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1. Introduction

Consider a quadratic functionq : Rn → R given by:q(x) = xtQx, with Q ∈
Rn×n. An unconstrained(−1, 1)-quadratic optimization problem can be expressed
as follows:

(QP ) Z∗ = min{q(x) | x ∈ {−1, 1}n},
where{−1, 1}n denotes the set ofn-dimensional vectors with entries either equal to
1 or−1. We consider here that the matrixQ is symmetric and given by its spectrum,
i.e. the set of its eigenvalues and associated unit pairwiseorthogonal eigenvectors.

Problem(QP ) is a classical combinatorial optimization problem with many
applications, e.g. in statistical physics and circuit design [2; 8; 10]. It is well-known
that any (0,1)-quadratic problem expressed as:min{xtAx + ctx | x ∈ {0, 1}n},
A ∈ Rn×n, c ∈ Rn, can be formulated in the form of problem(QP ) and conversely
[9; 4].

The contribution of this work is 3-fold:

(i) We slightly extend the known polynomially solvable cases of(QP ) to when
the matrixQ has fixed rank and the number of positive diagonal entries is
O(log(n)).

(ii) We introduce a new (to our knowledge) polynomial-time algorithm for solving
problem(QP ) when it corresponds to such a polynomially solvable case.

(iii) Preliminary experiments indicate that the proposed methodmay be computa-
tionally efficient. [7] .
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2. Properties of optimal solutions for peculiar instances of (QP )

Let us firstly introduce some notation to be used hereafter. The eigenvalues
of the matrixQ will be notedλ1(Q) ≤ λ2(Q) ≤ . . . ≤ λn(Q) (or more simply
λ1 ≤ λ2 ≤ . . . ≤ λn when clear from the context) and the corresponding unit (in
Euclidean norm) and pairwise orthogonal eigenvectors:v1, . . . , vn. Thej-th entry
of the vectorvi is notedvij . Given some set of vectorsa1, . . . , aq ∈ Rn, q ∈ N, we
noteLin(a1, . . . , aq) the subspace spanned by these vectors.
In this section we shall make the following assumptions on the matrixQ:

(i) Q has rankp ≤ n,
(ii) Q has nonpositive diagonal entries only, and
(iii) Q is given by its set of rational eigenvalues and eigenvectors:Q =

∑p
i=1 λiviv

t
i .

Any optimal solutiony∗ to the problemminy∈{−1,1}n ytQy can be shown to
satisfy the following implication:

p∑

i=1

λiαivij > 0⇒ y∗j = −1 (2.1)

And analogously:

p∑

i=1

λiαivij < 0⇒ y∗j = 1. (2.2)

From this simple property we can namely show that in order to find an optimal solu-
tion of problem(QP ), it is sufficient to enumerate over all vectorsy ∈ {−1, 1}n for
which there exists a vectorα ∈ Rp such thatyj = −sign(

∑p
i=1 λiαivij) (or equiva-

lently yj = sign(
∑p
i=1 λiαivij), see hereafter),

∑p
i=1 λiαivij 6= 0, ∀j ∈ {1, . . . , n},

with sign(x) = 1 if x > 0 and−1 if x < 0. In the next section we focus on finding
such a set of vectors.

3. Determining cells in an arrangement ofn hyperplanes

Let v1, ..., vp ∈ Rn denotep independent vectors. LetV ∈ Rn×p denote the
matrix whose columns correspond to the vectorsv1, . . . , vp andVi thei-th row ofV .
From this set of vectors we definen hyperplanes inRp: Hj = {α ∈ Rp | Vj.α = 0}
with j ∈ {1, . . . , n}. Then we can notice that there is a one-to-one correspondence
between the set of vectors in{−1, 1}n for which there exists a vectorα ∈ Rp such
that yj = sign(

∑p
i=1 αivij), with

∑p
i=1 αivij 6= 0, ∀j ∈ {1, . . . , n} and the cells

(i.e. the full dimensional regions) inRp of the hyperplane arrangementA(H) that
is defined by the family of hyperplanes(Hj)

n
j=1. To see this just interpret the sign

vectory as the position vector of the corresponding cellc w.r.t. an orientation of
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the space by the vectorVj: cell c is abovehyperplaneHj iff yj > 0 andunder
otherwise.

For a general arrangement inRp that is defined byn hyperplanes (see e.g.
[6; 11] for further elements on arrangements), the number ofcells is upper bounded
by
∑p
i=0

(
n
i

)
(which is inO(np)). (For a proof we refer the reader e.g., to Lemma

1.2 in [6]). In our case, since all the hyperplanes considered contain the origin (i.e.
the arrangement iscentral), this number reduces toO(np−1) (see Section 1.7 in
[6]).

We have introduced [3] a simple procedure with time complexity lying be-
tween the time complexity of the incremental algorithm [6; 5] (in O(np−1)) and
that of the reverse search algorithm [1; 7] (inO(n LP (n, p) C) whereC denotes
the number of cells inA(H) andLP (n, p) is the time needed to solve a linear pro-
gram withn inequalities andp variables) in order to compute a set of vectors in
{−1, 1}n corresponding to a description of a set containing the cellsof the arrange-
mentA(H). Space complexity can be shown to be polynomially bounded bythe
ouput size. To our view the interest of the proposed method bycomparison with the
former ones is 2-fold:

(i) it is very easy to understand and implement,
(ii) computationally, by using proper data structures (to be specified latter) we

could solve instances of the same magnitude as the ones reported in [7], with-
out parallelization and substantially improved computation times.

The basic principle of the proposed method may be expressed as follows.
Given some integerq ∈ {1, . . . , n}, let Bq(H) denote the arrangement in the
subspace{α ∈ Rp | Vqα = 0} that is defined by the hyperplanes (inRp−1)
{Hj ∩ Hq | j ∈ {1, . . . , n} and j 6= q}. Any cell of Bq(H) (which is a region
of dimensionp− 1) corresponds to a facet of exactly two cells of the arrangement
A(H) i.e. one on each side of the hyperplaneHq. The other cells ofA(H) i.e. those
not intersectingHq, are cells of the arrangementCq(H) in Rp which is defined by
then− 1 hyperplanes{Hj | j ∈ {1, . . . , n} and j 6= q}. Since each cell ofA(H)
intersects at least one of the hyperplanes(Hj)

n
j=1, it follows that all the cells of

A(H) can be derived from the ones of all the arrangementsBq(H), q = 1, . . . , n.
A recursive use of this argument leads to the generation of all the cells ofA(H).

From a complexity study of the proposed method we can show thefollowing
result.

Theorem 3.1. For a fixed integerp ≥ 2, if the matrixQ (given by its nonzero
eigenvalues and associated eigenvectors) has rank at mostp andO(log(n)) positive
diagonal entries, then problem(QP ) can be solved in strongly polynomial time.
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4. Conclusion

We propose a new (up to our knowledge) approach for solving inpolynomial
time some unconstrained quadratic optimization problems.Preliminary computa-
tional results illustrate that the recursive procedure briefly presented here can be
a valuable approach on some instances by comparison with a reverse search w.r.t.
computation times.

Further computational studies are under work and could involve a paralleliza-
tion of the code in order to deal with larger instances.
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