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Abstract

Imaging a three-dimensional scene from a set of optical data is crucial for many applications,

and is still an academical challenge. A new high-performant heuristic is emerging to solve this

problem, from a set of cone beam re�ective projections. The basis is visualizing appropriately

a 3D heuristical reconstruction. The reconstruction step is the so-called re�ective tomography:

it rests on the �ltered backprojection from Computed Tomography. The visualization step is

based on volume rendering: the Maximum Intensity Projection. Combining these two steps is an

original computational method to get new images of the initial re�ective scene. Several questions

concerning the validity of this new heuristic have emerged. Giving a mathematical meaning

to the �ltered backprojection of re�ective projections is an open problem. Also controlling

quantitatively the reconstruction and the obtained renderings has never been done. To answer

such questions, we propose a new mathematical framework for the description of re�ective

tomography, and we design new criterions to check the amount of true informations in the

renderings. We illustrate several properties of the method, by the means of a wide variety of

numerical tests, including a real case. We show in particular that the images generated by the

process are contrasted representations of the surfaces of the initial scene. This paper validates

re�ective tomography and the full heuristic as general compututational imaging methods. The

main perspective is the design of a device for real-time high-resolution 3D imaging in optics,

useful for the recognition of occluded objects emitting countermeasurements.

Keywords. 3D imaging, inverse optics, phaseless imaging, tomography, 3D visualization, Maxi-
mum Intensity Projection

1 Introduction

There is a considerable interest in the development of new optical imaging systems that are able to
give three-dimensional images. Potential applications range across the �eld of defense and security
for the recognition of targets, the medical �eld for the detection of subcutaneous and cutaneous
tumors or the archaeological �eld for the discovery of remains in forests. The recognition is often
performed by an operator who would like at the end to observe the objects of the considered scene,
under the form of contrasted 2D images. A 3D technology o�ers more possibilities than a 2D
one: the operator can simulate new views of the scene, he can move as a virtual observer inside the
virtualized scene, he can select regions of interest and remove obstacles. Mapping a set of 2D optical
images on new views of the scene with the ability to remove occlusions is still a very challenging
task.

We and our co-authors are working on a new technology, designed to give a new answer to this
challenge [4, 5, 7]. This technology is based on an active laser acquisition and on a mathemati-
cal heuristic. The device illuminates the scene with a laser (1.54 µm) and records a 2D image of
backscattered intensities, for several angles of views. Such a record has several interesting prop-
erties. The illumination is eye-safe and non-ionizing. High-resolution images are considered. The
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active device changes the shadows when the angle of view changes. The acquisition can be fast
and can be performed under several conditions, including night. The records are then processed
by a mathematical heuristic. In this paper we focus on this heuristic. The heuristic has two steps.
The �rst step computes a 3D reconstruction. Solving an appropriated inverse problem is una�ord-
able; the forward problem is itself very hard: multi-scales problems, including scattering by rough
surfaces. So the approach is based on a heuristic: the reconstruction is computed by a �ltered
backprojection algorithm. This step is called re�ective tomography, because an algorithm from
Computed Tomography is used heuristically in order to invert re�ective-kind measurements. This
concept was introduced for several kinds of re�ective experiments at the end of the 80's [15]. In our
case we apply the Feldkamp Davis and Kress (FDK) algorithm [12] on a laser dataset [6, 8�10, 19].
This method appears numerically relevant to generate surfacic reconstruction of occluded objects,
even from noisy datasets. The results for occluded opaque objects suggest also that the method
works for incomplete data, such as limited-angle problems. The extracted surfaces may eventually
need completion algorithms [3] for improving surface renderings. To get an alternative method of
exploration of the reconstruction which goes further, we proposed very recently to directly visualize
the reconstructed volume with a volume rendering method [1]. This step de�nes the second step of
the global heuristic. We empirically observe that the surfaces of the original scene are located near
the highest values of the reconstruction. That is the reason why we propose to use the Maximum
Intensity Projection (MIP), which projects the volume by selection of the most intense voxel, along
rays of projection. The combination of these two steps of reconstruction-visualization de�nes a
global heuristic which answers to the proposed challenge.

This heuristic is an original computational method for 3D optical imaging. The steps are
individually classical in other �elds, but their combination in the �eld of interest is new. It is a
direct (non-iterative) method and it can be performed automatically. The method can furthermore
take bene�t from the already known advantages of the individual steps. The FDK algorithm is very
famous in Cone Beam Computed Tomography, for transmission by X-Ray. Several studies concern
e�cient implementations of such a �ltered backprojection method, including implementations on
Graphics Processing Unit (GPU) [13, 18, 21, 22, 26]. They enable fast reconstructions. Concerning
the visualization part, the Maximum Intensity Projection is well known for medical applications
[14,16,24,25]. E�cient implementations are available, for instance by using GPU or multi-resolution
algorithms [11,20,27]. They enable a real-time interactive display. The proposed heuristic inherits of
such capabilities: we show in [1] that we get at the end an interactive method, enabling displacements
in the reconstructed scene, extraction of sub-volumes, and adjustement of the rendering.

In this paper, we would like to tackle some open questions about this new heuristic. They are
mainly related to mathematical or quantitative validation of the approach. Indeed the standard
mathematical result states that the �ltered backprojection inverts the Radon transform; that is the
justi�cation of transmission tomography for complete data (knowledge of the full Radon transform).
It is also known in this �eld that serious di�culties appear for incomplete data (e.g. limited angle
problems), such as instabilities, or lack of reconstruction algorithms [17]. In re�ective tomogra-
phy, a �ltered backprojection algorithm is applied on data which are not modelled by a Radon
transform, and which are incomplete. Giving a mathematical framework and a meaning for such a
reconstruction is a gap to be �lled. By the way it is observed empirically that it provides relevant
representations of the initial scene, for several physical con�gurations: measurements of travel-times
or of backscattered intensities for example. So we would like a general mathematical model which
includes both con�gurations.

Then as it is often the case in mathematical imaging, one of the main questions that arise for
the validation of the process is the following: what is the error between the reconstruction and the
original scene? Here this question is di�cult, since the heuristical reconstruction is not supposed
to represent some physical property of the scene. So we must before de�ne criterions of quality to
validate the process. The global process has a second step which produces images; they are supposed
to be images of the scene. We would like to know if these images give nice visual perceptions of the
original scene, and if they are accurate representations. Here again this validation is not obvious
and criterions must be de�ned. Once criterions are de�ned, we would like to observe the kind of
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numerical results that we get, and the behavior of the result when some parameters change. We
would like to observe the key contributions that arise in the mathematical formulation. In order to
check that the method is general, we would like to observe the result for several forward physical
models. By the way a method must be stable to be useful in practice: a small perturbation of the
input must produce a small perturbation on the output; so we need to check how the method deals
with noise. And the last question is about the resolution. The output of the heuristic is wished to
be sharper and sharper when the resolution of the input increases. We must check that point.

We answer to the previous questions in the following way. We start by describing 3D re�ective
tomography in a new and general manner; this extends the note [2] to 3D. We de�ne a mathematical
model, describing a general notion of re�ective projection for a scene of opaque objects. Basically
it considers cone beam projections; along each ray of projection, the model states that we measure
an information concerning the �rst surfacic point of the scene which belongs to the ray. We do not
assume any model for these informations; they could represent any physical information. Also a
visible point of the scene can eventually be seen with di�erent values for di�erent angles of view.
Then we brie�y recall the FDK algorithm, and we identify in the reconstruction two components,
explained by the discontinuities and the smooth parts of the input images. A discussion tends
to reveal that �the re�ective tomography combines the coherent horizontal contrasts at their true
location in space�. This interpretation links the reconstruction with the contrasts of the recorded
images; it reveals that it is a far-reaching method, exactly as computing the gradient of a 2D image
is a general way of contour detection. Then we discuss 3D visualization of a reconstruction in
re�ective tomography, especially by MIP. To the best of our knowledges, it is the most e�cient
way of extracting surfaces in that context, with the best resolution possible, and with a denoiser
implicitely contained in the method. We describe MIP and how using this process as the visual �eld
of a virtual observer, by considering cone beam projections; there is another originality here, since
classical MIP uses orthographic projections. We include in the process the choice of the colormap,
since it has a signi�cative in�uence on the �nal visual perception. In a word we have the description
of a new computational process which transforms a set of re�ective cone-beam projections on new
cone-beam projections, where we can remove occlusions. Despite we do not have mathematical
theorems (very hard), we have at least intuitive explanations which motivate this heuristic.

Concerning the validation, we �rst propose to validate visually the reconstruction composed
with the visualization. The visual perception that we get is indeed the �rst point to control; as
usual in image processing, the visual aspect of the renderings is the main criterion of quality: the
very �rst goal is producing images that can be appreciated by the human eye. This �rst stage is a
quality control of the full process, which also implicitely controls the recontruction step. By the way,
despite quantitative criterions do not necessarly reveal the feeling of the eye, they may be needed for
objectivity. So we also de�ne such objective criterions. In practice we interpret an output image as a
contrasted image of the surfaces of the original scene; we would like to check that this interpretation
is right. So we propose criterions based on the pixels in the output, that correspond really to surfacic
points of the initial scene. For synthetic tests, these pixels can be discriminated because we know
the original surfaces, and the pixels of the output represent voxels of the reconstructed volume. The
proposed criterions are based on counting these surfacic pixels, and the proportion of intensity that
they represent in the image. The same analysis is done for the other pixels, and several ratios can
be computed. The main idea behind these criterions is estimating the level of true information in
an output image. It is an original way of validating the full heuristic. We have even better: this
way of validation aims at showing that MIP of the reconstruction selects surfacic points; so this
also controls that the most intense values of the reconstruction are located near the initial surfaces.
Thus this validates at the same time re�ective tomography; this is the �rst time that re�ective
tomography is checked from this point of view. By the way this is also an original study concerning
the true information of a MIP; it could be reproduced for other applications.

Then we propose several numerical tests. We discuss the results, using images computed by
the heuristic for the visual perception, and the associated values of the quantitative criterions. We
start by a full example; we observe several reconstructed views; we examinate the surfacic pixels for
one view, both visually and quantitatively. In particular it is shown that the wrong pixels do not
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necessarly disturb the visual perception. The mathematical analysis distinguishes the contributions
of smooth data and of discontinuites; we propose to observe separately these contributions. We
test the e�ect of adding jumps, and the e�ect of increasing the (spatial) frequency of the smooth
part. In particular it is shown that the reconstruction has an interest for the visual perception of
non-convex objects. The proposed mathematical framework allows changes in the forward model
when the angle changes. We show by a test of robustness that this works: we investigate the e�ect
of disturbing more and more the forward model. Concerning the resolution, we realize a test by
increasing more and more the size of the dataset; more and more details are captured as wanted.
And for the stability, we test the e�ect of adding more and more speckle noise. The result is that
the method is stable; even better, reconstructed views can look better than the original views for
large levels of noise. We can also read transversely the numerical tests to make further observations.
We have tests for several forward models: binary dataset, Lambert-kind model, Gouraud model,
and �uctuating models. We have an example of adjustement of the colormap, and we have also
an example of visualization of an extracted sub-domain. All of these numerical tests are original.
They confer a very large credibility to the heuristic and the proposed interpretation. In order to
drive home the abilities of the method, we show furthermore an example of application, from a set
of experimental laser data. In comparison with [19], the renderings are improved.

The paper is organized as follows. In the �rst part, we de�ne and discuss the computational
heuristic of reconstruction and visualization in a mathematical framework. In the second part,
we test the relevance of the approach on a wide variety of examples. We �nish by an example of
application.

2 Computational heuristic for 3D imaging

2.1 Re�ective cone beam scanning

We de�ne a mathematical model for the cone beam scanning of a re�ective-kind scene.
In the space R3, we consider that an object is a bounded domain Ω ⊂ R3 with a boundary

Σ = ∂Ω; a surfacic function f : Σ → R is called an intensity (or an information) of the object Σ.
We consider a set of n separated objects, with boundaries Σi, 1 6 i 6 n. We also consider a wall,
or background, Σ0, as a surface whose interior domain contains the whole scene. This convention
for the wall allows to treat the background exactly as the objects of the scene. For convenience,
Σ = ∪06i6nΣi is the set of surfacic points; when the fi are the intensities of the Σi, fΣ is the
intensity of Σ: for v ∈ Σi, fΣ(v) = fi(v).

Let β ∈ [0, 2π] be a �xed angle. We consider a device on the circle |x| = r > 0 in the plane
x3 = 0, at the position rθ = r(cosβ, sinβ, 0). We assume that the device contains a receptor array
on which we record a cone beam projection of the scene, along rays through the optical center rθ.
The plane θ⊥ = {x ∈ R3 : x · θ = 0} passes through the origin and is parallel to the receptor
array. For the ray L(θ, y) through rθ and y = y2θ⊥ + y3e3 ∈ θ⊥, with θ⊥(β) = (sinβ,− cosβ, 0)
and e3 = (0, 0, 1), the visible point of the scene is v(θ, y), which is the �rst intersection point of the
ray L(θ, y) with the surfaces Σi: v(θ, y) = rθ+ ρ(θ, y)(y − rθ), with ρ(θ, y) = arg min{ρ, ρ > 0, v =
rθ + ρ(y − rθ) ∈ Σ}. We consider an information on Σ: v ∈ Σ 7→ fΣ(v, θ). The �rst variable v ∈ Σ
represents a surfacic point, whereas the second variable θ indicates that the information depends on
the angle θ. On the ray L(θ, y), we record an information Fθ(y) coming from the visible point v(θ, y):
Fθ(y) = fΣ(v(θ, y), θ). This process of re�ective projection is illustrated on Figure 1. Assuming
that (y2, y3) scans a rectangle [−a, a]× [−b, b], the record is a bi-dimensional image y 7→ Fθ(y); we
call Fθ the re�ective projection, associated with the angle θ.

In the Figure 1, we also represent a 2D beam which intersects the screen on a horizontal line
y3 = C. It is reasonnable to assume that for such a beam, the resulting horizontal slice in the
image Fθ is a piecewice smooth function. More precisely, we denote by E the space of functions
g : [−a, a] → R that are piecewise C 1 and whose pieces can be extended by continuity: g ∈ E if,
and only if, there exists a (�nite) subdivision −a = s0 < · · · < sj < · · · < sN+1 = a and there exists
a family of functions gj ∈ C 1((sj , sj+1)) ∩ C 0([sj , sj+1]), 0 6 j 6 N , such that ∀s /∈ {sj , j}, g(s) =
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θ⊥

θ

Fθ(y) = fΣ(v, θ)

rθ(β)

y

θ⊥

Σ

0

y3 = C

e3
L(θ, y)

v(θ, y)

Figure 1: Re�ective cone beam projection. The ray L(θ, y) passes through the optical center rθ(β)
and the point y = y2θ⊥ + y3e3 ∈ θ⊥. The visible point is v = v(θ, y) ∈ Σ, and the record is:
Fθ(y) = fΣ(v, θ). A horizontal slice in the recorded image is also represented. The intersection of
Σ with the 2D beam y3 = C is represented (without the background); in bold: the visible part of
the surface and its projection.

∑N
j=0 gj(s)11(sj ,sj+1)(s). For convenience we extend g ∈ E by zero: g(s) = 0 for |s| > a. We assume

that for every y3, the horizontal projection y2 7→ Fθ(y) belongs to the space E, with the following
piecewise smooth decomposition:

Fθ(y) =

nθ,y3∑
j=0

fΣ(v(θ, y), θ)11(s(θ,y3,j),s(θ,y3,j+1))(y2). (1)

On the piece (s(θ, y3, j), s(θ, y3, j+1)), the visible part of the scene is a subset of the object number
i(θ, y3, j): Σ(θ, y3, j) = {v(θ, y), y2 ∈ (s(θ, y3, j), s(θ, y3, j + 1))} ⊂ Σi(θ,y3,j). The visible curve
Σ(θ, y3, j) is also a subset of the 2D beam (rθ,−aθ⊥ + y3e3, aθ⊥ + y3e3). The piece Σ(θ, y3, j)
is furthermore assumed to be C 1. The following reasons explain horizontal discontinuities in the
image Fθ:

• geometrical jump: the consecutive visible pieces Σ(θ, y3, j) and Σ(θ, y3, j + 1) are not linked:
v(θ, y) jumps from one object to another object, or jumps from one part of a non-convex
object to another part of the same object;

• tangential jump: the pieces Σ(θ, y3, j) and Σ(θ, y3, j + 1) are included in the same object Σi

and are linked, so v(θ, y) is continuous, but the intensity of the object fi jumps.

(See subsection 3.2 to observe these two kinds of jumps.)
Finally, we change the acquisition angle and we restart: this experiment is repeated for θ

scanning a �nite set of angles Θ ⊂ S1×{0}, whose cardinal is |Θ|. Juxtaposing the di�erent images,
we get at the end a 3D re�ectogram (y, θ) 7→ Fθ(y). In the re�ectogram, each surfacic point v ∈ Σ
is seen partially (or eventually not seen) along the curve {(θ, y) : v ∈ L(θ, y)}; its intensity level
depends on θ. The main challenge is transforming the re�ectogram to images that are usable for
identi�cation of the surfaces Σi.

2.2 Tomography solver

We recall the heuristic of re�ective tomography: applying the FDK algorithm on the re�ectogram.
The �rst step is weighting the dataset:

Fw(θ, y) = w(y)Fθ(y), with w(y) = r
(r2+y22+y32)0.5

. (2)

The next step is computing a tomographic horizontal �ltering of the weighted dataset Fw. We
recall that a regularized kernel of the Hilbert transform is ϕ = F−1(−i sign(σ) · ĥ(σ)), where F
is the Fourier transform and ĥ(σ) is an even windowing function with compact support (σ is the
frequency). For g ∈ E, g is a distribution with compact support, so the tomographic �ltering ∂sg?ϕ
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of g is de�ned and satis�es: ∂sg ? ϕ = F−1(|σ| ĥ(σ)F(g)(σ)). For all y3 ∈ [−b, b], we de�ne and
compute the �ltering of y2 7→ Fw(θ, y) ∈ E:

∂y2Fw ? ϕ = F−1(|σ| ĥ(σ)F(Fw(θ, y))(σ)), (3)

where the Fourier transform is taken with respect to y2.
The last step is computing a weighted backprojection fFDK: for each reconstruction point x, we

sum over lines through x in the weighted �ltered weighted re�ectogram:

fFDK(x) =
∑
θ∈Θ

r2

(r − x · θ)2
(∂y2Fw ? ϕ)(θ, y), (4)

with y =
rx · θ⊥
r − x · θ

θ⊥ +
rx3

r − x · θ
e3.

Concerning practical aspects, the re�ectogram F is known on a 3D discrete grid of size |Θ| ×
N2 ×N3. The horizontal �ltering ∂y2Fw ? ϕ is computed on the same grid, using the Fast Fourier

Transform; in this paper, we will choose the Shepp-Logan �lter: ĥ(σ) =
sin π

2
σ

σmax
π
2

σ
σmax

11−σmax6σ6σmax ,

where σmax is the Nyquist frequency. The computational cost for �ltering is O (|Θ|N3N2 logN2).
The reconstruction fFDK is computed on a 3D grid of voxels. For N3 voxels, the cost is O

(
N3 |Θ|

)
;

it is known to be the most consuming step. To speed up the computations, strategies of implemen-
tation on GPU are available in the literature. Basically, for the last step, each thread can be the
computation of the backprojection for one voxel.

2.3 Re�ective tomography: analysis and discussion

We give an interpretation of a re�ective FDK volume, based on the previous mathematical model.
A key point in the processing is the �ltering step: ∂y2Fw ? ϕ. The derivative enhances the

horizontal contrasts of the (weighted) re�ectogram. Using the jumps formula from the theory of
distributions, we get two contributions:

∂y2Fw =

nθ,y3∑
j=0

∂y2w(y)fi(θ,y3,j)(v(θ, y), θ)11(s(θ,j),s(θ,j+1)) +

nθ,y3+1∑
j=0

w(s(θ, y3, j))[fθ,y3,j ]δs(θ,y3,j),

where the [fθ,y3,j ] are the jumps accross the discontinuities of y2 7→ Fθ(y); after the �ltering:
∂y2Fw ? ϕ = CS + CJ, where

CS =

nθ,y3∑
j=0

∫ s(θ,y3,j+1)

s(θ,y3,j)
∂y2w(y)fΣ(v(θ, y), θ)|y2=y′2

ϕ(y2 − y′2)dy′2, (5)

CJ =

nθ,y3+1∑
j=0

w(s(θ, y3, j))[fθ,y3,j ]ϕ(y2 − s(θ, y3, j)). (6)

The term CS is due to the smooth variations of the (weighted) intensities f , along curves of
visible surfacic points. The term CJ is due to the horizontal jumps of intensities in the record. The
contribution of these terms will be illustrated in subsections 3.3 and 3.2. In practice the kernel ϕ
becomes rapidly small; thus the �ltering detects the contours that are transverse to the horizontal
direction in the dataset. The kernel ϕ is odd, so it is a detection of zero-crossing type.

The (weighted) backprojection recombines �nally all the contrasts in space. We can now discuss
the e�ect of this summation. For a generical reconstruction point x, the �ltered informations through
x are incoherent ; they tend to compensate for each other by summation. But, when x is near a
surfacic point v which is visible under some angular range, the associated �ltered data can contain a
coherent part which produces a signi�cant value at x by summation. This discussion motivates the
following interpretation: "the re�ective tomography recombines the coherent horizontal contrasts
at their true location in space".
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2.4 E�cient visualization

We describe an e�cient way of visualizing a volume in re�ective tomography.
The heuristic computes a 3D volume that needs to be correctly investigated to recognize the

objects of the original scene. In order to appreciate 3D structures, surface rendering or volume
rendering are better than slicing. Surface rendering produces surfaces of the scene; unfortunately
it needs hard thresholding and it may produce lacunarities. Here we prefer volume rendering; it
produces automatically images of the scene, from the full volume. Basically, volume rendering is
simulating a scanner: to display a function f : R3 → R, it computes and displays a projection
P [f ] on a 2D screen: see Figure 2. We can get several kinds of visualization, depending on the
choice of the projection operator. The projection looks often like a L p-norm over the ray: forall
ray L, the projection along the ray L is: P [f ](L) = ‖f |L‖. Among these methods, the X-Ray
visualization is the X-Ray transform P [f ](L) =

∫
L f , and the Maximum Intensity Projection (MIP)

is P [f ](L) = maxL(f).

Figure 2: Principle of volume rendering: to display a volumetric function f : R3 → R, we display a
2D projection P [f ] on a screen.

How to display the reconstruction fFDK ? We expect that surfaces of the scene produce signi�-
cant values in fFDK, whereas we expect low values at voxels far from the surfaces. As a result, if we
want to display the surfaces, we need to select the signi�cant values in fFDK and to eliminate the
others. This job will be very well performed by MIP: by de�nition, along each ray of projection,
it selects and displays only the most intense voxel. Thus MIP1 of fFDK tries to visualize surfacic
points of the original scene, with a signi�cant value. Also, for the rays which do not intersect the
original surfaces, we expect a low value. By the way the MIP is expected to be more than just a
visualizing process: due to the selection of only one voxel per ray (and which is probably surfacic),
visualizing the volume fFDK by MIP should contain implicitly a processing step which reduces the
artifacts and should select the surfaces with the best possible resolution.

We describe now how using the MIP as the visual �eld of a virtual observer. We consider an
observer, whose optical center is located at x0 ∈ R3; we consider that he looks at a point x1 6= x0.
We consider an orthonormal basis (ω1, ω2, ω3) such that ω1 = x1−x0

|x1−x0| and ω3 = ω1 ∧ ω2; we assume

that the rays of the visual �eld are the x0 + ρ(ω1 + y2ω2 + y3ω3), |y2| < Y2, |y3| < Y3, 0 < ρ. We
assume that the part of the scene to be visualized is a domain Ω; Ω is the whole volume by default.
We can de�ne the view V as the set of these parameters: V = (x0, x1, ω2, Y2, Y3,Ω). We simulate
the visual �eld of the observer by computing, for |y2| < Y2, |y3| < Y3:

JV (y2, y3) = max{fFDK(x), x = x0 + ρ(ω1 + y2ω2 + y3ω3) ∈ Ω, ρ > 0}. (7)

To get the representation of y2 ∈ [−Y2, Y2] × [−Y3, Y3] 7→ JV (y2, y3), we set a RGB colormap
Γ : Range(JV )→ [0, 255]3, and we display the image:

IV = Γ[JV ]. (8)

1By choosing MIP of fFDK, we implicitely decide to focus on the non-negative values of fFDK. It could also be
possible to focus on the most intense negative values, by considering the Minimum Intensity Projection, or to keep
all the values by considering |fFDK| instead of fFDK.
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We would like to emphasize in the rendering the non-negative intense values of fFDK, so we impose
the following conditions: Γ(t) = 0 for t < 0 and ‖Γ(t)‖ is a non-decreasing function. This colormap
Γ can eventually improve the rendering by including rescalings or thresholdings. In this paper, we
produce grayscale images by assuming that the three RGB channels are the same: Γ(t) ∈ [0, 255],
and to �x ideas, we make the following choice by default: once JV is computed, we set

Γ(t) =


0, t 6 0,
255
T t, 0 6 t 6 T,

255, T 6 t,

where T = 0.5 maxJV . (9)

With such a choice, IV = Γ[JV ] is a thresholded version of JV , whose range is [0, 255] due to the
linear scaling.

Concerning implementation aspects, an image IV (y2, y3) is computed on a discrete grid of size
n2 × n3, from a discrete volume. One pixel corresponds to the projection along one ray. This
may require interpolation. When the size of fFDK is N3 and Ω is the full volume, the cost for IV
is O (n2n3N). To speed up the computations, it is possible to implement the MIP on GPU. For
example, each thread can be the computation of one pixel of the image IV .

In practice, a view V and a colormap Γ can be decided in advance; in that case, the image
IV is computed completely automatically. Then several views can be computed by changing the
parameters: the optical center x0 can be translated, the central point x1 can be translated, the
directions of the image ω2, ω3 can be rotated, the apertures Y2 and Y3 can be changed to zoom
in/out, and the extracted sub-volume Ω can be changed. Adjusting the colormap Γ adjusts the
rendering. Whereas changing the view V can be a way to obtain displacements in the scene, or
videos, which helps to appreciate 3D structures.

2.5 Summary: global process

Combining the heuristic of reconstruction and the visualization principle, we get a computational
process that can generate new views of a re�ective scene: see Table 1. The reconstruction (step 1)
is computed once for all; to change the view, we change V and we apply only the projection (step
2).

Input: re�ectogram F , parameters of the view V

Step 1: compute the heuristical reconstruction fFDK, by (2), (3), (4)
Step 2: display the image IV , by projecting fFDK for the view V , by (7) and (8)

Output: image IV of the reconstructed scene, for the desired view V

Table 1: Global process: a new image IV of the scene is displayed for the desired view V , from the
re�ectogram F .

We represent a re�ective cone-beam scanning as F = ΠfΣ. For each angle θ, the scene is
represented by a distribution fΣ(v, θ) supported by the surface Σ of the scene; Π is the re�ective
projection of these distributions. The heuristical solver computes the FDK reconstruction fFDK =
R∗ΦF from the re�ectogram F ; the operation Φ realizes (2) and (3), whereas R∗ is the weighted
backprojection (4). For a desired view V , the visualization step computes the MIP JV = PV fFDK

from (7), and the result is displayed with the colormap Γ: IV = ΓJV . In a word, the global heuristic
generates the image IV from the re�ectogram ΠfΣ by:

IV = ΓPV R∗Φ ΠfΣ︸︷︷︸
F︸ ︷︷ ︸

fFDK︸ ︷︷ ︸
JV

.
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2.6 Quality control

The quality control of results for synthetic tests will be based on the visual perception (main
criterion), and on quantitative criterions.

How to de�ne such quantitative criterions? This question is more di�cult than it appears. A
(bad) idea could be controlling the quality of the heuristical reconstruction fFDK, by comparing
it with fΣ. First this is not possible because fFDK and fΣ are di�erent mathematical objects: fΣ

is a set of surfacic distributions which depend on the angle (the fi(v, θ)) whereas fFDK is a �xed
volumetric function. Secondly fFDK is just a heuristic representation of the scene; so even on Σ,
we can imagine that fFDK is di�erent from the fi(v, θ). This is a big di�erence with transmission
tomography where fFDK must be close to a (�xed) volumetric function of attenuation. So we cannot
directly de�ne an error between fFDK and fΣ.

We propose to control the quality of the full process, by checking that an image I = IV is a right
representation of the surface Σ: the main goal is to check that the �nal image is nice. Fundamentally
we would like to check that the signi�cant values of the image I come from voxels which are close
to the surfaces of the original scene. If this is indeed the case, then it con�rms two things: the
most intense values of the heuristical reconstruction are located near the original surfaces, and the
produced image represents an image of the surfaces. Otherwise the reconstruction contains high
values, which are far from the surfaces and which introduce wrong alarms in the visualization: the
�nal image contains wrong signi�cant informations; they may escape visual perception, or not. We
propose criterions which are based on counting the pixels in I that correspond to surfacic voxels.

For a pixel (y2, y3) of the image I, the displayed intensity is I(y2, y3) = ΓfFDK(x(y2, y3)), where
the voxel x(y2, y3) is an arg max in (7). The distance between this voxel and the surfaces of the
scene is d(y2, y3) = min{|x(y2, y3)− z| , z ∈ Σ}. Assuming that a voxel is a cube of volume δ3, we
claim that the voxel x(y2, y3) coincides with a surfacic point when d(y2, y3) < δ; in that case, we
say that x(y2, y3) is a right voxel, and that (y2, y3) is a surfacic pixel. (Eventually we could choose
another threshold t for the test of being a right voxel: d(y2, y3) < t instead of d(y2, y3) < δ).

Let N be the number of surfacic pixels in I: N =
∑

(y2,y3) 11d(y2,y3)<δ; the proportion of surfacic
pixels in I is µ = N/(n2n3) ∈ [0, 1]. N and µ depend on the geometry of the scene and on the
selected view V . The higher µ is, the higher the surfaces are spreaded in I. We can also compute
the proportion of intensity explained by the surfacic pixels in I:

p =

∑
(y2,y3) I(y2, y3)11d(y2,y3)<δ∑

(y2,y3) I(y2, y3)
∈ [0, 1].

We would like p to be the large: the higher p is, the more the intensity in I comes from right
voxels. The average of the (normalized) intensity among the surfacic pixels is p

N . The ratio κ = p
µ

represents a normalized concentration of the intensity among the surfacic pixels. We would like this
concentration κ to be large.

The analogous quantities can be de�ned for the non-surfacic pixels (pixels (y2, y3) such that
d(y2, y3) > δ): proportion 1 − µ for the number, proportion 1 − p for the intensity, and κ̄ = 1−p

1−µ
for the concentration; we would like κ̄ to be small. The ratio of the concentrations κ

κ̄ gives an
information on how much the surfacic pixels are intense, comparing with the non-surfacic ones; we
would like this ratio to be large.

3 Numerical results

3.1 Example

We illustrate the process on a full example.

3.1.1 Re�ectogram

We simulate a re�ectogram, from the famous Stanford Bunny [23]. We use the full resolution
dataset: 69451 faces. We use the lighting functionnalities of Matlab. For that example, we color
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the faces of the object, using the following smooth pattern:

x 7→ 1 + 0.5 sin(20π |x|);

the pattern is computed at the vertices, and extended to the faces by interpolation. We consider
a black background: intensity f0 = 0. We use the Gouraud model of Matlab for the lighting
model. The object is rotated over 360 degrees (constant step); we take |Θ| = 1605 images of size
N2 ×N3 = 397× 312. We represent 6 images of this sequence in the Figure 3.

3.1.2 Heuristic

We apply the process of reconstruction-visualization. For the �ltering, we choose the Shepp-Logan
�lter. We compute two sequences of displacements around the reconstructed scene: for the �rst
one, we turn around the vertical axis, for the second one, we turn around a horizontal direction:
see Figure 4 for the resulting images. The visual perception of the results is nice. The renderings
are contrasted. They represent the original scene under a semi-transparent form. The di�erent
surfaces are somehow mixed together; in particular, views from opposite sides look similar. A way
of improving the visual perception is creating videos where the view changes continuously, and/or
reducing the displayed volume Ω.

3.1.3 Quality control

We now control the quality of the rendering by controlling a set of surfacic pixels. We must select
one view. The focal planes of the acquisition are vertical, so generating a view on a horizontal
plane is morally one of the most di�cult problems. That is the reason why we decide here to select
an aerial view: we control the process of generating a semi-transparent aerial view from vertical
re�ective projections.

To check if a pixel (y2, y3) of the rendering is a surfacic pixel or not, we need to estimate the
distance d(y2, y3) of the voxel x(y2, y3) and the surfaces of the scene. Here the scene is the bunny
over a black wall. So d(y2, y3) is the distance between the bunny and x(y2, y3). First we compute
a re�nement of the bunny: forall face, we compute the vertices of a lattice such that each edge
length of the lattice is at most the edge length δ of a voxel. At the end we get a �nite set B of
vertices. We consider that B is a discrete representation of the bunny for the resolution δ. Then
forall pixel (y2, y3) of the image I, we estimate the distance between the associated voxel x(y2, y3)
and the bunny as

d(y2, y3) = min{|x(y2, y3)− w| , w ∈ B}.

After the computation of d, we decompose here I into two components; I is the superposition
of: I restricted to the detected surfacic pixels (y2, y3) 7→ I(y2, y3)11d(y2,y3)<δ, and I restricted to the
non-surfacic pixels (y2, y3) 7→ I(y2, y3)11d(y2,y3)>δ. In order to appreciate visually this decomposition
we represent I and its components in the Figure 5. The component of the surfacic pixels is sharper
than the total image I. But the contribution of the non-surfacic pixels helps for the perception of
the object in I.

For the quantitative criterions, we obtain the following values:

N µ p κ κ̄ κ
κ̄

23558 0.15 0.43 2.91 0.66 4.38

And so µ = 15% of the pixels in the image I come from right voxels; they explain p = 43% of the
total intensity of I. So the concentration of intensity for the surfacic pixels is quite strong: κ = 2.91.
This is κ

κ̄ = 4.38 times the concentration for the non-surfacic pixels: κ̄ = 0.66.

3.2 Contribution of the jumps

To observe the contribution of the jumps (see (6)), we create synthetic datasets whose images are
piecewise constant. We increase the number of jumps from a dataset to the next one.
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We consider here a sphere with a dent. To create this object, we deform the sphere |x| = 1, in
spherical coordinates (ψ,ϕ, ρ), where ψ ∈ [−π, π] is the azimuth, ϕ ∈ [−π

2 ,
π
2 ] is the elevation, and

ρ > 0 is the radius. Forall point of the sphere (ψ,ϕ, ρ = 1), the point of the considered surface is
(ψ,ϕ, ρ := 1+0.75(r−1)11r<1), with 0.08r := (ψπ +1/4)2+(2ϕ

π +1/6)2. This object is computed from
a discrete version of the sphere, discretized with 6402 patches. For all integer m, we de�ne on this
surface the following piecewise constant pattern, in spherical coordinates: (ψ,ϕ) 7→ pm(ψ)pm(ϕ),
with:

pm(s) = 0.5 + 0.2511(ms−bmsc)<0.5.

We project directly this pattern: for a point v(ψ,ϕ, ρ) which is visible for the angle of projection
θ, the information which is measured on the corresponding ray is f(v, θ) = pm(ψ)pm(ϕ). And we
consider a black background. Such a re�ectogram is simulated using plots of surfaces with Matlab.
By rotating over 360 degrees, we simulate here datasets whose size is |Θ|×N2×N3 = 801×201×201.

Increasing m increases the number of jumps; we simulate datasets for several values of m: 0,
1, 2, 4, 8 and 16. On the �rst line of Figure 6, we represent one image of the re�ectogram, for
the successive values of m. Of course we distinguish two kinds of jumps in the images: jumps
due to discontinuities in the pattern (tangential jumps), and jumps due to the shape: interface
object/background (geometrical jumps).

We apply the heuristic on these datasets. In order to improve the visual perception of the
dent, we restrict the domain to a half-space Ω before visualization: our full volume being a set of
voxels (i, j, k) ∈ [1, 201]3, we keep only the j > 91. On the second line of Figure 6, we represent a
vertical view of the reconstructions, associated to the view of the datasets. More jumps in the input
re�ectogram can improve the visual perception of the object, for both the input and the output.
The heuristic computes much more than just a convex hull. A remarkable property here is that the
dent is even more perceptible in the reconstruction than in the re�ectogram. This is because the
boundary (ψπ + 1/4)2 + (2ϕ

π + 1/6)2 = 0.08 of the dent introduces geometrical jumps in many input
images; the heuristic recombines them, and so the boundary is emphasized in the reconstruction.

To compute the quantitative appreciations, we �rst compute the distances d(y2, y3) from the
voxels x(y2, y3) to the vertices of the surface, discretized with 6402 patches. The following table
summarizes the results:

m 0 1 2 4 8 16

N 19844 20015 19676 18747 17440 18744

µ 0.49 0.50 0.49 0.46 0.43 0.46

p 0.68 0.69 0.69 0.70 0.70 0.71

κ 1.38 1.38 1.42 1.51 1.63 1.54

κ
κ̄ 2.17 2.22 2.34 2.72 3.13 2.87

It is di�cult to observe signi�cative rules from these values. We can anyway make the following
comments. If we compare the �rst three cases with the last three cases: the proportion µ of surfacic
pixels decays, their proportion p of intensity increases, and so do their concentration κ and the ratio
of concentrations κ

κ̄ . In a word, adding jumps on the surface changes the visual perception of the
scene, and it gives more weight to the surfacic pixels in the rendering.

3.3 Contribution of the smooth variations

Realistic images of realistic scenes have often jumps and variations. Here we would like to observe
the contribution (5) of the variations. So we create synthetic datasets whose images are smooth,
and whose frequency increases from a dataset to the next one.

We consider the sphere |x| = 1, which is discretized using 6402 patches as before. We consider
a black background, and we project a smooth pattern, in spherical coordinates:

(ψ,ϕ) 7→ 1 + 0.5 cosm(ψ + ϕ),
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with m = 2i, 1 6 i 6 6, playing the role of a �xed frequency. By rotating over 360 degrees, we
simulate here re�ectograms whose size is |Θ| ×N2 ×N3 = 801× 201× 201. The simulated images
are smooth, except at the interface object/background where discontinuities occur. So we weight
the data in order to obtain smooth images. For a pixel (i, j) ∈ [1, 201] × [1, 201], the weight is
(r + 1)2(r − 1)211r<1, with 99r(i, j) = ((i− 100)2 + (j − 100)2)0.5. On the �rst line of Figure 7, we
represent one smooth image of the re�ectograms that we get, for the successive values of m.

We apply the heuristic on these datasets. On the second line of Figure 7, we represent a vertical
view of the reconstructions, associated to the view of the datasets. And we summarize in the
following Table the quantitative criterions that we get for these views:

m 2 4 8 16 32 64

N 1930 1761 1273 3881 10425 17341

µ 0.05 0.04 0.03 0.10 0.26 0.43

p 0.02 0.03 0.02 0.09 0.28 0.54

κ 0.40 0.59 0.73 0.95 1.10 1.26

κ
κ̄ 0.39 0.58 0.72 0.95 1.14 1.56

From the visual point of view, it is easier to identify the original sphere for large m. Increasing m
also improves the result from a quantitative point of view; all the computed criterions tend indeed
to increase: the proportion µ of surfacic pixels, their proportion p of intensity, their concentration
κ, and the ratio of concentrations κ

κ̄ . For smooth data, the result of the heuristic may be poor for
low frequencies components, but is meaningful when the frequency is large enough. In any case,
the smooth variations of the input produce contrasts in the renderings; they can be useful for the
visual perception.

3.4 Test of robustness

We show how the method deals with changes in the forward problem during the acquisition, by
considering a randomized �uctuating model.

For all σ = 0, 2j ,−2 6 j 6 2, we consider a scan Fσ(θ, y2, y3) over 360 degrees of the Stanford
Bunny; the size of this scan is |Θ| × N2 × N3 = 801 × 200 × 157. For each angle θ, the projected
surfacic pattern (with background f0 = 0) is:

x 7→ 1 + (0.2 + ση1(θ)) sin(πση2(θ) + 20π |x|),

where the ηi(θ) are independant realisations of the gaussian N (0, 1). The σηi(θ) correspond to some
modi�cations of the amplitude and the phase of the pattern. Increasing σ increases the dependancy
in θ for the projected pattern. Along a piece of curve {(θ, y) : v ∈ L(θ, y)} where v is a visible point
of the scene, the intensity level of v randomly varies with a standard deviation which increases when
σ increases. To observe this, see the �rst line of Figure 8, where we represent the horizontal slice
y3 = 0 of the considered re�ectograms.

We apply the heuristic on these datasets. On the second line of Figure 8, we represent a vertical
view of the reconstructions; we get the following quantitative appreciations:

σ 0.00 0.25 0.50 1.00 2.00 4.00

N 11805 11644 11410 11373 10745 8456

µ 0.38 0.37 0.36 0.36 0.34 0.27

p 0.79 0.77 0.74 0.69 0.61 0.42

κ 2.11 2.09 2.03 1.92 1.78 1.57

κ
κ̄ 6.36 5.82 4.94 4.00 2.99 2.00
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Despite changes in the forward problem, some informations stay coherent. This is for example
the case of the shape of the object. The visual perceptions that we get here tend to show that
the heuristic successfully recombines such coherent informations, which is in agreement with the
discussion of subsection 2.3. From a quantitative point of view, the computed criterions decay slowly
when the level of disturbance increases. Increasing the disturbance does not seriously a�ect the set
of right voxels in the �nal image, from the cardinal point of view, and from the intensity point
of view too. It is also clear that the result stays relevant for large disturbances; for the last case,
despite the level of disturbance is about 4 times the intensity level of the original signal, surfacic
variations can still be percepted in the reconstruction.

3.5 Test of resolution

We oberve the e�ect of increasing the resolution of the re�ectogram on the reconstructed images.
The set-up is exactly as in the subsection 3.1, except that we consider several sizes of datasets.

For an image whose horizontal length is N2 = ` + 1 pixels, we choose |Θ| = d`πe angles, over
[0, 2π). We choose such a sampling because it is compatible with sampling conditions of transmission
tomography. On the �rst line of Figure 9 we represent one image of each re�ectogram.

On the second line we represent an associated heuristical reconstruction, with the colormap
(9). We propose here a second choice of colormap: in (9), we replace the upper threshold by the
quantile of max(JV , 0) for the cumulative probability 97%: T2 = quantile(max(JV , 0), 0.97). We
get a colormap which is based on the cumulative histogram; the result is less sensitive to the single
value max(JV , 0) of the histogram. This avoids the apparent loss of contrast when the resolution
increases: see the third line of Figure 9. From the visual point of view, increasing the resolution of
the dataset improves the sharpness of the reconstruction. The global shape is sharper and sharper;
more and more details are perceptible to the eye: see for example the coat.

The values for quality control are (for the threshold T2):

|Θ| 48 98 198 399 802 1204

N2 16 32 64 128 256 384

N3 14 26 52 102 202 302

N 113 360 1219 4308 15263 32141

µ 0.50 0.43 0.37 0.33 0.30 0.28

p 0.81 0.81 0.74 0.70 0.65 0.63

κ 1.61 1.87 2.02 2.13 2.21 2.28

κ
κ̄ 4.20 5.63 4.93 4.77 4.51 4.46

Some parameters slowly decrease when the resolution increases: the proportion µ of surfacic pixels,
their proportion p of intensity, and the ratio of the concentrations κ

κ̄ . From a more optimistic point
of view, the number N of right pixels increases, and so does their concentration κ.

3.6 Test of stability

We realize a stability test by adding a speckle noise, for several orders of magnitude of noise.
We consider a re�ectogram F as in the subsection 3.5, with a size of |Θ| × N2 × N3 = 801 ×

200 × 157; we apply the linear scaling such that the range of F becomes [1, 2]: F := 1 + (F −
minF )/(maxF −minF ). For σ = 0.05i, 0 6 i 6 30, we consider a re�ectogram Fσ with a speckle
noise of magnitude σ: Fσ = F (1 + ση), where η contains |Θ| ×N2 ×N3 (independant) realizations
of the gaussian N (0, 1).

In the Figure 10 we represent one image of the noisy datasets Fσ, for σ = 0.3i, 0 6 i 6 5, and we
represent the associated reconstructions. We give in the following table the associated quantitative
criterions. And in the Figure 11, we plot the criterions as functions of the level of noise, from the

13



values σ = 0.05i, 0 6 i 6 30.

σ 0.00 0.30 0.60 0.90 1.20 1.50

N 8252 4033 2459 1838 1576 1400

µ 0.26 0.13 0.08 0.06 0.05 0.04

p 0.59 0.19 0.10 0.07 0.06 0.05

κ 2.23 1.45 1.24 1.17 1.13 1.08

κ
κ̄ 3.97 1.56 1.27 1.18 1.14 1.09

Except for the ratio of the concentrations which fastly decays at the very beginning, the criterions
slowly decay when the level of noise increases. The visual perception of the reconstructed scene is
stable. For large levels of noise, the scene is even better percepted in the reconstruction than in the
re�ectogram. This is due to the accumulation of coherent informations over the whole dataset.

3.7 Transverse reading

Further observations can be made by reading transversely the previous results.
The method works for several kinds of physical models. In the �rst example of subsection 3.2,

the model is binary; it illustrates the reconstruction of a non-convex object from its shapes. And
all of the examples of this subsection are based on projecting a �xed distribution. For the subsec-
tions 3.1, 3.5 and 3.6, it is a Gouraud model. In particular, these results include cases of isotropic
di�usion without specular components, and cases with both di�usion and specular re�ections. And
we have even results for �uctuating models in 3.4.

Concerning the rendering, we have semi-transparent representations of full reconstructed vol-
umes, and we illustrate in 3.2 the improvement produced by selecting a sub-domain, which is also
a simple way of observing a region of interest. We have by the way proposed renderings based
on two thresholding rules. This illustrates the in�uence of thresholding, and more generally the
adjustement of the rendering by changing the colormap.

4 3D optronic imaging

In this section we provide an example of using heuristical cone beam computed optics. We consider
a real laser system which provides active laser images of backscattered intensity by rough surfaces:
see [19] for technical details of such a device. We consider a set of real optronic images, courtesy
of Thales Optronique SA, obtained with this system. A sequence of 360 images of size 342 × 181
was measured by turning around the scene, one degree step. The considered scene is a vehicle: see
Figure 12 for samples of the sequence.

We apply the heuristic, using a home-made software, implemented in CUDA C. The execution
on a Nvidia Tesla C2075 takes 2.6 seconds for the reconstruction, and is real-time for the display.
In the Figure 13, we represent snapshots that we got interactively. For the �rst three views, the
rendering uses extracted sub-volumes. The next images use the whole volume, with a view clearly
di�erent from the recorded views. In particular the last view is taken inside the vehicle. The
reconstructed scene contains features and details that are useful for recognition. A notion of relief
can be percepted in the rendering. By the way the scene was not completely opaque: transmission
accross glasses. The dashboard, which is behind the glasses, is reconstructed. The heuristic and
its interpretation of recombination of coherent contrasts still apply for data which are not purely
re�ective; this extends its domain of validity.

5 Conclusion

This paper deals with a new heuristic designed to compute and display new views of a 3D scene,
from a set of cone beam re�ective projections. We have proposed a new mathematical framework
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for this subject, and an interpretation of the process. The strong potential of the approach is shown
on many numerical results, including a real case. As a result we have a high-performance heuristic
which answers to the main problem of interest. It is a direct method, suited for massively parallel
computing, which enables interactions with the display of the 3D reconstructed scene. The method
is for instance applicable in phaseless imaging, from cone beam optical data.

We appreciated the visual aspects of the results. We also proposed new criterions to appreciate
them more quantitatively, for synthetic tests. We obtained that the produced images are not
rendering illusions: they really contain surfacic points of the initial scene. At the same time, this is
an original validation of re�ective tomography.

This paper interprets re�ective tomography as a combination of the coherent horizontal con-
trasts at their true location in space, yielding a volume which is essentially supported by the
surfaces of the initial scene. This is a way of understanding re�ective tomography, which becomes
a far-reaching method: possible scenario of use include passive/active, monostatic/multistatic, or
monofrequency/multifrequency imagery.

The numerical results have also interests for the applications. We deduce from the tests of
stability that the method is interesting for reconstructions from noisy images. The tests of robust-
ness show that the method can be e�cient to reconstruct objects with active surfaces emitting
countermeasurements. The tests of resolution are a �rst step toward a proof that high-resolution
reconstructions are possible from high-resolution acquisition devices. In a word, there is a real
hope of real-time high-resolution 3D reconstructions in optics, even when occlusions, noise and
countermeasurements disrupt the acquisition.
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Figure 3: A few images of the sequence for the full example; step of 60 degrees.

Figure 4: Two sequences of views, computed by the heuristic. Rotation by step of 60 degrees around
the vertical axis (�rst line), and by step of 30 degrees around a horizontal axis (second line).

Figure 5: From the left to the right: image I computed by the heuristic, I after selection of the
surfacic pixels, I after selection of the non-surfacic pixels.

Figure 6: E�ect of jumps for a sphere with a dent. From the left to the right: the projected pattern
has more and more discontinuities, m = 0, 2i, 0 6 i 6 4. On the �rst line: one image of the
re�ectogram; on the second line: associated heuristical reconstruction.
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Figure 7: E�ect of smooth variations for a sphere. From the left to the right: the frequency
parameter is larger and larger: m = 2i, 1 6 i 6 6. On the �rst line: one image of the re�ectogram;
on the second line: associated heuristical reconstruction.

Figure 8: Test of robustness: from the left to the right, the level of disturbance is σ = 0, 2j ,−2 6
j 6 2. On the �rst line, slice in the re�ectograms: (θ, y2) 7→ Fσ(θ, y2, 0). On the second line: a
vertical view computed by the heuristic.

Figure 9: Test of resolution: from the left to the right, the length of an input image is: N2 =
16, 32, 64, 128, 256, 384 (pixels). On the �rst line, one image of the re�ectogram; on the other lines,
associated reconstructions with di�erent upper thresholds: T = 0.5 max(JV ) (second line) and
T2 = quantile(max(JV , 0), 0.97) (third line).
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Figure 10: Test of stability. From the left to the right: the level of speckle noise increases: σ =
0.3i, 0 6 i 6 5. On the �rst line: one image of the re�ectogram; on the second line: associated
heuristical reconstruction.

Figure 11: Test of stability: criterions as functions of the level of noise σ.

Figure 12: A few images of a sequence of real optronic images; step of 60 degrees.

Figure 13: Example of computed views, from the real dataset.
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