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1. Introduction

Consider a quadratic functian: R* — R given by:q(z) = 2'Qz, with Q €
R™*™, An unconstrained—1, 1)-quadratic optimization problem can be expressed
as follows:

(QP) Z" = min{g(z) | x € {-1,1}"},
where{—1, 1}" denotes the set afdimensional vectors with entries either equal to
1 or —1. We consider here that the mattjxis symmetric and given by its spectrum,
i.e. the set of its eigenvalues and associated unit paivib@gonal eigenvectors.

Problem(QP) is a classical combinatorial optimization problem with man
applications, e.g. in statistical physics and circuit ge$®; 8; 10]. It is well-known
that any (0,1)-quadratic problem expressedmasi{z'Ax + c'x | x € {0,1}"},

A e R ¢ € R", can be formulated in the form of problef@ P) and conversely
[9; 4].

The contribution of this work is 3-fold:

(i) We slightly extend the known polynomially solvable case$@¥P) to when
the matrix@ has fixed rank and the number of positive diagonal entries is
O(log(n)).
(i) We introduce a new (to our knowledge) polynomial-time ailgpon for solving
problem(Q P) when it corresponds to such a polynomially solvable case.
(i) Preliminary experiments indicate that the proposed methayg be computa-
tionally efficient. [7] .
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2. Properties of optimal solutions for peculiar instances b(Q P)

Let us firstly introduce some notation to be used hereaftee digenvalues
of the matrix@ will be noted\;(Q) < X(Q) < ... < A\, (Q) (or more simply
A < A < ... < A\, when clear from the context) and the corresponding unit (in
Euclidean norm) and pairwise orthogonal eigenvectoys:. . , v,,. The j-th entry
of the vector; is notedv;;. Given some set of vectors, . ..,a, € R", ¢ € N, we
noteLin(ay,...,a,) the subspace spanned by these vectors.
In this section we shall make the following assumptions @nntiatrixQ):

(1) @ hasrankp < n,
(7i) @ has nonpositive diagonal entries only, and
(i11) @ isgiven by its set of rational eigenvalues and eigenverctpes Y2 | \;v;vl.

Any optimal solutiony* to the problemmin,c;_; 13» ¥*Qy can be shown to
satisfy the following implication:

p
Z)\ioﬁvij > 0= y; =-1 (21)

=1

And analogously:

p

i=1

From this simple property we can namely show that in ordentbdin optimal solu-
tion of problem(Q P), it is sufficient to enumerate over all vectors {—1, 1}" for
which there exists a vector € R? such that); = —sign(>_}_, \;a;v;;) (or equiva-
lently y; = sign(3-5-; \iayv;;), see hereafterh ), \iouvi; # 0,V5 € {1,...,n},
with sign(z) = 1if > 0 and—1 if z < 0. In the next section we focus on finding
such a set of vectors.

3. Determining cells in an arrangement ofn hyperplanes

Let vy,...,v, € R" denotep independent vectors. Léf € R"*? denote the
matrix whose columns correspond to the vectars. . , v, andV; thei-th row of V.
From this set of vectors we definehyperplanes ifR?: H; = {a € R? | V;.a = 0}
with j € {1,...,n}. Then we can notice that there is a one-to-one correspoadenc
between the set of vectors {r-1, 1}" for which there exists a vectar € R? such
thaty; = sign(31_; ayui;), with Y0, vy # 0,5 € {1,...,n} and the cells
(i.e. the full dimensional regions) IR” of the hyperplane arrangemedt H ) that
is defined by the family of hyperplang¢#/;)’_,. To see this just interpret the sign
vectory as the position vector of the corresponding eell.r.t. an orientation of

106



the space by the vectadr;: cell ¢ is abovehyperplaneH; iff y;, > 0 andunder
otherwise.

For a general arrangement RP that is defined by: hyperplanes (see e.g.
[6; 11] for further elements on arrangements), the numbeel$ is upper bounded
by >F 4 (T;) (which is inO(n?)). (For a proof we refer the reader e.g., to Lemma
1.2 in [6]). In our case, since all the hyperplanes considleomtain the origin (i.e.
the arrangement isentral), this number reduces t@(n?~!) (see Section 1.7 in

[6]).

We have introduced [3] a simple procedure with time comppjeliing be-
tween the time complexity of the incremental algorithm [(i& O(n?~!)) and
that of the reverse search algorithm [1; 7] @(n LP(n,p) C) whereC' denotes
the number of cells itA(H ) and LP(n, p) is the time needed to solve a linear pro-
gram withn inequalities ang variables) in order to compute a set of vectors in
{—1,1}" corresponding to a description of a set containing the oélise arrange-
ment A(H). Space complexity can be shown to be polynomially boundethey
ouput size. To our view the interest of the proposed methazbbyparison with the
former ones is 2-fold:

() itis very easy to understand and implement,

(i) computationally, by using proper data structures (to beifipd latter) we
could solve instances of the same magnitude as the onesaepof7/], with-
out parallelization and substantially improved compuotatimes.

The basic principle of the proposed method may be expressddllaws.
Given some integeq € {1,...,n}, let BY(H) denote the arrangement in the
subspacela € R? | V,a = 0} that is defined by the hyperplanes (')
{H;NnH,|j€{l,...,n}and j # ¢}. Any cell of BY(H) (which is a region
of dimensionp — 1) corresponds to a facet of exactly two cells of the arranggme
A(H) i.e. one on each side of the hyperpldig The other cells ofA(H ) i.e. those
not intersectingd,, are cells of the arrangemeiit(H) in R? which is defined by
then — 1 hyperplaned H; | j € {1,...,n} and j # ¢}. Since each cell afi(H)
intersects at least one of the hyperplaGés);_,, it follows that all the cells of
A(H) can be derived from the ones of all the arrangem#fit{é/), ¢ = 1,...,n.

A recursive use of this argument leads to the generation tiektells of A(H).

From a complexity study of the proposed method we can shovotlmving
result.

Theorem 3.1. For a fixed integep > 2, if the matrix ) (given by its nonzero
eigenvalues and associated eigenvectors) has rank apraodO (log(n)) positive
diagonal entries, then problef® P) can be solved in strongly polynomial time.
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4. Conclusion

We propose a new (up to our knowledge) approach for solvingplpnomial

time some unconstrained quadratic optimization probldPnsliminary computa-
tional results illustrate that the recursive procedureflyripresented here can be
a valuable approach on some instances by comparison witleeseesearch w.r.t.
computation times.

Further computational studies are under work and couldweva paralleliza-

tion of the code in order to deal with larger instances.
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