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Unsupervised Cross-Subject BCI Learning and Classification using Riemannian Geometry

The inter-subject variability poses a challenge in cross-subject Brain-Computer Interface learning and classification. As a matter of fact, in cross-subject learning not all available subjects may improve the performance on a test subject. In order to address this problem we propose a subject selection algorithm and we investigate the use of this algorithm in the Riemannian geometry classification framework. We demonstrate that this new approach can significantly improve cross-suject learning without the need of any labeled data from test subjects.

Introduction

Predicting the stimulus from concurrent brain neuroimaging data is an approach that can be used to understand underlying mental processes [START_REF] Lotte | Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms[END_REF]. It is well known that brain electroencephalographic (EEG) signals are subject-specific, thus brain decoding models are traditionally designed individually: training and test data belongs to the same subject [START_REF] Lotte | Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms[END_REF]. However, collecting sufficient labeled data from new subjects for learning a classifier is an expensive and time consuming procedure, jeopardizing the participants' willingness to use the system [START_REF] Lotte | Learning from other subjects helps reducing Brain-Computer Interface calibration time[END_REF]. Given the abundance of labeled data from other subjects, it is tempting to use them for training a classifier. Nevertheless, not all such training subjects may improve the performance on a given test subject because of inherent inter-subject variability [START_REF] Lotte | Learning from other subjects helps reducing Brain-Computer Interface calibration time[END_REF]. To address this problem, we propose an algorithm, named Rank Of Subjects (ROS), which ranks training subjects and selects a relevant subset. The proposed method has the same structure as the subject selection algorithm proposed in [START_REF] Lotte | Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms[END_REF]. The relevant subjects are selected through the maximization of the accuracy that is obtained by applying the classifier trained on data from all subjects to the unlabeled data of the test subject.

In [START_REF] Barachant | Multiclass Brain-Computer Interface Classification by Riemannian Geometry[END_REF] a multi-class BCI classification framework based on Riemannian Geometry has been proposed. The idea is to use appropriate forms of data covariance matrices as features and classifying using the simple concepts of distance and center of mass of these covariance matrices on a Riemannian manifold [START_REF] Congedo | EEG Source Analysis[END_REF]. Thanks to the use of an appropriate metric, this approach has displayed excellent crosssubject generalization capabilities, besides robustness to EEG artifacts, outliers and mislabeling [START_REF] Congedo | EEG Source Analysis[END_REF].

In this article, we address the problem of cross-subject training without assuming knowledge of labels from the test subjects. The proposed method is a combination of previously proposed subject selection algorithms and some fundamental concepts of Riemannian Geometry. The performance of our algorithm is asssessed on the open "DecMeg2014" Kaggle dataset (www.kaggle.com).

Rank Of Subjects

Due to inter-subject variability, the distribution of data in the training set may be more or less different from the test subject. A cross-subject classifier may be trained using only those training subjects that are similar to the test subjct, according to some criterion [START_REF] Lotte | Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms[END_REF]. We propose to rank the training subjects and select a subset of them according to Algorithm 1. In this algorithm, first we construct virtual labels for the test subject by training a SVM (support-vector machine) classifier using labeled data from all training subjects. Then, the most relevant training subjects are selected by maximizing the accuracy obtained on the virtual labels. Accuracy is returned by the function J(X k ) when the trained SVM classifier on X k is applied on test data. Finally, among the available N s training subjects, we select the subset of size N R featuring highest accuracy. Step 1 (Inclusion)

Algorithm 1 Rank Of Subjects (ROS)

6:

[x + , accuracymax] = arg max x∈[{X l s } Ns s=1 -X k ] J(X k + x)
7:

X k+1 = X k + x + , k = k + 1
8:

accuarcy k = accuracymax

9:

Step 2 (Exclusion) 10:

if k > 2 then
11:

[x -, accuracymax] = arg max X k J(X k -x)
12:

if accuracymax > accuarcy k-1 then 13:

X k-1 = X k -x -, k = k -1
14: 

accuarcy k-1 =
accuracy k 22: ROS = X Best N 23: return the first N R subjects
In order to enhance the signal-to-noise ratio (SNR) of EEG evoked potentials, we use a standard spatial filtering approach. Let X i ∈ C×N denote a trial indexed by i, with C the number of channels, N the number of time samples and y i the class label of the trial. For each class, a set of N f ilter spatial filters are built. The spatial filters are an adaptation of the well-known common spatial pattern to evoked-potential data [START_REF] Rivet | xDAWN Algorithm to Enhance Evoked Potentials: Application to Brain?Computer Interface[END_REF], here implemented following the winner of the "DecMeg2014" competition [START_REF] Barachant | MEG decoding using Riemannian Geometry and Unsupervised classification[END_REF]. The average trial of the class k is denoted by P (k) [START_REF] Barachant | MEG decoding using Riemannian Geometry and Unsupervised classification[END_REF]:

P (k) = 1 |I (k) | i∈I (k) Xi, (1) 
where I (k) = {i | y i = k} is the set of indices of the trials belonging to class k.

The spatial filter w ∈ C×1 for each class k solves the following optimization problem:

w * = arg max w w T P (k) P (k) T w w T XX T w , ( 2 
)
where X is the matrix holding the continuous EEG recording (here we consider the concatenation of all trials from all classes). This equation is a generalized Rayleigh quotient, the solutions to which can be found as the eigenvevtor matrix of matrix (XX T ) -1 (P (k) P (k)T ). By construction, the C resulting eigenvectors are ranked by SNR. For each class, only the first N f ilter vectors are selected. Therefore, for each class k, the spatial filters is W (k) ∈ C×N f ilter . Spatial filtering operation is simply done by linear projection of the trial by the matrix W = [W (0) , W (1) , . . . , W (K) ] ∈ C×(K * N f ilter ) , which is the aggregation of the K spatial filters for each class in a single matrix, such as

Zi = W T Xi. (3) 
The usual covariance matrices do not hold the temporal structure of ERP trials. Therefore, in order to keep all spatial and temporal information a special estimation of the covariance matrix is used [START_REF] Congedo | EEG Source Analysis[END_REF]. We build a new trial Zi ∈ (2 * K * N f ilter )×T by concatenation of the spatially filtered response obtained by averaging several single trial responses of one class P (k) and the spatially filtered trial Z i [START_REF] Barachant | MEG decoding using Riemannian Geometry and Unsupervised classification[END_REF]:

Zi = W (0) T P (0) , W (1) T P (1) , . . . , W (K) T P (K) , Zi T . (4) 
These "super" trials are used to build the feature covariance matrices. The feature covariance matrices are obtained simply by using a Sample Covariance Matrix (SCM) estimator [START_REF] Barachant | Classification of covariance matrices using a Riemannian-based kernel for BCI applications[END_REF], such as

Σi = 1 N Zi ZT i . (5) 
The covariance matrices in [START_REF] Congedo | Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices[END_REF] belong to the space of Symmetric Positive Definite (SPD) matrices. The space of SPD matrices forms a Riemannian manifold of nonpositive curvature [START_REF] Barachant | Classification of covariance matrices using a Riemannian-based kernel for BCI applications[END_REF]. Therefore, we can use tools issued from differential geometry on Riemannian manifolds to manipulate them. Riemannian Distance: For any two covariance matrix Σ 1 and Σ 2 , the Riemannian distance according to the Riemannian metric is given by [START_REF] Moakher | A differential geometric approach to the geometric mean of symmetric Positive-Definite matrices[END_REF] δR(Σ1, Σ2)

= log Σ -1/2 1 Σ2Σ -1/2 1 F = C c=1 log 2 λc 1/2 (6)
where λ c , c = 1 . . . C are the real eigenvalues of

Σ -1/2 1 Σ 2 Σ -1/2 1
and C the number of channels. This distance is Affine-invariant [START_REF] Barachant | Multiclass Brain-Computer Interface Classification by Riemannian Geometry[END_REF], meaning that is invariant with respect to similar and congruent transformation, but also to inversion.

Riemannian Mean: The Riemannian geometric mean of I covariance matrices (denoted by G(.)), also called Fréchet or Karcher mean, is the point on the manifold minimizing the dispersion [START_REF] Barachant | Multiclass Brain-Computer Interface Classification by Riemannian Geometry[END_REF], i.e. G (Σ1, . . . , ΣI ) = argmin

Σ I i=1 δ 2 R (Σ, Σi) . ( 7 
)
There is no closed form expression for this mean for I > 2, however a gradient descent in the manifold can be used in order to find the solution [START_REF] Congedo | Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices[END_REF]. Train spatial filters given the labels yi,n of the trial i at the iteration n.

5:

Apply the spatial filters on the trials

6:

Estimate special form covariance matrices Σi

7:

Obtain K mean covariance matrix for each class:

Σ (0) G , . . . , Σ (K) G
, Eq.( 7)

8:

Classify each trial according to the Riemannian distance 9:

ŷ = argmin k δ R (Σ (k) G , Σ i ) , Eq.(6)
10: end while 11: return ŷ

Results

We evaluate the proposed method on the magnetoencephalography (MEG) dataset used in the "DecMeg2014" Kaggle competition. This dataset is comprised of 16 subjects. During the experiment participants observed two visual stimuli: face and scrambled face. Approximately 580-590 trials have been recorded for each subject. The duration of each trial was 1.5 seconds, with the stimulus presented at time 0.5 second. The class label was either Face (class 1) or Scramble Face (class 0).

As pre-processing, the original MEG recording (306 channels) has been downsampled at 250Hz and high-pass filtered at 1Hz. We use the SV M light toolbox for training SVM classifier and constructing virtual test labels. The standard SVM uses the default parameter tuning. In the ROS algorithm, we select the eight most relevant subjects (half of available training subjects). We compare result of standard SVM classifier with ROS and without ROS. The performance of the proposed method is evaluated by means of percent classification accuracy on the test data using a leave-one-out proceure (LOO).

The first column of Table 1 reports the accuracy of a standard SVM classifier. In this method we pool all training data from all training subjects and train a SVM classifier on such labeled data and then apply on test data. This is a generic classifier and it achieves an accuracy of 69.85 % . For the second column (SVM+ROS), we train SVM classifier on training data from a selected subset of training subjects as per the ROS algorithm; this generic classifier reaches 71.47% accuracy. In the third column (MDRM), for each class of test data, a set of four spatial filters are built as per Eq.( 1), where in the equation P (k) is constructed based on virtual labels. We estimate covariance matrices by Eq.( 5). Each trial is classified according to the Riemannian distance from two mean covariance matrices for each class Σ G . This procedure is iterated until convergence. Results of MDRM [START_REF] Barachant | MEG decoding using Riemannian Geometry and Unsupervised classification[END_REF] and the combination ROS+MDRM are provided in third and last column, respectively. The combination ROS+MDRM achieves a much higher performance (77.94%) as compared to the other methods. The performance improvement is 2.14% compared to MDRM [START_REF] Barachant | MEG decoding using Riemannian Geometry and Unsupervised classification[END_REF]. The results show 10 % improvement compared to [START_REF] Olivetti | MEG decoding across subjects[END_REF] which used another cross-subject transfer learning approach to classify this same dataset. 

Conclusion

In this paper we have proposed a method for brain decoding with cross-subject learning. It is well-known that EEG and MEG signals are very specific to each subject. As a result, establishing a generic model featuring high classification performance is a very difficult task due to large inter-variability between subjects. We proposed a ROS algorithm for ranking automatically the relevant training subjects and selecting the best training subset. By combination of this method with Riemannian Geometry we have simply classified each trial based on distance of each trial from the two class-related mean covariance matrices. By evaluating the proposed algorithm on the MEG dataset of the "DecMeg2014" competition we have shown that this approach can outperform other methods. In future works the methods will be tested on other datasets and we will study how the mismatching between training and test subjects can be reduced.

1 :

 1 Train a model by concatenated labeled data from all source subjects 2: Generate virtual label Vu by applying trained model on target data 3: Initialize accuracy 0 = 0, K = 1, X0 = {}, 4: while n < Ns do 5:

Algorithm 2 1 :

 21 Rank Of Subjects and Minimum Distance to Riemannian Mean (ROS and MDRM) Input: X u t Unlabeled Signal from Target Subject Input: X l s Ns s=1 Labeled Signal from Ns Source Subjects Input: Source Subjects who are more relevant to Target Subject as selected by the ROS algorithm Output: The label of target subject Train a classifier on labeled data from relevant source subjects 2: Initialize target labels by applying the designed classifier to Target Subject 3: while y i,(n+1) = yi,n do 4:

Table 1 :

 1 Classification accuracy in LOO Cross-Validation

	Subject	SVM	SVM+ROS	MDRM [8]	ROS+MDRM
	1	77.27	79.28	64.3	84.67
	2	68.94	70.94	72.7	74.74
	3	62.46	62.93	63.3	60.72
	4	79.63	85.11	86.5	91.24
	5	67.06	70.11	74.2	76.11
	6	66.50	66.81	73.8	69.38
	7	71.77	78.89	79.9	88.60
	8	67.74	69.24	76.6	78.20
	9	76.09	74.73	79.6	86.19
	10	68.81	70.32	78.9	75.25
	11	72.47	73.98	59.9	72.62
	12	74.23	73.68	83.7	79.18
	13	68.62	73.28	73.4	81.95
	14	69.59	66.81	87.0	76.68
	15	68.62	72.20	87.0	81.72
	16	58.14	61.17	72.5	69.83
	Mean ±(std)	69.85 ± (5.5)	71.47 ± (6.32)	75.8 ± (8.3)	77.94 ± (7.84)
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