techniques, such as 
artificial viscosity or flux limiters, which still need an iterative process 
to adjust numerical parameters in order to obtain the best solution. A 
major challenge is thus to design numerics that are intrinsically stable 
and robust. In the literature, the only works that deal with the numerics 
of Eulerian methods on unstructured grids have been performed in the 
AVBP code of CERFACS and the CEDRE code of ONERA. The former 
is based on a Taylor-Galerkin scheme [36] initially developed for the 
gas phase. For Eulerian simulations, specific attention has been given 
to artificial diffusion operators, in order to stabilize the simulations 
[37, 38, 39]. The latter uses a realizable multislope MUSCL method 
[40] adapted to two-phase flows, which is limited to second order ac-
curacy. In order to achieve sufficient accuracy while ensuring robus-
tness, a method of great potential is the Discontinuous Galerkin (DG) 
approach. For example, in [41], it has been shown that it is possible 

to design DG schemes [42] for moment equations that satisfy all sta-
bility requirements as well as strongly increasing accuracy compared 
to the MUSCL strategy, even at second order.

Apart from these two issues, velocity and temperature polydis-
persions, especially in the context of LES, will have to be properly 
modeled. For these two issues, two types of strategy exist. The Al-
gebraic-Closure-Based Moment Methods (ACBMM) [43, 44] model 
the unclosed terms using information on moments and have already 
been used to simulate complex configurations using the AVBP code 
[45, 46, 26]. The Kinetic-Based Moment Methods [47] use assump-
tions regarding the underlying kinetic distribution. A comparison has 
been made in [48], showing that both methods have a close level of 
accuracy, with ACBMM having an advantage in terms of number of 
equations (5 against 10 in 3D) and KBMM having an advantage in 
terms of numerics (hyperbolic structure of the equations [49]). The 
extension of such models to two-way coupling has yet to be pro-
posed, since it is essential for combustion problems, and should be 
inspired by previous work in the RANS context [50, 51].

Physical models

In order to describe the spray evolution, the physical processes that 
affect the spray must be defined. The spray regime encountered in 
combustors restricts the most important processes to the drag force 
and the heat and mass transfers, since these are the most likely to 
drive the spray trajectory, as well as its exchanges with the gas phase. 
The most widely used model to express the drag force is the Schiller-
Naumann correlation [52], which acts as a Reynolds-based correc-
tion of the classical Stokes law [53] and has been shown to be valid 
in the diluted regime. At this point, the most prominent question for 
drag force is whether or not to evaluate one of its parameters: the 
unperturbed gas velocity. In [54], the authors point out this issue by 
demonstrating that, even in the point-particle limit, the model should 
not directly take the gas velocity at the droplet location as an unpertur-
bed velocity. Such a modification should be more deeply tested and 
evaluated in real applications, in order to see its impact. Concerning 
heat and mass transfers, a wide range of models can be found in 
the literature, with different sets of assumptions and different valida-
tion cases. A comprehensive review is available in [55]. Many recent 
models have been focused on the evaluation of the gas phase pro-
perties at the droplet surface, by considering for instance complex 
transport in the case of reduced chemistry [56] or corrected Stefan 
fluxes [57]. Shashank et al [58] have also investigated the sensitivity 
of models to the 2/3-1/3 approximation [59] for gas phase reference 
quantities, and have shown the great impact of this choice. In the 
end, the most difficult issue is the validation of the evaporation model 
with regard to reference experiments. First, designing an experiment to 
evaluate vaporization is not straightforward. For instance, Chauveau et 
al [60] have demonstrated the impact of the support fiber to be non-
negligible. Second, most droplet evaporation experiments are perfor-
med on pure hydrocarbons, and more data are required for kerosene 
under various conditions. Third, the impact of droplet motion as well 
as droplet combustion on the vaporization correlations must be pro-
perly validated for kerosene under realistic conditions. For example, a 
model for taking into account isolated droplet combustion has been 
proposed in [17].

Physical processes besides evaporation and drag force should also be 
taken into account. For instance, droplet secondary break-up mode-
ling can have an impact on simulations [61] and would need further 
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investigations regarding the numerous available break-up models, see 
for instance [62] and references therein, for the sensitivity to the cho-
sen model. Models for droplet/wall interactions, as well as film for-
mation and break-up, would also be of interest, since many injection 
devices could lead to the impact of the jet in the swirler region or at the 
combustion chamber walls. Such a physics is not straightforward to 
handle, since it would require the film formation from droplet impacts 
to be modeled, as well as the film breakup into droplets. In the work 
of Chaussonnet et al [63, 64], the authors proposed a first model to 
account for such a transition by describing the film formation from 
Lagrangian droplets and modeling the droplet generation from the film 
break-up.

Injection modeling

Although it is not possible at this time to simulate the primary atomi-
zation process from the injection location to the combustion cham-
ber, two-phase combustion chambers have been simulated over the 
past decade by using boundary conditions for the disperse phase: 
instead of injecting a coherent liquid jet, boundary conditions are mo-
ved downstream into the disperse phase region, and a distribution of 
droplets is injected [21, 65, 66, 24]. In order to choose the appropriate 
profiles at the boundary condition, models have been devised based 
on phenomenological models and appropriate volume balances. 
However, these models still rely on experimental data to adjust para-
meters such as droplet diameters, in general taken at the closest mea-
surement location. Such a solution is helpful to run computations, but 
is not a long-term solution since experiments will always be needed 
to adjust the injection model. In order to avoid these constraints, the 
most evident solution is the use of high-fidelity injection simulations 
that accurately reproduce all of the features of the primary atomization 
process, in order to provide more insightful descriptions of the injec-
tion system, for instance by giving the droplet size distribution from 
the injection exit. In addition to the development of boundary condi-
tions, methods are also under development to ensure the transition 
between the separated and disperse phases, and will be a building 
block for future complete simulations, see [67, 68, 69.1, 69.2, 69.3, 
69.4] for instance.

Validation

Finally, an important point concerning disperse phase simulations 
relates to the validation strategy. Actually, due to the complexity of 
the physics and the difficulties in accessing information in a reactive 
configuration, particular attention must be paid to this specific issue. 
Actually, two ANR projects were initiated this year, which will give 
a specific focus on this issue. First, the project named NEXTFLAME 
(EM2C/CERFACS) will investigate two-phase combustion in a coun-
terflow burner, for which a detailed characterization of inflow condi-
tions and spray flame characteristics will be available. Second, the 
TIMBER project (EM2C/CERFACS/CORIA/SAFRAN) will investigate 
two-phase ignition in annular chambers, and for this purpose will use 
simple benchmark cases. Both projects will give the community refe-
rence test cases that will possibly be used for in-depth validation of 
simulation strategies.

Kerosene chemistry modeling

From a chemical kinetic point of view, the combustion of aviation 
fuels is a challenging problem. Jet fuels, such as Jet A-1 and JP-8, 

are complex mixtures of over one thousand hydrocarbons containing 
from 8 to 16 atoms of carbon. Moreover, the chemical composition of 
a given jet fuel can vary and different fuels are used world-wide with 
compositions that differ significantly from one location to another. Fi-
nally, jet fuels also contain additives (such as antioxidants, corrosion 
inhibitors or metal deactivators), which are determined by the specific 
use of the fuel. Both the physical properties of the jet fuel and its glo-
bal reactivity, as well as its propensity to produce different pollutants 
such as soot, depend on this composition. Due to the complexity of 
these mixtures, the detailed composition cannot be used as an input 
for combustion modeling purposes. Until the last decade, aviation fuel 
combustion was modeled using a single component. After reduction, 
the chemical kinetic mechanism fits CFD requirements well, especially 
in terms of number of species. With the continuing increase of com-
puter power and the interest in alternative aviation fuels whose chemi-
cal composition again differs from that of conventional jet fuels, new 
strategies were developed to better predict heat release and pollutant 
formation during the combustion in gas turbine engines. These strate-
gies rely on the idea that all of the individual hydrocarbons present in a 
jet fuel (conventional or alternative) can be classified into four different 
families: n- and iso-paraffins, naphthenes and aromatics, with relative 
abundances depending on the fuel. All of these families have speci-
fic chemical reactions and different reactivities. A so-called surrogate 
can be formulated as a mixture of well-chosen hydrocarbons repre-
sentative of their own family. A first approach was developed by Gué-
ret et al [70] with a mixture of three hydrocarbons (79% n-undecane, 
10% n-propylcyclohexane, 11% 1,2,4-trimethylbenzene) to model the 
oxidation of a Jet A-1 in a jet-stirred flow reactor at atmospheric pres-
sure. It was found that the identified reaction products formed during 
the oxidation of the ternary mixture and the kerosene were very similar 
in terms of concentration. Furthermore, a quasi- global chemical kine-
tic reaction mechanism was developed to reproduce the experimental 
data. The authors concluded that a kinetic model involving an equiva-
lent mixture of a small number of pure hydrocarbons can represent the 
oxidation of kerosene.

Then, Dagaut et al [71] formulated four chemical surrogate model 
fuels of increasing complexity from pure n-decane (100%mol.), 
n-decane/n-propylbenzene (74%/26%mol.), n-decane/n-propylcy-
clohexane (74%/26%mol.) and n-decane/n-propylbenzene/n-pro-
pylcyclohexane (74%/15%/11%mol.).  The oxidation of these four 
mixtures was studied in a jet-stirred reactor at atmospheric pressure, 
over a temperature range from 900 to 1300 K and variable equi-
valence ratios, and compared to the oxidation of Jet A-1 obtained 
under the same conditions. It was found that the 3-component fuel 
model was the most appropriate to simulate the jet stirred reactor 
experiments, as well as a fuel-rich premixed kerosene-oxygen-nitro-
gen flame. In 2006, Dagaut and Cathonnet [72] published a review 
of kerosene combustion in which they reported recent advances on 
the formulation of kerosene surrogate fuels, as well as experimen-
tal kinetic studies on kerosene and surrogate ignition, oxidation and 
combustion and the latest kinetic modeling efforts. The relevance 
of the approach using chemical families was demonstrated through 
numerous simulations of Jet A-1 and JP-8 surrogate combustion,  
but  the  authors  highlighted  the  lack  of  experimental  data  under 
flame  conditions. A similar initial idea by Colket et al [73] was to 
design a simplified surrogate composed of n-decane (50%vol.), n-
butylcyclohexane (25%vol.) and n-butylbenzene (25%vol.)  to  better 
match the  hydrogen/carbon  ratio  (1.91  for  JP-8)  and  set  the  
aromatic  content  at  the  limit of the aviation fuel regulations. Igni-
tion temperature, extinction strain rates and CO mole fractions were 
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measured and this group concluded that this  surrogate  was  more  
reactive  and more difficult to extinguish than typical jet fuels. Finally, 
a roadmap was proposed for the development of jet fuel surrogates. 
The targets identified by Colket et al [73] were pushed further by 
Dooley et al[74]. They decided to focus the design of comprehensive 
surrogates not only on the H/C ratio but also on the derived cetane 
number (DCN), the threshold sooting index (TSI) and the molecular 
mass. They started with fourteen different mixtures of n-decane, iso-
octane and toluene. DCNs were measured using an ignition quality 
tester and TSIs were determined from a linear relationship taking into 
account the TSI of pure components and mixture fractions. Finally, 
their surrogate was composed of n-decane (42.67%mol.), iso-oc-
tane (33.02%mol.), and toluene (24.31%mol.). They measured mole 
fraction profiles in a flow reactor and ignition delays in a shock tube 
and a rapid compression machine at high pressures, and strained 
extinction limit of diffusion flames for both their surrogate and a Jet A 
fuel. It was found that such a surrogate was able to closely emulate 
the global combustion parameters of the Jet A fuel chosen in the 
study (POSF 4658), as well as the chemical kinetic related beha-
vior, even though they admitted that the present surrogate did not 
exactly match all of their goals. More recent works have addressed 
the combustion of alternative jet fuels, for instance through Alfa-Bird 
(Alternative Fuels and Biofuels for Aircraft Development), a European 
Union funded research project testing biofuels and alternative fuels 
as a means of ensuring the long-term viability of the international air 
transportation industry. Mzé-Ahmed et al [75] studied the oxidation 
of a coal-to-liquid Fischer-Tropsch synthetic jet fuel and compared it 
to a quaternary mixture made of n-decane (47.2%mol.), iso-octane 
(15.5%mol.), n-propylcyclohexane (42.2%mol.) and n-propylben-
zene (12.2%mol.). They concluded that the surrogate represented the 
oxidation of the synthetic jet fuel reasonably well, but that it required 
more realistic alkanes and naphthenes to be  involved. This conclu-
sion was emphasized by Dagaut et al [76] studying the oxidation 
of gas-to-liquid Fischer-Tropsch synthetic jet fuel. As compared to 
the GtL, the surrogate (65.2%mol. n-decane, 37.5%mol. iso-octane 
and 10.3%mol. n-propylcyclohexane) was shown to have a similar 
reactivity but some species (iso-butene) were largely over-estima-
ted, indicating that iso-octane might not be a good representative 
compound of the iso-alkane family. In the most recent works [77], 
a fraction of iso-octane has been replaced by a mixture of 2-methyl-
heptane and 3-methylheptane, in order to better match the combus-
tion behavior of the iso-alkane family. Also, decalin and tetralin have 
been introduced into the composition of the surrogate in addition 
to n-propylcyclohexane and n-propylbenzene, in order to achieve a 
more realistic representation of the naphthene and aromatic families. 
This flexible detailed kinetic mechanism was able to successfully 
reproduce the oxidation of a GtL and a CtL under high pressure and 
from fuel-lean to fuel-rich conditions. The interest of such a flex-
fuel kinetic mechanism is that it can be reduced on purpose (for 
one typical fuel, under few thermodynamic conditions) to match CFD 
requirements.

Turbulent combustion models

Chemistry reduction

An accurate prediction of the temperature evolution and the species 
formation across a flame requires a reliable description of chemical 

mechanisms. Detailed schemes correspond to an exhaustive list of 
all possible elementary reactions between a given fuel and an oxidi-
zer. However, as explained in Section 4, detailed kerosene/air reaction 
schemes involve hundreds of species and thousands of elementary 
reactions. Despite the continuous increase in computational power, 
detailed chemistry flame computations remain prohibitive for prac-
tical aeronautical combustors. In practice, detailed chemistry com-
putations are mainly applied to 1-D laminar kerosene-air flames [78] 
and 3-D DNS of turbulent flame, but limited to small domain size and 
Reynolds number, and to light hydrocarbons [79]. 

Identification of a skeletal mechanism

For this purpose, methods have been developed to reduce the che-
mistry. The first reduction step is the identification of a skeletal mecha-
nism where, for a given range of parameters, unimportant reactions 
and species are suppressed. Methods for the systematic reduction of 
mechanisms to a skeletal level have been proposed in [80, 81, 82, 
83]. The resulting skeletal mechanisms are still in general too large to 
be included in 3-D reactive flow simulations. A second reduction step 
is therefore needed for practical simulations.

Popular procedures to systematically reduce mechanism are the Qua-
si Steady-State approximation (QSSA) and/or the Partial Equilibrium 
approximation (PEA). QSSA assumes that the rates of production and 
destruction of a selection of species are much greater than their net 
rate of formation. This yields algebraic relations for production rates 
of these species among the elementary rates. The PEA assumes that 
the rates of some reactions are so high that partial equilibrium is esta-
blished, also giving rise to algebraic relations between the elementary 
reaction rates. An extensive description of these methods, together 
with the mathematical framework and illustrations with practical 
examples, is given in the review article [84].

One of the first attempts to reduce detailed schemes within the 
context of kerosene chemistry was performed by Luche et al [85]. 
From a detailed mechanism comprising 225 species and 3493 irre-
versible reactions proposed previously, the authors first obtained a 
skeletal mechanism including 134 species and 2132 reactions by 
using atomic flux analysis. This skeletal mechanism was further re-
duced to 1220 reactions by removing redundant reactions with the 
principal component analysis method. A last step was applied using 
the quasi-steady-state approximation for species with a short lifetime, 
and two reduced schemes including 33 and 40 species were finally 
obtained. These reduced mechanisms offered a good compromise 
between predictive qualities and computation time. Another example 
of a reduced mechanism is given in [86]. The skeletal JetSurF 1.0-l1 
mechanism [87]1, including 123 species and 977 reactions has been 
systematically reduced using a directed relation graph (DRG), DRG-
aided sensitivity analysis, and linearized quasi steady state (QSS) 
approximations, leading to an analytical 24-species mechanism for 
n-dodecane. 

Empirically-reduced mechanisms

An alternative to describe combustion chemistry is the use of empiri-
cally reduced mechanisms. These ad hoc models composed of one to 
four steps are built to reproduce global flame properties, such as the 
laminar flame speed, the burnt gas composition or the auto-ignition 

1JetSurF 1.0-l1 is already a simplified version of JetSurf 1.0 [88] 
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times. Reaction rates are determined by tuning, guessing and trial 
and error. Pioneering work is due to Westbrook and Dryer [89], who 
proposed one and two-step global reactions with Arrhenius kinetics 
by tuning the pre-exponential factor, the activation energy and the 
reaction order. More recently, the applicability of one-step irrever-
sible Arrhenius kinetics with unity reaction order to the description of 
partially-premixed methane-air combustion has been investigated in 
[90]. For more complex hydrocarbons, a simple technique has been 
proposed [91, 92] to derive one-step and two-step schemes for 
kerosene-air flames. In order to fit the laminar burning velocity over a 
wide range of operating conditions, the pre-exponential constants of 
the two reactions are tabulated as a function of the local equivalence 
ratio. The fuel and oxidizer exponents are adjusted to reproduce the 
dependence of premixed laminar burning velocity on mean pressure. 
However, the optimization of these mechanisms remains limited by 
the thermochemical properties of the species involved, which remain 
unchanged. A solution to overcome this issue is to develop virtual 
schemes involving virtual species and reactions [93]. The use of 
virtual species, whose thermodynamic properties are optimized, 
improves the domain of validity of global step mechanisms. 

Tabulated chemistry methods

An alternative to address fluid/chemistry interactions at a reduced 
computational cost consists in tabulating the chemistry. A chemical 
look-up table is generated prior to a CFD simulation, in which main 
thermo-chemical ingredients are stored as a function of a reduced 
set of variables. Some techniques to construct the chemical look-
up table, such as the Intrinsic Low Dimensional Manifold (ILDM) 
developed by Maas and Pope [94], are based on a mathematical 
reduction of the chemical system dynamics. However, a large num-
ber of coordinates, around four or five, are required when hydro-
carbons fuels are considered. Alternatives to ILDM that require less 
dimensions are Flame Prolongation of ILDM (FPI) [95, 96] or Fla-
melet Generated Manifold (FGM) [97]. Both techniques assume that 

Figure 4 - Chemical flame structure of a 1-D laminar spray counterflow flame using a detailed chemistry (solid) 
and a FPI tabulated chemistry approach (symbols).

the chemical flame structure can be described by a reduced phase 
subspace from elementary combustion configurations. For instance, 
the chemical subspace covered by partially-premixed flames can be 
approximated from a collection of 1-D laminar flames [98].

The suitability of tabulated chemistry for kerosene combustion has 
been recently investigated by simulating 1-D laminar spray counter-
flow flames [99]. Figure 4 shows a comparison between detailed and 
tabulated chemistry simulations. Both methodologies use the same 
skeletal mechanism developed by Luche [85], so only assumptions 
relative to chemistry tabulation are challenged. The temperature pro-
file is well reproduced by the tabulated chemistry method, but small 
discrepancies are observed in the CO prediction. These errors are due 
to the fact that a single flame archetype (premixed flamelets) is used 
to build the chemical look-up table, whereas the structure of the spray 
counterflow flame is more complex. This assumption, valid to capture 
the temperature, is too crude to capture complex chemical phenome-
na, such as the pollutant formation.

This result illustrates the limitation of tabulated chemistry methods, 
which assume that a turbulent flame is composed of a set of laminar 
flame elements. The identification of the combustion elements repre-
sentative of the overall turbulent chemical flame structure is not always 
obvious. The use of a single flamelet archetype is efficient to capture 
the chemical structure of well-identified flames (such as purely pre-
mixed flames or diffusion flames), but introduces bias in the prediction 
of the chemical structure of more complex situations such as stratified 
flames [98].  In order to capture the complex flame structures that 
develop in the reactive flow, more coordinates have to be added to the 
look-up table. In order to track multiple flamelet regimes within a single 
look-up table, Bykov and Maas [100] and Nguyen et al [101] proposed 
to solve the projection of the full set of species balance equations in 
a restricted subset of the composition space. Another solution, sug-
gested recently by Franzelli et al [78], is to combine partially-premixed 
flamelets to generate a chemical look-up table.

(a) 40 μm droplet diameter (b) 100 μm droplet diameter
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LES of turbulent combustion

Two major issues must be overcome to perform LES of turbulent 
combustion:

•The flame thickness is typically thinner than the grid size.  In-
deed, the flame reactive layer is usually about 10-100 microme-
ter wide, while the filter size remains above 1 millimeter [102].

•Part of the flame wrinkling induced by the turbulence is not 
resolved by the LES. Therefore dedicated models for flame/tur-
bulence interactions are needed [1].

Regarding the first point, an efficient solution to solve flame pro-
pagation on a coarse grid is to artificially thicken the flame front by 
modifying the diffusion coefficient and the Arrhenius pre-exponential 
constant [103, 104]. This methodology, which is straightforward to 
implement in a LES solver, has been successfully applied on gas tur-
bine combustion chambers, both within the context of global-step che-
mistry [105] and that of tabulated chemistry [106]. Another solution 
is to introduce a filter larger than the mesh size, in order to resolve the 
filtered flame structure. This method has been followed by Boger et al  
[107] and Duwig et al  [108] with a single-step description of the che-
mistry. This strategy has been followed within the context of tabulated 
chemistry with the development of the F-TACLES (Filtered TAbulated 
Chemistry for Large Eddy Simulation) model, which was first formula-
ted for premixed [109], then stratified adiabatic [110] and non-adiaba-
tic combustion [?]. This modeling strategy has been applied by [111] 
to understand the formation of the hot regions observed at the wall 
surface of a helicopter combustion chamber. Another approach is to 
solve a scalar field, where an iso-surface is defined to represent the 
instantaneous flame front position. This method called ”G-equation” 
was first applied to LES in [112]. The mathematical formalism of the 
G-equation has been updated for LES in the corrugated flamelet regime 
[113] and in the thin reaction zones regime [114]. The G-equation 
model has been coupled to tabulated chemistry in [115].

The second issue concerns the sub-grid flame/turbulence interaction 
modeling. Indeed, the turbulence of the flow generates vortices (or 
eddies), which wrinkle the flame front over a wide range of length 
scale. In practical LES computation grids, a significant part of the 
flame wrinkling occurs at the sub-grid scale and requires modeling 

Figure 5 - Instantaneous snapshots from non-adiabatic simulations of the TSFA flame: 3-D views of 1850 K temperature iso-surface conditioned 
on the flame surface. 2-D field showing the mixture fraction iso-contours.

[1]. Significant progress has been recently achieved with the deve-
lopment of dynamic sub-grid scale models [116], which have been 
successfully coupled with the flame filtering concept [117, 118]. 
They demonstrate that this combination is very efficient to predict 
the flame stabilization process and the temperature distribution in the 
combustion chamber.

Some above mentioned methods have been recently challenged in 
a collaborative study in which five research institutions have been 
involved to simulate a turbulent stratified flame (TSF) measured at the 
Technische Universitt Darmstadt (TUD) [119]. The groups involved 
in the simulations are TUD, the Institute for Combustion Technology 
(ITV, Aachen), Lund University (LUND), the EM2C laboratory at Ecole 
Centrale Paris (EM2C) and Duisburg-Essen University (UDE). All 
groups performed Large Eddy Simulations using Low Mach Number 
solvers. EM2C employed the Filtered Tabulated Chemistry for LES 
(F-TACLES) model [109], extended to capture the propagation of 
non-adiabatic flames [120]. TUD applied a premixed flamelet tabu-
lation with local flame thickening [119]. ITV used a flamelet progress 
variable approach also based on premixed flamelet tabulation, but 
coupled with a level set approach [115]. LUND described the com-
bustion chemistry through a 4-step mechanism combined with Impli-
cit LES [121]. UDE used an artificially-thickened flamelet generated 
manifolds technique on many low cost cells.

These computational strategies differ by many aspects of numerics, 
turbulent combustion models and meshing. However, all modeling 
strategies were designed to produce the correct laminar flame speed 
under non-adiabatic conditions. Most simulations agree on the mean 
flame brush position, but it is clear that sub-grid turbulence must be 
considered to achieve the correct turbulent flame speed. Instanta-
neous snapshots of the flame, shown in Fig.5, illustrate the ability of 
the methods to capture the flame lift-off height. Discrepancies in the 
flame wrinkling resolution are caused by the different grids and nume-
rical methods, as well as by the various LES combustion models used.

An alternative, adapted to the simulation of high Reynolds moderate 
Damkohler number turbulent flames [122, 123], is to use LES-EPaSR 
(extended Partially Stirred Reactor) and RANS-EPaSR models, which 
incorporate the influence of finite rate kinetics. It is assumed (simi-
larly to the EDC model of Magnussen) that chemical reactions take 
place only in the fine vortex structures, characterized by high intensity 

(a) EM2C (b) UDE (c) ITV (d) LUND (e) TUD



Issue 11 - June 2016 - Modeling Challenges in Computing Aeronautical Combustion Chambers
 AL11-05 9

velocity gradients, molecular mixing and dissipation. Using the simila-
rities with the mathematical treatment of multiphase flows, equations 
are derived for the fine-structure composition and volume fraction, 
which are solved together with the LES or RANS equations for the 
resolved scales. If convection and unsteady effects can be neglected, 
the EPaSR model is reduced to the PaSR model. The EPaSR model 
was validated against experimental data, e.g., lean premixed bluff-
body stabilized flame, supersonic combustors and many other cases 
[122] [123] [124] [125].

Pollutant formation

Soot

Soot particles are solid fractal aggregates of small size caused by 
an incomplete combustion of hydrocarbons. Not only do they have 
a negative impact on health and the environment, but they can also 
cause a significant loss of efficiency of aeronautical combustors due 
to soot radiation, deposits and wall deterioration. Soot production is 
the result of complex processes of both formation and destruction, 
including the generation of first nuclei from gaseous precursors (the 
polycyclic aromatic hydrocarbons - PAHs), gas-solid and solid-solid 
collisional processes (condensation and coagulation, respectively) 
and chemical reactions at the soot particle surface (surface growth 
and oxidation) [126]. Therefore, soot production depends on the fuel 
used, the mixture quality, the operating point and the combustion 
mode. It is generally characterized by the soot volume fraction and 
the particle number density, giving access to a mean soot particle dia-
meter. However, the particle size distribution (PSD) provides a better 
description of soot emission, although it requires more sophisticated 
experimental diagnostics and detailed numerical models to be ana-
lyzed and/or predicted.

Today, using numerical simulations to predict soot production in ae-
ronautical combustors is extremely challenging for different reasons:

•Complexity of the physical process: due to the complex nature 
of soot production, detailed models are required to describe 
both the gaseous and the solid phases [127, 128, 129]. Such 
detailed models are prohibitive in real systems and simplified 
descriptions are required. However, the simplification pro-
cedure is not straightforward and may lead to strong inaccura-
cies on soot prediction.

•Multi-physics coupling: soot production strongly depends on 
the flame structure, the concentration of soot precursors and 
radicals, as well as the temperature. Acceptable discrepan-
cies with regard to gaseous predictions lead to large errors on 
soot production. As an example, overestimating the precursor 
concentration by twice the amount leads to an overestimation 
by one order of magnitude of the soot volume fraction [130].  
Therefore, high fidelity models are necessary for the gas phase 
chemistry and flame-turbulence interactions. Moreover, the 
presence of soot in the flame is a major source of radiative 
heat transfer. The non-linear coupling between soot particles 
and radiation must be correctly reproduced to accurately pre-
dict soot production [131], requiring the use of multi-physics 
coupling strategies.

•Lack of experimental databases for soot production in real 
combustors: this is mainly due to the difficulties in achieving 
measurements for both the gaseous and solid phases [132]. In 
academic turbulent flame configurations, Laser Induced Incan-
descence (LII) is the main technique used to non-intrusively 
measure the time-resolved soot particle volume fraction [133, 
134, 135]. Combined diagnostics are increasingly being used 
to investigate the relation between soot, on the one hand, and 
flow dynamics, soot precursors and the front flame on the other 
hand [136, 137, 138]. High speed measurements also enable 
the soot-turbulence interaction [138, 139] to be characterized. 
Applying such diagnostics to realistic geometries is still very 
complex. It has recently been done for the first time at DLR by 
Geigle et al [140, 141, 142] in a swirled turbulent ethylene-
air non-premixed flame at moderate pressure (3 and 5 atm). 
By combining LII, soot luminosity, OH fluorescence (PLIF) and 
luminosity, Particle Image Velocimetry (PIV) and Coherent Anti-
Stokes Raman Spectroscopy (CARS), the DLR database offers 
a detailed characterization of the flow, the flame structure and 
the soot production for soot  modeling validation. 

Despite these difficulties, soot production in an aeronautical burner 
has been investigated using both Reynolds Averaged Navier Stokes 
(RANS) and Large Eddy Simulation (LES).

First attempts to predict soot production in real gas turbine combus-
tors were based on RANS [143, 144, 145, 146, 147, 148], whose 
accuracy was quite limited. This approach is however not suitable 
for soot formation prediction because this complex phenomenon is 
controlled by local and history-dependent processes that cannot be 
modeled by RANS [135].

Since LES captures the temporal and spatial evolution of the local flow 
structures, it is a valid alternative. The first LES of soot production 
in turbulent laboratory-scale flames have proven the potential of this 
approach at a reasonable computational cost [149, 150, 151]. Aimed 
at real combustors, LES was recently performed in the DLR aero-
engine model combustor [130, 152] (Fig. 6), using a semi-empirical 
two-equation soot model [153]. As for the gas ethylene-air chemistry, 
both a fully tabulated method and a hybrid method (two-step reduced 

Figure 6 - LES of the DLR swirled turbulent flame [130].  
Isocontour of temperature colored by the axial velocity (red-to-yellow) 
and soot ligaments colored by their number density (black-to-white).
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chemistry for the flame-tabulated chemistry for the soot precursors) 
[154] were evaluated. Comparisons with experiments showed cor-
rect agreement in terms of soot position, but large differences in 
terms of soot levels in the combustion chamber. The sensitivity of 
the soot volume fraction to the gas chemical description was ana-
lyzed [130, 152].

As for real aeronautical burners, the first LES computation was pro-
posed by Mueller and Pitsch [155], based on a tabulated chemical 
description for the gaseous phase and on a method of moments for 
the solid phase characterization. Radiation was accounted for via a 
simple optically thin approach. Lecocq et al [154] proposed the first 
LES of soot production in a real helicopter combustion chamber 
coupled with a thermal radiation solver. This simulation, based on 
an hybrid model for the gas and on a semi-empirical two-equation 
soot description, enabled the effect of soot radiation on the predic-
tion of the soot volume fraction and the soot number density to be 
studied. Due to the unavailability of experimental results, it is not 
possible to make any statement regarding the accuracy of these 
calculations.

Despite the feasibility of LES for soot production modeling, the mo-
dels both for the gas and the solid phases must be largely impro-
ved and their validation must be extended to measurements in real 
aero-engines. Some of the most relevant improvement pathways 
are suggested in the following. The list is however not exhaustive, 
due to the multi-physics complexity of the problem:

•Gaseous phase description and its coupling with soot: a cor-
rect description of the gaseous phase, i.e., temperature, PAH 
and intermediate species such as OH, is essential to predict 
the chemical soot production processes. Detailed chemistries 
are not affordable in LES of complex burners, requiring reduc-
tion procedures to account for large PAHs, strain rate effects 
on soot precursors and soot feedback on the gaseous phase. 
Tabulated methods and hybrid techniques are promising ways 
to be explored [154, 156, 157, 158, 159].

•Descriptions of soot PSD: with regard to spray flames, both Eu-
lerian approaches (sectional models, method of moments and 
hybrid methods) and Lagrangian models should be preferred to 

semi-empirical models to describe soot particle population (see 
§ " Spray description "). Among them, the method of moments, 
which offers a good comprise between computational cost and 
accuracy, is the only PSD model that has already been applied 
in a LES of a aero-engine combustor. This strategy has been 
widely developed for soot prediction [160, 161], enabling a 
possible extension to a bi-variate volume-surface description 
that can account for the fractal nature of soot. The capability of 
the other techniques to reproduce PSD evolution in real appli-
cations is still to be shown.

•Soot-turbulence interaction: soot production in turbulent flames 
is characterized by the presence of small pockets or ligaments 
[138, 162]. Such structures cannot be resolved on the grid ac-
cessible today in numerical simulations of realistic applications. 
Suitable sub-grid models accounting for turbulence effects on 
soot [163] are required in order to correctly reproduce the spa-
tial evolution of soot, as well as its intermittency.

•Accounting for detailed soot radiative properties: soot radia-
tion may contribute greatly to the total heat flux of a combustor 
chamber, consequently affecting the flow temperature field and 
soot production causing a non-linear feedback. A detailed des-
cription of soot radiative properties, based for example on par-
ticle morphology or composition [164], should be accounted 
for and coupled with the flow solver.

•Extension to realistic conditions: most of the modeling develop-
ments, as well as the experimental measurements, are focused 
on simple fuels, such as ethylene or methane, or are for sim-
pler operating conditions (low pressure for example). The DLR 
experimental database, for example, concerns ethylene flames 
up to 5 atm. Research activities under realistic conditions for a 
kerosene surrogate is an active on-going topic, which should 
provide a better insight of soot production and lead to more 
accurate models.

Due to the complex nature of soot, new models must be expressly 
developed to reproduce the solid phase characteristics. Such deve-
lopments are expected to notably improve the numerical prediction of 
soot production in real aero-combustors.

Figure 7 - Instantaneous temperature field (left) and instantaneous field of YN O (right), 
computed on a grid of 347 million mesh cells with a minimal resolution of 41 μm at the burner lip.
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Figure 8 - Axial mean and rms NO mass fraction at the jet-fame centerline.
Symbols: experiment, Dashed lines: variable Lewis number modeling. Continuous lines: unity Lewis number modeling. 

Resolution at the burner lip: 41 μm (Bold); 82 μm (Thin).

NOx

The heating of air in combustion systems produces nitric-oxides. 
This primary thermal source of NO features large characteristic time 
scales, at least much larger than the typical flow residence times of 
aero-engine combustion chambers [165, 166, 167]. NO levels are 
therefore always far from their chemical equilibrium reference state 
and predicting them is not an easy task. In addition, NO is also pro-
duced within the fuel oxidation thin layers, through a prompt nitric-
oxide mechanism [168]. Even in a first approximation, this second 
mechanism cannot be neglected in accurate modeling, specifically in 
the fuel-rich zone of non- premixed flames in gas turbines [169, 170]. 
The numerical simulation of NO concentrations in this context has 
been the subject of multiple studies in both RANS and LES [171].

One of the major challenges in NO prediction is thus the large range 
of time scales that must be accounted for in the modeling, from fast 
fuel-oxidation, controlling the prompt mechanism, up to the slow ther-
mal NO mechanism. Recently, an innovative approach called NOMANI 
(Nitrogen Oxide emission model with one-dimensional MANIfold) was 
dis- cussed [172], which includes the slow and fast chemical pro-
cesses and which is well adapted to aeronautical engines, in which 
air is added downstream from the main combustion zone, in order to 
dilute the combustion products. In order ensure a precise estimation 
of the NO concentration in the flame front, as well as in the burnt 
gases, two progress variables are introduced in NOMANI. The first 
progress variable is derived from major carbon species, to monitor 

fuel oxidation. The second progress variable is based on the NO mass 
fraction and through variations in equivalence ratio, the NOMANI for-
malism provides a framework to account for secondary air-dilution. 
NOMANI is based on an a priori tabulation of the NO chemical sources 
and the effects of fluctuations unresolved by the mesh are accounted 
for using the PCM-FPI approach [173, 174].

NOMANI has been implemented in the flow solver YALES2 [175] and 
the SANDIA flame-D [176] was simulated to validate the NO prediction 
(see Figures 7 and 8).  Since its preliminary validation on laboratory 
jet flames, NOMANI has been adopted by SAFRAN for NO prediction 
in the design loop of combustion chambers.

Conclusions

This article presented the modeling challenges encountered when 
performing LES of aeronautical combustion chambers. Issues rela-
tive to primary atomization, spray description, kerosene chemistry, 
combustion modeling and pollutant formation have been described. 
For each topic, we have given the current state-of-the-art within the 
context of Large Eddy Simulation. Several illustrative examples, re-
presentative of practical situations encountered in gas turbines, have 
been proposed. Future challenges are the fully coupled simulation, 
covering the interactions between all phenomena and all time and 
length scales involved, from the primary atomization at the fuel nozzle 
to the pollutant emitted at the exit of the combustion chamber 
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Acronyms

RANS  (Reynolds Average Navier Stokes) 
LES (Large Eddy Simulations) 
DNS (Direct Numerical Simulations) 
AMR (Adaptive Mesh Refinement)
LDT (Lagrangian Droplet Tracking) 
DG (Discontinuous Galerkin) 
ACBMM (Algebraic-Closure-Based Moment Methods) 
QSSA (Quasi Steady-State Approximation
PEA (Partial Equilibrium Approximation) 
DRG (Directed Relation Graph) 
QSS (Quasi Steady State) 
ILDM (Intrinsic Low Dimensional Manifold)
F-TACLES (Filtered TAbulated Chemistry for Large Eddy Simulation)
TSF (Turbulent Stratified Flame) 
LII (Laser Induced Incandescence)
PIV (Particle Image Velocimetry)
CARS (Coherent Anti-Stokes Raman Spectroscopy)
NOMANI (Nitrogen Oxide emission model with one-dimensional MANIfold)
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