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Abstract. Reflective tomography is an emerging method in three-dimensional optical imaging.
It is unknown in mathematical communities, whereas justifying this process is a mathemati-
cal challenge. Thus we propose to formulate a mathematical model describing a full process
of 3D reflective tomography. Then we check numerically the quality of the method over origi-
nal examples, using new parameters of quality control. This work is aimed mainly at applied
mathematicians or opticians who would like to discover or deepen 3D reflective tomography.

1. Introduction

1.1. Three-dimensional optical imaging

There is a considerable interest in the development of new optical imaging systems that are able
to give three-dimensional images. Potential applications range across the field of defense and
security for the recognition of targets, the medical field for the detection of subcutaneous and
cutaneous tumors or the archaeological field for the discovery of remains in forests.

The concept of reflective tomography was introduced to overcome such challenges. The main
idea is applying a tomographic algorithm on reflective data: a filtered backprojection [13]. It
was observed that it works for several kinds of physical experiments [13]. It can reconstruct
surfaces from phaseless images [6, 9–11, 15]; and it is known in optical engineering that it can
recover partially occluded objects [7]. A new patented technology is based on 3D reflective
tomography [4, 5, 8].

1.2. Mathematical gap

To the authors’ knowledge, reflective tomography is mainly known in optical engineering; it
is still unknown in mathematical communities, whereas it introduces interesting mathematical
challenges. Indeed the standard mathematical result states that the filtered backprojection in-
verts the Radon transform: this is the justification of transmission tomography for complete
data, where the full Radon transform is known. It is also known in the field of transmission
tomography that serious difficulties appear for incomplete data (e.g. limited angle problems),
such as instabilities [14]. But in reflective tomography, because of occlusions, the data are not
modeled by a Radon transform and they are incomplete, whereas the numerical reconstructions
show that the method works. As a result the two following questions are very interesting from
a mathematical point of view. Find a general mathematical framework that describes reflective
tomography. Prove that reflective tomography reconstructs partially the scene and describe the
artifacts. A model is proposed in [3], but only for the two dimensional problem. And concerning
the proof, works are in progress [1].

Keywords: 3D imaging, computational optics, reconstruction, Radon transform.
Math. classification: 78A97, 94A12, 44A12.
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1.3. Proposed strategy

In this paper we discuss reflective tomography in the following way. We first derive a generic
mathematical model for 3D reflective tomography, by extending the 2D model derived in [3]. We
want a model which can serve as a basis for further mathematical considerations on reflective
tomography; so we respect the following constraints: the model must be simple, but realistic
enough. Concerning the validation of the process, we do not prove mathematical theorems, but
we propose an original set of numerical tests. As usual in image processing, the main criterion of
quality will be the visual rendering. To go further in this paper, we also define new quantitative
criteria, usable for synthetic tests.

1.4. Main results

First, we succeed in deriving a model which describes the full process of 3D reflective tomography,
in a simple but rigorous way. The process consists in generating new images of a scene from
cone beam reflective projections; the full model includes the process of projecting opaque objects,
the reconstruction step and the visualization step. Secondly, we succeed in defining quantitative
criteria of quality; their values estimate the level of true information in the output of the process.
The relevance of 3D reflective tomography is shown on many numerical examples: the observed
values of quality confirm that the processed images really represent the surfaces of the initial
scene.

1.5. Organization

The paper is organized as follows. In the first part, we model a full process of 3D reflective
tomography. In the second part, we control the quality of reflective tomography on a wide
variety of examples, including a real data set.

2. Modeling

2.1. Reflective cone beam scanning

We define a mathematical model for the cone beam scanning of a reflective-kind scene; it extends
[3].

In the space R3, we consider that an opaque object is the boundary Σ = ∂Ω of a bounded
domain Ω ⊂ R3; a surfacic function f : Σ → R will be called an intensity of the object Σ. We
consider a set of n separated objects, Σi, 1 6 i 6 n. We also consider a wall, or background,
Σ0, as a surface whose interior domain contains the whole scene, i.e. every Σi. This convention
for the wall allows to treat the background exactly as the objects of the scene. For convenience,
Σ = ∪06i6nΣi is the set of surfacic points; when the fi are the intensities of the Σi, fΣ is the
intensity of Σ: for v ∈ Σi, fΣ(v) = fi(v).

Let β ∈ [0, 2π] be a fixed angle. We consider a device on the circle |x| = r > 0 in the
plane x3 = 0, at the position rθ = r(cosβ, sinβ, 0). We assume that the device contains a
receiver array on which we record a cone beam projection of the scene, along rays through
the optical center rθ. The plane θ⊥ = {x ∈ R3 : x · θ = 0} passes through the origin and is
parallel to the receptor array. For the ray L(θ, y) through rθ and y = y2θ⊥ + y3e3 ∈ θ⊥, with
θ⊥(β) = (sinβ,− cosβ, 0) and e3 = (0, 0, 1), the visible point of the scene is v(θ, y), which is
the first intersection point of the ray L(θ, y) with the surfaces Σi: v(θ, y) = rθ+ ρ(θ, y)(y− rθ),
with ρ(θ, y) = arg min{ρ, ρ > 0, v = rθ + ρ(y − rθ) ∈ Σ}. We consider information on Σ:
v ∈ Σ 7→ fΣ(v, θ). The first variable v ∈ Σ represents a surfacic point, whereas the second variable
θ indicates that information depends on the angle θ. On the ray L(θ, y), we record information
Fθ(y) coming from the visible point v(θ, y): Fθ(y) = fΣ(v(θ, y), θ). This process of reflective
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projection is illustrated on Figure 1. Assuming that (y2, y3) scans a rectangle [−a, a] × [−b, b],
the record is a bi-dimensional image y 7→ Fθ(y); we call Fθ the reflective projection, associated
with the angle θ.

θ⊥

θ

Fθ(y) = fΣ(v, θ)

rθ(β)

y

θ⊥

Σ

0

y3 = C

e3
L(θ, y)

v(θ, y)

Figure 1. Reflective cone beam projection. The ray L(θ, y) passes through the
optical center rθ(β) and the point y = y2θ⊥ + y3e3 ∈ θ⊥. The visible point
is v = v(θ, y) ∈ Σ, and the record is: Fθ(y) = fΣ(v, θ). A horizontal slice in
the recorded image is also represented. The intersection of Σ with the 2D beam
y3 = C is represented (without the background); in bold: the visible part of the
surface and its projection.

In the Figure 1, we also represent a 2D beam which intersects the screen on a horizontal
line y3 = C. It is reasonable to assume that for such a beam, the resulting horizontal slice in
the image Fθ is a piecewise smooth function. As it is observed in subsection 3.3, horizontal
discontinuities in the image Fθ appear for at least two reasons:

• geometrical jumps: y2 7→ v(θ, y2, y3) is discontinuous when the visible point v jumps from
an object to another object due to an occlusion, or jumps from an object to the same
object due to a concavity;

• intensity jumps: the surfacic intensity fΣ can jump itself, even if y2 7→ v(θ, y2, y3) is
continuous.

Finally, we change the acquisition angle and we restart: this experiment is repeated for θ
scanning a finite set of angles Θ ⊂ S1 × {0}, whose cardinal is |Θ|. Juxtaposing the different
images, we get at the end a 3D reflectogram (y, θ) 7→ Fθ(y). In the reflectogram, each surfacic
point v ∈ Σ is seen partially (or eventually not seen) along the curve {(θ, y) : v ∈ L(θ, y)}; its
intensity level depends on θ. The imaging challenge is transforming the reflectogram onto images
that are usable for identification of the surfaces Σi.

2.2. Tomography solver

We recall the heuristic of 3D reflective tomography [9]: applying the Feldkamp-Davis-Kress
algorithm [12] on the reflectogram.

The first step is weighting the data set:

Fw(θ, y) = w(y)Fθ(y), with w(y) = r
(r2+y22+y32)0.5

. (2.1)

The next step is computing a tomographic horizontal filtering of the weighted data set Fw.
We recall that a regularized kernel of the Hilbert transform is ϕ = F−1(−i sign(σ) · ĥ(σ)), where
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F is the Fourier transform and ĥ(σ) is an even windowing function with compact support (σ is
the frequency). For all y3 ∈ [−b, b] and for all θ ∈ Θ, we compute the filtering of y2 7→ Fw(θ, y):

∂y2Fw ? ϕ = F−1(|σ| ĥ(σ)F(Fw(θ, y))(σ)), (2.2)

where the Fourier transform is taken with respect to y2. This definition makes sense because we
assume that y2 7→ Fθ(y) is piecewise smooth.

The last step is computing a weighted backprojection fFDK: for each reconstruction point x,
we sum over lines through x in the weighted filtered weighted reflectogram:

fFDK(x) =
∑
θ∈Θ

r2

(r − x · θ)2
(∂y2Fw ? ϕ)(θ, y), with y =

rx · θ⊥
r − x · θ

θ⊥ +
rx3

r − x · θ
e3. (2.3)

It is known that in the limit r →∞, this reconstruction is equal to the reconstruction based on
the Radon inversion, along parallel rays, and horizontal slice by horizontal slice.

Concerning practical aspects, the reflectogram F is known on a 3D discrete grid of size |Θ| ×
N2×N3. The horizontal filtering ∂y2Fw ?ϕ is computed on the same grid, using the Fast Fourier

Transform; in this paper, we will choose the Shepp-Logan filter: ĥ(σ) =
sin π

2
σ

σmax
π
2

σ
σmax

11−σmax6σ6σmax ,

where σmax is the Nyquist frequency. The computational cost for filtering is O (|Θ|N3N2 logN2).
The reconstruction fFDK is computed on a 3D grid of voxels. For N3 voxels, the cost is
O
(
N3 |Θ|

)
; it is known to be the most consuming step. To speed up the computations, strategies

of implementation on GPU are available in the literature. Basically, for the last step, each thread
can be the computation of the backprojection for one voxel.

2.3. Discussion about the solver

We give an interpretation of a reflective FDK volume, based on the previous mathematical model.
First the filtering step is a key point in the processing: ∂y2Fw ? ϕ. The derivative enhances the
horizontal contrasts of the (weighted) reflectogram Fw. This step especially detects the contours
that are transverse to the horizontal direction in the data set; the kernel ϕ is odd, so it is a
zero-crossing detection.

Then the weighted backprojection accumulates the enhanced contrasts in space. For a generic
point x, filtered information through x is incoherent and tends to offset itself by summation.
But, if x is near a surfacic point v, the associated filtered data may contain coherent contrasts;
a significant value at x occurs thanks to summation of such coherent contrasts. This discussion
motivates the following interpretation: ”reflective tomography especially accumulates the coher-
ent horizontal contrasts at their true location in space”. This discussion is not mathematically
rigorous, but it is the starting point of a mathematical study in 2D [1].

2.4. Efficient visualization

We describe an efficient way of visualizing a volume in 3D reflective tomography [2].
The heuristic computes a 3D volume that needs to be correctly investigated to identify the

objects of the original scene. In order to appreciate 3D structures by exploring the full recon-
structed volume, we use volume rendering. Basically, volume rendering simulates a scanner: to
display a function f : R3 → R, it computes and displays a projection P [f ] on a 2D screen: see
Figure 2. We can get several kinds of visualization, depending on the choice of the projection
operator. The projection looks often like a L p-norm over the ray: for all ray L, the projection
along the ray L is: P [f ](L) = ‖f |L‖. Among these methods, the X-Ray visualization is the X-Ray
transform P [f ](L) =

∫
L f , and the Maximum Intensity Projection (MIP) is P [f ](L) = maxL(f).

How to display the reconstruction fFDK? We expect that surfaces of the scene produce signif-
icant values in fFDK, whereas we expect low values at voxels far from the surfaces. As a result, if
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Figure 2. Principle of volume rendering: to display a volumetric function f :
R3 → R, we display a 2D projection P [f ] on a screen.

we want to display the surfaces, we need to select the significant values in fFDK and to eliminate
the others. This job is well performed by MIP: by definition, along each ray of projection, it
selects and displays only the most intense voxel. Thus MIP1 of fFDK tries to visualize surfacic
points of the original scene, with a significant value. Also, for the rays which do not intersect
the original surfaces, we expect a low value. By the way the MIP is expected to be more than
just a visualizing process: due to the selection of only one voxel per ray (and which is proba-
bly surfacic), visualizing the volume fFDK by MIP implicitly reduces the noise and selects the
surfaces with the best possible resolution.

We describe now how using the MIP as the visual field of a virtual observer. We consider
an observer, whose optical center is located at x0 ∈ R3; we consider that he looks at a point
x1 6= x0. We consider an orthonormal basis (ω1, ω2, ω3) such that ω1 = x1−x0

|x1−x0| and ω3 = ω1∧ω2;

we assume that the rays of the visual field are the x0 + ρ(ω1 + y2ω2 + y3ω3), |y2| < Y2, |y3| < Y3,
0 < ρ. We assume that the part of the scene to be visualized is a domain Ω; Ω is the whole volume
by default. We can define the view V as the set of these parameters: V = (x0, x1, ω2, Y2, Y3,Ω).
We simulate the visual field of the observer by computing, for |y2| < Y2, |y3| < Y3:

JV (y2, y3) = max{fFDK(x), x = x0 + ρ(ω1 + y2ω2 + y3ω3) ∈ Ω, ρ > 0}. (2.4)

To represent y2 ∈ [−Y2, Y2]× [−Y3, Y3] 7→ JV (y2, y3), we set a RGB colormap Γ : Range(JV )→
[0, 255]3, and we display the image:

IV = Γ[JV ]. (2.5)

We would like to emphasize in the rendering the non-negative intense values of fFDK, so we
impose the following conditions: Γ(t) = 0 for t < 0 and ‖Γ(t)‖ is a non-decreasing function. This
colormap Γ can eventually improve the rendering by rescaling or thresholding. In this paper, we
produce grayscale images by assuming that the three RGB channels are the same: Γ(t) ∈ [0, 255],
and to fix ideas, we make the following choice by default: once JV is computed, we set

Γ(t) =


0, t 6 0,
255
T t, 0 6 t 6 T,

255, T 6 t,

where T = 0.5 maxJV . (2.6)

With such a choice, IV = Γ[JV ] is a thresholded version of JV , whose range is [0, 255] due to the
linear scaling.

Concerning implementation aspects, an image IV is computed on a discrete grid of size n2×n3,
from a discrete volume. One pixel corresponds to the projection along one ray. This may require

1By choosing MIP of fFDK, we implicitly decide to focus on the non-negative values of fFDK. It could also be
possible to focus on the most intense negative values, by considering the Minimum Intensity Projection, or to
keep all the values by considering |fFDK| instead of fFDK.
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interpolation. When the size of fFDK is N3 and Ω is the full volume, the cost for IV is O (n2n3N).
To speed up the computations, it is possible to implement the MIP on GPU. For example, each
thread can be the computation of one pixel of the image IV .

In practice, a view V and a colormap Γ can be decided in advance; in that case, the image
IV is computed completely automatically. Then several views can be computed by changing the
parameters: the optical center x0 can be translated, the central point x1 can be translated, the
directions of the image ω2, ω3 can be rotated, the apertures Y2 and Y3 can be changed to zoom
in/out, and the extracted sub-volume Ω can be changed. Adjusting the colormap Γ adjusts the
rendering. Whereas changing the view V can be a way to obtain displacements in the scene, or
videos, which helps to appreciate 3D structures.

2.5. Summary

Combining the heuristic of reconstruction and the principle of visualization, we get a compu-
tational process that can generate new views of a scene from a reflectogram: see Table 1. The
reconstruction (step 1) is computed once for all; to change the view, we change V and we apply
only the projection (step 2).

Input: reflectogram F , parameters of the view V

Step 1: compute the heuristic reconstruction fFDK, by (2.1), (2.2), (2.3)
Step 2: display the image IV , by projecting fFDK for the view V , by (2.4) and (2.5)

Output: image IV of the reconstructed scene, for the desired view V

Table 1. Global process for 3D reflective tomography: a new image IV of the
scene is displayed for the desired view V , from the reflectogram F .

We represent a reflective cone-beam scanning as F = ΠfΣ. For each angle θ, the scene is
represented by a distribution v ∈ Σ 7→ fΣ(v, θ) supported by the surface Σ of the scene; Π is the
reflective projection of these distributions. The heuristic solver computes the FDK reconstruction
fFDK = R∗ΦF from the reflectogram F ; the operation Φ realizes (2.1) and (2.2), whereas R∗
is the weighted backprojection (2.3). For a desired view V , the visualization step computes
the projection JV = MIPV (fFDK) from (2.4), and the result is displayed with the colormap Γ:
IV = Γ[JV ]. In a word, the global heuristic generates the image IV from the reflectogram ΠfΣ

by:

IV = Γ
[

MIPV (R∗Φ(ΠfΣ))
]
.

This is a full model for 3D reflective tomography. The mathematical challenge is now: prove
that IV faithfully represents the surfaces of the scene Σ, and quantify the error of the process.
In the sequel we tackle this problem numerically.

3. Quality control

3.1. Quantitative quality criteria

The quality control of results for synthetic tests will be based on the visual perception and on
quantitative criterion that we define here.

How to define such quantitative criteria? This question is more difficult than it appears. The
bad idea is controlling the quality of the heuristic reconstruction fFDK, by comparing it with fΣ.
Firstly this is not possible because fFDK and fΣ are different mathematical objects: fΣ is a set
of surfacic distributions which depend on the angle (the fi(·, θ)) whereas fFDK is a fixed volumic
function. Secondly fFDK is just a heuristic representation of the scene; so even on Σ, we can
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imagine that fFDK is very different from the fi(·, θ). This is a big difference with transmission
tomography where fFDK is close to a volumic function of attenuation. So we cannot directly
define an error between fFDK and fΣ.

We propose instead to control the quality of the full process, by checking that an image
I = IV is a right representation of the surface Σ: the main goal is to check that the final image
is nice. Fundamentally we would like to check that the significant values of the image I come
from voxels which are close to the surfaces of the original scene. If this is indeed the case, then
it confirms two things: the most intense values of the heuristic reconstruction are located near
the original surfaces, and the produced image represents an image of the surfaces. Otherwise the
reconstruction contains high values, which are far from the surfaces and which introduce wrong
alarms in the visualization: the final image contains wrong significant informations; they may
escape visual perception, or not. We propose criteria which are based on counting the pixels in
I that correspond to surfacic voxels.

For a pixel (y2, y3) of the image I, the displayed intensity is I(y2, y3) = ΓfFDK(x(y2, y3)), where
the voxel x(y2, y3) is an arg max in (2.4). The distance between this voxel and the surfaces of
the scene is d(y2, y3) = min{|x(y2, y3)− z| , z ∈ Σ}. Assuming that a voxel is a cube of volume
δ3, we claim that the voxel x(y2, y3) coincides with a surfacic point when d(y2, y3) < δ; in that
case, we say that x(y2, y3) is a right voxel, and that (y2, y3) is a surfacic pixel. (Eventually we
could choose another threshold t for the test of being a right voxel: d(y2, y3) < t instead of
d(y2, y3) < δ).

Let N be the number of surfacic pixels in I: N =
∑

(y2,y3) 11d(y2,y3)<δ; the proportion of surfacic

pixels in I is µ = N/(n2n3) ∈ [0, 1]. N and µ depend on the geometry of the scene and on the
selected view V . The higher µ is, the more the surfaces are spreaded in I. We can also compute
the proportion of intensity explained by the surfacic pixels in I:

p =

∑
(y2,y3) I(y2, y3)11d(y2,y3)<δ∑

(y2,y3) I(y2, y3)
∈ [0, 1].

We would like p to be large: the higher p is, the more the intensity in I comes from right voxels.
The average of the (normalized) intensity among the surfacic pixels is p

N . The ratio κ = p
µ

represents a normalized concentration of the intensity among the surfacic pixels. We would like
this concentration κ to be large.

The analogous quantities can be defined for the non-surfacic pixels (pixels (y2, y3) such that

d(y2, y3) > δ): proportion 1− µ for the number, proportion 1− p for the intensity, and κ̄ = 1−p
1−µ

for the concentration; we would like κ̄ to be small. The ratio of the concentrations κ
κ̄ gives

information on how much the surfacic pixels are intense, comparing with the non-surfacic ones;
we would like this ratio to be large.

3.2. Example

We illustrate the process on a full example.

3.2.1. Reflectogram

We simulate a reflectogram, from the famous Stanford Bunny [16]. We use the full resolution
data set: 69451 faces. We use the lighting functionalities of Matlab. For that example, we color
the faces of the object, using the following smooth pattern:

x 7→ 1 + 0.5 sin(20π |x|);

the pattern is computed at the vertices, and extended to the faces by interpolation. We consider
a black background: intensity f0 = 0. We use the Gouraud model of Matlab for the lighting
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model. The object is rotated over 360 degrees (constant step); we take |Θ| = 1605 images of size
N2 ×N3 = 397× 312. We represent 6 images of this sequence in the Figure 3.

Figure 3. A few images of the sequence for the full example; step of 60 degrees.

3.2.2. Heuristic

We apply the process of reconstruction-visualization. For the filtering, we choose the Shepp-
Logan filter. We compute two sequences of displacements around the reconstructed scene: for
the first one, we turn around the vertical axis, for the second one, we turn around a horizontal
direction: see Figure 4 for the resulting images. The visual perception of the results is nice.
The renderings are contrasted. They represent the original scene under a semi-transparent form.
The different surfaces are somehow mixed together; in particular, views from opposite sides look
similar. A way of improving the visual perception is creating videos where the view changes
continuously, and/or reducing the displayed volume Ω.

Figure 4. Two sequences of views, computed by the heuristic. Rotation by step
of 60 degrees around the vertical axis (first line), and by step of 30 degrees around
a horizontal axis (second line).

3.2.3. Quality control

We now check the quality of the rendering by controlling a set of surfacic pixels. We must select
one view. The focal planes of the acquisition are vertical, so generating a view on a horizontal
plane is one of the most difficult problems. That is the reason why we decide here to select an
aerial view: we control the process of generating a semi-transparent aerial view from vertical
reflective projections.

To check if a pixel (y2, y3) of the rendering is a surfacic pixel or not, we need to estimate the
distance d(y2, y3) between the voxel x(y2, y3) and the surfaces of the scene. Here the scene is the
bunny over a black wall. So d(y2, y3) is the distance between the bunny and x(y2, y3). First we
compute a refinement of the bunny: for all face, we compute the vertices of a lattice such that
each edge length of the lattice is at most the edge length δ of a voxel. At the end we get a finite
set B of vertices. We consider that B is a discrete representation of the bunny for the resolution
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δ. Then for all pixel (y2, y3) of the image I, we estimate the distance between the associated
voxel x(y2, y3) and the bunny as

d(y2, y3) = min{|x(y2, y3)− w| , w ∈ B}.
After the computation of d, we decompose here I into two components; I is the superposition

of: I restricted to the detected surfacic pixels (y2, y3) 7→ I(y2, y3)11d(y2,y3)<δ, and I restricted
to the non-surfacic pixels (y2, y3) 7→ I(y2, y3)11d(y2,y3)>δ. In order to appreciate visually this
decomposition we represent I and its components in the Figure 5. The component of the surfacic
pixels is sharper than the total image I. But the contribution of the non-surfacic pixels helps
for the perception of the object in I.

Figure 5. From the left to the right: image I computed by the heuristic, I after
selection of the surfacic pixels, I after selection of the non-surfacic pixels.

For the quantitative criteria, we obtain the following values:

N µ p κ κ̄ κ
κ̄

23558 0.15 0.43 2.91 0.66 4.38

And so µ = 15% of the pixels in the image I come from right voxels; they explain p = 43% of
the total intensity of I. So the concentration of intensity for the surfacic pixels is quite strong:
κ = 2.91. This is κ

κ̄ = 4.38 times the concentration for the non-surfacic pixels: κ̄ = 0.66.

3.3. Contribution of the jumps

To observe the contribution of the jumps, we create synthetic data sets whose images are piece-
wise constant. We increase the number of jumps from a data set to the next one.

We consider here a sphere with a dent. To create this object, we deform the sphere |x| = 1,
in spherical coordinates (ψ,ϕ, ρ), where ψ ∈ [−π, π] is the azimuth, ϕ ∈ [−π

2 ,
π
2 ] is the elevation,

and ρ > 0 is the radius. For all points of the sphere (ψ,ϕ, ρ = 1), the point of the considered

surface is (ψ,ϕ, ρ := 1 + 0.75(r − 1)11r<1), with 0.08r := (ψπ + 1/4)2 + (2ϕ
π + 1/6)2. This object

is computed from a discrete version of the sphere, discretized with 6402 patches. For all integer
m, we define on this surface the following piecewise constant pattern, in spherical coordinates:
(ψ,ϕ) 7→ pm(ψ)pm(ϕ), with:

pm(s) = 0.5 + 0.2511(ms−bmsc)<0.5.

We project directly this pattern: for a point v(ψ,ϕ, ρ) which is visible for the angle of projection
θ, the information which is measured on the corresponding ray is f(v, θ) = pm(ψ)pm(ϕ). And
we consider a black background. Such a reflectogram is simulated using plots of surfaces with
Matlab. By rotating over 360 degrees, we simulate here data sets whose size is |Θ| ×N2 ×N3 =
801× 201× 201.

Increasing m increases the number of jumps; we simulate data sets for several values of m:
0, 1, 2, 4, 8 and 16. On the first line of Figure 6, we represent one image of the reflectogram,
for the successive values of m. Of course we distinguish two kinds of jumps in the images:
jumps due to discontinuities in the pattern, and geometrical jumps due to the shape (interface
object/background).
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We apply the heuristic on these data sets. In order to improve the visual perception of the
dent, we restrict the domain to a half-space Ω before visualization: our full volume being a set of
voxels (i, j, k) ∈ [1, 201]3, we keep only the j > 91. On the second line of Figure 6, we represent
a vertical view of the reconstructions, associated with the view of the data sets. More jumps in
the input reflectogram can improve the visual perception of the object, for both the input and
the output. The heuristic computes much more than just a convex hull. A remarkable property
here is that the dent is even more perceptible in the reconstruction than in the reflectogram.
This is because the boundary (ψπ +1/4)2 +(2ϕ

π +1/6)2 = 0.08 of the dent introduces geometrical
jumps in many input images; the heuristic combines them, and so the boundary is emphasized
in the reconstruction.

To compute the quantitative appreciations, we first compute the distances d(y2, y3) from the
voxels x(y2, y3) to the vertices of the surface, discretized with 6402 patches. The following table
summarizes the results:

m 0 1 2 4 8 16

N 19844 20015 19676 18747 17440 18744

µ 0.49 0.50 0.49 0.46 0.43 0.46

p 0.68 0.69 0.69 0.70 0.70 0.71

κ 1.38 1.38 1.42 1.51 1.63 1.54

κ
κ̄ 2.17 2.22 2.34 2.72 3.13 2.87

It is difficult to observe significant rules from these values. We can anyway make the following
comments. If we compare the first three cases with the last three cases: the proportion µ of
surfacic pixels decays, their proportion p of intensity increases, and so do their concentration κ
and the ratio of concentrations κ

κ̄ . In a word, adding jumps on the surface changes the visual
perception of the scene, and it gives more weight to the surfacic pixels in the rendering.

3.4. Contribution of the smooth variations

Realistic images of realistic scenes have often jumps and smooth variations. Here we would like
to observe the contribution of the smooth variations. So we create synthetic data sets whose
images are smooth, and whose frequency increases from a data set to the next one.

Figure 6. Effect of jumps for a sphere with a dent. From the left to the right:
the projected pattern has more and more discontinuities, m = 0, 2i, 0 6 i 6 4.
On the first line: one image of the reflectogram; on the second line: associated
heuristic reconstruction.
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We consider the sphere |x| = 1, which is discretized using 6402 patches as before. We consider
a black background, and we project a smooth pattern, in spherical coordinates:

(ψ,ϕ) 7→ 1 + 0.5 cosm(ψ + ϕ),

with m = 2i, 1 6 i 6 6, playing the role of a fixed frequency. By rotating over 360 degrees, we
simulate here reflectograms whose size is |Θ|×N2×N3 = 801×201×201. The simulated images
are smooth, except at the interface object/background where discontinuities occur. So we weight
the data in order to obtain smooth images. For a pixel (i, j) ∈ [1, 201] × [1, 201], the weight is
(r + 1)2(r − 1)211r<1, with 99r(i, j) = ((i− 100)2 + (j − 100)2)0.5. On the first line of Figure 7,
we represent one smooth image of the reflectograms that we get, for the successive values of m.

Figure 7. Effect of smooth variations for a sphere. From the left to the right:
the frequency parameter is larger and larger: m = 2i, 1 6 i 6 6. On the first line:
one image of the reflectogram; on the second line: associated heuristic reconstruc-
tion.

We apply the heuristic on these data sets. On the second line of Figure 7, we represent a vertical
view of the reconstructions, associated with the view of the data sets. And we summarize in the
following Table the quantitative criteria that we get for these views:

m 2 4 8 16 32 64

N 1930 1761 1273 3881 10425 17341

µ 0.05 0.04 0.03 0.10 0.26 0.43

p 0.02 0.03 0.02 0.09 0.28 0.54

κ 0.40 0.59 0.73 0.95 1.10 1.26

κ
κ̄ 0.39 0.58 0.72 0.95 1.14 1.56

From the visual point of view, it is easier to identify the original sphere for large m. Increasing m
also improves the result from a quantitative point of view; all the computed criteria tend indeed
to increase: the proportion µ of surfacic pixels, their proportion p of intensity, their concentration
κ, and the ratio of concentrations κ

κ̄ . For smooth data, the result of the heuristic may be poor
for low frequencies components, but is meaningful when the frequency is large enough. In any
case, the smooth variations of the input produce contrasts in the renderings; they can be useful
for the visual perception.

3.5. Test of robustness

We show how the method deals with changes in the forward problem during the acquisition, by
considering a randomized fluctuating model.
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For all σ = 0, 2j ,−2 6 j 6 2, we consider a scan Fσ(θ, y2, y3) over 360 degrees of the Stanford
Bunny; the size of this scan is |Θ| ×N2×N3 = 801× 200× 157. For each angle θ, the projected
surfacic pattern (with background f0 = 0) is:

x 7→ 1 + (0.2 + ση1(θ)) sin(πση2(θ) + 20π |x|),
where the ηi(θ) are independent realisations of the Gaussian N (0, 1). The σηi(θ) correspond
to some modifications of the amplitude and the phase of the pattern. Increasing σ increases
the dependency in θ for the projected pattern. Along a piece of curve {(θ, y) : v ∈ L(θ, y)}
where v is a visible point of the scene, the intensity level of v randomly varies with a standard
deviation which increases when σ increases. To observe this, see the first line of Figure 8, where
we represent the horizontal slice y3 = 0 of the considered reflectograms.

Figure 8. Test of robustness: from the left to the right, the level of disturbance
is σ = 0, 2j ,−2 6 j 6 2. On the first line, slice in the reflectograms: (θ, y2) 7→
Fσ(θ, y2, 0). On the second line: a vertical view computed by the heuristic.

We apply the heuristic on these data sets. On the second line of Figure 8, we represent a
vertical view of the reconstructions; we get the following quantitative appreciations:

σ 0.00 0.25 0.50 1.00 2.00 4.00

N 11805 11644 11410 11373 10745 8456

µ 0.38 0.37 0.36 0.36 0.34 0.27

p 0.79 0.77 0.74 0.69 0.61 0.42

κ 2.11 2.09 2.03 1.92 1.78 1.57

κ
κ̄ 6.36 5.82 4.94 4.00 2.99 2.00

Despite changes in the forward problem, some information stays coherent. This is for example
the case of the shape of the object. The visual perceptions that we get here tend to show that
the heuristic successfully combines such coherent informations, which is in agreement with the
discussion of subsection 2.3. From a quantitative point of view, the computed criteria decay
slowly when the level of disturbance increases. Increasing the disturbance does not seriously
affect the set of right voxels in the final image, from the cardinal point of view, and from the
intensity point of view too. It is also clear that the result stays relevant for large disturbances; for
the last case, despite the level of disturbance is about 4 times the intensity level of the original
signal, surfacic variations can still be perceived in the reconstruction.

3.6. Test of resolution

We observe the effect of increasing the resolution of the reflectogram on the reconstructed images.
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The set-up is exactly as in the subsection 3.2, except that we consider several sizes of data
sets. For an image whose horizontal length is N2 = `+1 pixels, we choose |Θ| = d`πe angles, over
[0, 2π). We choose such a sampling because it is compatible with sampling conditions of trans-
mission tomography. On the first line of Figure 9 we represent one image of each reflectogram.

Figure 9. Test of resolution: from the left to the right, the length of an input
image is: N2 = 16, 32, 64, 128, 256, 384 (pixels). On the first line, one image of the
reflectogram; on the other lines, associated reconstructions with different upper
thresholds: T = 0.5 max(JV ) (second line) and T2 = quantile(max(JV , 0), 0.97)
(third line).

On the second line we represent an associated heuristic reconstruction, with the colormap
(2.6). We propose here a second choice of colormap: in (2.6), we replace the upper threshold by
the quantile of max(JV , 0) for the cumulative probability 97%: T2 = quantile(max(JV , 0), 0.97).
We get a colormap which is based on the cumulative histogram; the result is less sensitive to
the single value max(JV , 0) of the histogram. This avoids the apparent loss of contrast when
the resolution increases: see the third line of Figure 9. From the visual point of view, increasing
the resolution of the dataset improves the sharpness of the reconstruction. The global shape is
sharper and sharper; more and more details are perceptible to the eye: see for example the coat.

The values for quality control are (for the threshold T2):

|Θ| 48 98 198 399 802 1204

N2 16 32 64 128 256 384

N3 14 26 52 102 202 302

N 113 360 1219 4308 15263 32141

µ 0.50 0.43 0.37 0.33 0.30 0.28

p 0.81 0.81 0.74 0.70 0.65 0.63

κ 1.61 1.87 2.02 2.13 2.21 2.28

κ
κ̄ 4.20 5.63 4.93 4.77 4.51 4.46

Unfortunately some parameters slowly decrease when the resolution increases: the proportion µ
of surfacic pixels, their proportion p of intensity, and the ratio of the concentrations κ

κ̄ . From
a more optimistic point of view, the number N of right pixels increases, and so does their
concentration κ.
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3.7. Test of stability

We realize a stability test by adding a speckle noise, for several orders of magnitude of noise.
We consider a reflectogram F as in the subsection 3.6, with a size of |Θ| × N2 × N3 =

801 × 200 × 157; we apply the linear scaling such that the range of F becomes [1, 2]: F :=
1+(F −minF )/(maxF −minF ). For σ = 0.05i, 0 6 i 6 30, we consider a reflectogram Fσ with
a speckle noise of magnitude σ: Fσ = F (1 + ση), where η contains |Θ| ×N2 ×N3 (independent)
realizations of the Gaussian N (0, 1).

In the Figure 10 we represent one image of the noisy data sets Fσ, for σ = 0.3i, 0 6 i 6 5,
and we represent the associated reconstructions. We give in the following table the associated
quantitative criteria. And in the Figure 11, we plot the criteria as functions of the level of noise,
from the values σ = 0.05i, 0 6 i 6 30.

σ 0.00 0.30 0.60 0.90 1.20 1.50

N 8252 4033 2459 1838 1576 1400

µ 0.26 0.13 0.08 0.06 0.05 0.04

p 0.59 0.19 0.10 0.07 0.06 0.05

κ 2.23 1.45 1.24 1.17 1.13 1.08

κ
κ̄ 3.97 1.56 1.27 1.18 1.14 1.09

Except for the ratio of the concentrations which fastly decays at the very beginning, the criteria

Figure 10. Test of stability. From the left to the right: the level of speckle noise
increases: σ = 0.3i, 0 6 i 6 5. On the first line: one image of the reflectogram; on
the second line: associated heuristic reconstruction.

Figure 11. Test of stability: criteria as functions of the level of noise σ.

slowly decay when the level of noise increases. The visual perception of the reconstructed scene
is stable. Accumulation of coherent information over the whole data set can tolerate noise.
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3.8. Transverse reading

Further observations can be made by reading transversely the previous results.
The method works for several kinds of physical models. In the first example of subsection 3.3,

the model is binary; it illustrates the reconstruction of a non-convex object from its shapes. And
all of the examples of this subsection are based on projecting a fixed distribution. Then for the
subsections 3.2, 3.6 and 3.7, it is a Gouraud model. In particular, these results include cases
of isotropic diffusion without specular components, and cases with both diffusion and specular
reflections. And we have even results for fluctuating models in 3.5.

Concerning the rendering, we have semi-transparent representations of full reconstructed vol-
umes, and we illustrate in 3.3 the improvement produced by selecting a sub-domain, which is also
a simple way of observing a region of interest. We have by the way proposed renderings based
on two thresholding rules. This illustrates the influence of thresholding, and more generally the
adjustment of the rendering by changing the colormap.

3.9. 3D optronic imaging

We finish by an example of 3D reflective tomography on experimental data. We consider a real
laser system which provides active laser images of backscattered intensity by rough surfaces:
see [15] for technical details of such a device. We consider a set of real optronic images, courtesy
of Thales Optronique SA, obtained with this system. A sequence of 360 images of size 342×181
was measured by turning around the scene, one degree step. The considered scene is a vehicle:
see Figure 12 for samples of the sequence.

Figure 12. A few images of a sequence of real optronic images; step of 60 degrees.

We apply the heuristic, using a home-made software, implemented in CUDA C. The execution
on a Nvidia Tesla C2075 takes 2.6 seconds for the reconstruction, and is real-time for the display.
In the Figure 13, we represent snapshots that we got interactively. For the first three views, the
rendering uses extracted sub-volumes. The next images use the whole volume, with a view
clearly different from the recorded views. In particular the last view is taken inside the vehicle.
The reconstructed scene contains features and details that are useful for recognition. A notion
of relief can be perceived in the rendering. By the way the scene was not completely opaque:
transmission across glasses. The dashboard, which is behind the glasses, is reconstructed. The
heuristic and its interpretation of accumulation of coherent contrasts still apply for data which
are not purely reflective; this extends its domain of validity.

4. Conclusion

This paper deals with an emerging method in optical imaging. First we introduced a new math-
ematical model describing a full process of 3D reflective tomography; we recapitulated the al-
gorithms. Then we controlled numerically the quality of the method by testing the influence of
several parameters. We introduced new quality criteria, usable for synthetic tests.

Concerning the applications, the full process was checked by computing quality criteria. Based
on the numerical results, the conclusion is that reflective tomography renders relevant images
for many configurations, both visually and quantitatively.
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Figure 13. Example of computed views, from the real data set.

This paper suggests further mathematical works: proving mathematically in what extent 3D
reflective tomography is relevant is still an open question. We hope that our mathematical model
could serve as a starting point.

Bibliography
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Mathématique, 354:960–964, 2016.

[4] I. Berechet, G. Berginc, and S. Berechet. Method for 3D reconstruction of an object in a
scene. United States Patent, No US 2013/0100131 A1, April 2013.

[5] S. Berechet, I. Berechet, J.-B. Bellet, and G. Berginc. Procédé de discrimination et
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