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Abstract

In this paper we propose two novel scale and shift-invariant time-
frequency representations of the audio content. Scale-invariance is a de-
sired property to describe the rhythm of an audio signal as it will allow
to obtain the same representations for same rhythms played at different
tempi. This property can be achieved by expressing the time-axis in log-
scale, for example using the Scale Transform (ST). Since the frequency
locations of the audio content are also important, we previously extended
the ST to the Modulation Scale Spectrum (MSS). However, this MSS does
not allow to represent the inter-relationship between the audio content ex-
isting in various frequency bands. To solve this issue, we propose here two
novel representations. The first one is based on the 2D Scale Transform,
the second on statistics (inspired by the auditory experiments of McDer-
mott) that represent the inter-relationship between the various frequency
bands. We apply both representations to a task of rhythm class recogni-
tion and demonstrates their benefits. We show that the introduction of
auditory statistics allows a large increase of the recognition results.

2D-Fourier, 2D-Scale, Fourier-Mellin Transform, auditory statistics, rhythm
description

1 Introduction
The two cornerstones of automatic music description based on audio analysis
are: – extracting meaningful information from the audio signal (audio descriptor
extraction) and – performing an efficient mapping between this information and
the concept to be estimated (classification algorithm)1.

In this paper, we propose two novel audio descriptors which aim at repre-
senting the time and frequency energy pattern of an audio signal independently
of its scale (in the case of music the scale is the tempo). Those are based on

1While deep learning methods tend to bring both together, carefully designed audio de-
scriptors are still necessary when a very large amount of training data is not accessible.
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the Scale Transform and designed specifically to capture the rhythm character-
istics of a music track. Indeed, rhythm, along harmony (melody) and timbre
(orchestration) are the three most important perspectives to describe the music
content.

The rhythm of a track is usually described by a pattern played at a spe-
cific tempo. The pattern includes the characteristics of the meter, the specific
accentuation, micro-timing, ... We therefore need a representation which is in-
dependent of the tempo (scale-invariant) and of the position of the beginning of
the pattern (shift-invariant). There has been several proposals related to shift
and scale invariant representation of an audio signal: log-time axis [15], the
Scale Transform [13] or our own proposal of Modulation Scale Spectrum (MSS)
[18].

However none of them allow taking into account how the different rhythmic
events relate to each other in the frequency domain. As an example, let’s con-
sider the following pattern [x.o.x.o.], where ‘x’ is a kick, ‘o’ a hi-hat, ‘.’ a rest
and ‘xo’ a kick and a hi-hat played simultaneously. In [15, 13], since there is
no frequency representation, there will be no difference between [x.o.x.o.] and
[x.x.x.x.] or [o.o.o.o.]. In [18], each different frequency has its own representa-
tion but there are no inter-relationship modeled between them. Therefore there
will be no difference of representation between [x.o.x.o.] and [xo...xo...].

Proposal. In this paper, we propose two novel audio representations that
allows modeling this missing inter-relationship. The first one is based on the ap-
plication of the Scale Transform along the two dimensions of time and frequency.
However, while this 2D representation allows representing the inter-relationship
between the various frequency bands, it also produces shift-invariance over fre-
quencies (including invariance to circular rotation of the frequency axis) which
is not a desired property. Because of this unwanted property, we propose a sec-
ond representation which uses statistics (inspired by the auditory experiments
of McDermott [20, 19]) to represent the inter-relationship between the various
frequency bands.

Potential uses. Potential uses of these representations are the search by
rhythm pattern (for example looking for identical rhythm patterns without being
affected by the tempo) or the automatic classification into rhythm-classes. These
representations would also benefit to any genre, mood classification or search
by similarity systems that include rhythm description. Applications of these
representations outside the music field (i.e. when the scale is not the tempo)
also concern generic audio recognition.

Paper organization. The paper is organized as follow. In section 2, we
first review related works and highlight the differences with previous proposals.
We then introduce in section 3 the Scale Transform along the two dimensions
of time and frequency, and propose two methods to build a rhythm-content
descriptor that takes into account frequency inter-relationship (section 4). We
then evaluate the two novel representations in a task of rhythm class recognition
and discuss the results obtained (section 5).
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2 Related works

In this section, we briefly review existing methods to represent the rhythm of an
audio signal. We also review the two works that inspired our current proposal.

The first set of methods proposed to represent rhythm are based on shift-
invariant (but not scale-invariant) representations. For example, Foote [8] and
Antonopoulos [1] derive rhythm descriptors from a Self-Similarity-Matrix, Dixon
[5] samples the onset-energy-function at specific tempo-related intervals to ob-
tain a Rhythmic patterns, Wright [25] does the same as Dixon for afro-cuban
music clave pattern templates, Tzanetakis [24] proposes the Beat histogram,
Gouyon [9] proposes a set of 73 descriptors derived from the tempo, the pe-
riodicity histogram and the inter-onset-interval histogram. To obtain tempo
invariant descriptors, Peeters [21] proposes to sample a spectral and temporal
periodicity representations of the onset-energy-function at specific frequencies
related to the tempo. Other approaches use Dynamic Periodicity Warping [12]
to compare rhythms at different tempi.

A second set of methods uses shift and scale (tempo in the case of music)
invariant representations, usually the Scale Transform (ST) [4]. Holzapfel
et al. [13] were the first to propose the use of the ST for rhythm representa-
tion. It should be noted that the method proposed by Jensen [15], while not
mentioning the ST, follows a close path. In these works, the ST is applied to
the auto-correlation (used to add shift-invariance) of the onset-energy function.
This method was also used by Prockup et al. [22] which apply a Discrete Cosine
Transform to the ST coefficients to reduce its dimensionality. Since there is only
one onset-energy-function for the whole set of frequencies, this method does not
allow representing the frequency location of the rhythm events. For this rea-
son, we proposed in Marchand et al. [18] to model the rhythmic information
on multiple perceptual frequency bands with the ST. Since this method can be
considered as a Modulation Spectrum in the Scale domain it was named Mod-
ulation Scale Spectrum (MSS). We showed that for a rhythm class recognition
task, the MSS largely increases the recognition performances.

A first work that inspired our current proposal is [3] that proposes a trans-
form to describe a 2D signal in a shift and scale-invariant way in both directions.
This transform is a 2D Scale Transform (scale-invariance) applied to a 2D-
Fourier Transform. The latter is used to obtain the shift-invariance property.
This transform is often named the Fourier-Mellin Transform. It is extremely
useful for, though not limited to, image processing. It has been introduced
by the optical research community in the end of the seventies [3, 26] and has
been used in many fields since then: radar 2D signal analysis [11, 14], pattern
recognition in image [23, 10]. It has never been used however for audio signal
description.

The second work that inspired our current proposal is the one of McDer-
mott et al. [20, 19]. They proposed a set of auditory statistics to model
and generate sound textures. Theses statistics are based on how the auditory
system summarizes temporal information, and involves cross-correlations be-
tween many frequency bands. Ellis et al. [7] used these statistics for soundtrack
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Figure 1: Flowchart of the computation process of the 2D Modulation Scale
Spectrum (2DMSS).

classification and show a small improvement over the use of Mel Frequency Cep-
stral Coefficients (MFCC) statistics. It has never been used however for rhythm
description.

3 The 1D and 2D Scale Transform

In this section, we introduce the 1D and 2D Scale Transform for audio signal
processing, that will be used in the section 4 to build rhythm-content descriptors.

3.1 The 1D Scale Transform

The Scale Transform (ST) is a specific case of the Mellin Transform, which was
introduced by Cohen in [4]. For a 1D signal x(t) over time t, the ST at scale ct
is defined as:

S(ct) =
1√
2π

∫ ∞
0

x(t)t−jct−
1
2 dt (1)

Scale-invariance. One of the most important property of the ST is its
scale invariance. If S(ct) is the ST of a temporal signal x(t), then the ST of a
time-scaled version of this temporal signal

√
a x(at) is ejct ln aS(ct). Both x(t)

and
√
a x(at) have therefore the same modulus of the ST. The ST can viewed

as the Fourier Transform of an exponentially re-sampled signal weighted by an
exponential window:

S(ct) =
1√
2π

∫ ∞
−∞

x(et)e
1
2 te−jcttdt (2)

When x(t) represents the audio signal of a music track, the scale correspond
to the tempo (the speed at which a rhythm pattern is played). The modulus of
the ST is therefore a representation independent of the tempo. This has been
used for tempo-invariant rhythm representations by [13, 18, 22].

3.2 The 2D Scale Transform

For a 2D signal X(t, ω) over time t and frequency ω, the 2D Scale Transform
(ST) at scales ct and cω is defined as:

S(ct, cω) =

∫
t

(∫
ω

X(t, ω)ω−jcω−
1
2 dω

)
t−jct−

1
2 dt

4



Audio

Frame 
analysis

Auto-
correlation Rhythm

description
feature
(MSS)

Scale 
Transform

Tempo independenceShift-invariance
Auditory frequency

bands Attack enhancement

Cross-correlation
coefficients (ccc)

Gammatone filtering Onset
Frame 

analysis
Auto-

correlation
Scale 

Transform

Frame 
analysis

Auto-
correlation

Scale 
Transform

Frame 
analysis

Auto-
correlation

Scale 
Transform

Gammatone filtering Onset

...

Onset

Onset

...
Gammatone filtering

Gammatone filtering

...

...

...

...

Band 
grouping

Band 
grouping

Band 
grouping

Band 
grouping

� = 32 bands sr = 22 Hz b = 4 Hz c = 100 scale coef

O(t, �i) O(t, bi) Ou(t, bi) Rxxu(⌧, bi) MSSu(c, bi)

MSS(c, bi)

Figure 2: Flowchart of the computation process of Modulation Scale Spectrum
with Auditory Statistics (MASSS).

As for the 1D ST, the 2D ST can be viewed as the 2D Fourier Transform of
an exponentially re-sampled signal on both dimensions X(et, eω)eω/2et/2.

S(ct, cω) =

∫
t

(∫
ω

(
X(et, eω)eω/2et/2

)
e−jcωωdω

)
e−jcttdt

This transform has already been widely used in image processing, to get
scale-invariant representations [23, 10], but never in audio signal processing.

3.3 Shift-invariance

It should be noted that neither the 1D nor the 2D Scale Transforms are shift
invariant, which means in the 1D case |S(x(t))| 6= |S(x(t + a))|. For this rea-
son, when the 1D Scale Transform will be used in part 4.2, we will apply it on
a shift-invariant representation (the auto-correlation Rxxu(t, bi) of the global-
over-frequency onset-energy-function). In the 2D case, when the 2D Scale Trans-
form will be used in part 4.1, it will be applied to a 2D shift-invariant repre-
sentation (the modulus of the 2D Fourier Transform Fu(ωt, ωγ)). In the image
processing literature, a 2D Fourier Transform followed by a 2D Scale Transform
is named the Fourier-Mellin Transform.

4 Application to rhythm description

We describe here how the Scale Transform (1D or 2D) can be used to build
rhythm descriptors. We distinguish 4 descriptors.

Holzapfel. The 1D Scale Transform is applied to the auto-correlation of an
onset-energy-function that represents the full frequency range. There is
no distinction between the frequency locations of rhythm events. This is
the initial method proposed by [13].

MSS. For each frequency band (Gammatone filters) we compute the 1D Scale
Transform of the auto-correlation of the onset-energy-function within this
band. The frequency locations of rhythm events are represented but in-
dependently (no inter-relationships). This is the method we proposed in
[18].
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2DMSS. In section 4.1, we extend the idea of the MSS but represent the inter-
relationship between the frequency bands using the 2D-Scale Transform
of the modulus of the 2D-Fourier Transform instead of the independent
1D-Scale Transforms of independent auto-correlation functions.

MASSS. In section 4.2, we also extend the idea of the MSS but simply repre-
sent the inter-relationship between the onset-energy-functions using audi-
tory statistics.

4.1 2D Modulation Scale Spectrum (2DMSS)

In this method, we extend the idea of the MSS but represent the inter-relationship
between the frequency bands using the 2D-Scale Transform of the modulus of
the 2D-Fourier Transform instead of the independent 1D-Scale Transforms of in-
dependent auto-correlation functions. The flowchart of the computation process
of the 2DMSS is given in Figure 1 and described below.

1. The audio signal x(t) is first separated into 64 Gammatone2filters (using 4th

order bandpass) centered on a log-space from 26 to 9795 Hz.

2. For each filter output, we calculate an onset-energy function (OEF)3 using
the method of Ellis [6]. This function has a sampling rate of 13 Hz. The OEF
of each filter are then stacked into a matrix to form a 2D time/frequency
representation O(t, γi); i ∈ [1, 64].

3. We then perform a block analysis of O(t, γi). The block analysis is performed
using a 0.5 seconds hop size and a 8 seconds window duration of rectangular
shape.

4. For each block u, we compute the modulus of the 2D Fourier Transform of
Ou(t, γi). We denote it by Fu(ωt, ωγ). It has a dimension of (512, 64) (we
fixed nfft,t = 512 and nfft,ωγ = 64).

5. We then compute the 2D Scale Transform of Fu(ωt, ωγ) denoted by Su(ct, cγ).
It has a dimension of nscale,t = 4096 by nscale,ωγ = 256.

6. We then average Su(ct, cγ) over blocks u to obtain S(ct, cγ).

7. We finally reduce its dimensions by applying Principal Component Analysis
(PCA). We only keep the first (with the highest eigenvalues or explained
variance) 100 eigenvectors. The final dimension is therefore 100.

4.2 Modulation Scale Spectrum with Auditory Statistics
(MASSS)

The previous 2DMSS representation provides a scale and shift invariant rep-
resentation of the audio content and allows to represent the inter-relationship
between the various frequency bands. However, it also produces shift-invariance

2These filters model the auditory system. 4th-order Gammatone filters have been shown
to be extremely close to the human auditory filters. We used the implementation kindly
proposed by Ma [16].

3An OEF is a function taking high values when an onset (beginning of a discrete event in
the audio signal) is present and low values otherwise.
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over frequencies, including shift-invariance when circularly rotating the fre-
quency axis. This property is not desired since it will correspond to consider
as equivalent low (kick) and high (hi-hat) patterns. This is the reason why we
propose here a second representation which uses statistics (inspired by the au-
ditory experiments of McDermott) to represent the inter-relationship between
the various frequency bands.

Auditory statistics. In [20, 19], McDermott and al. show evidence
that “the auditory system summarizes temporal details of sounds using time-
averaged statistics”. They show that, in order to resynthesize sound textures,
these statistics should include the statistics of each individual frequency band
but should also include the cross-correlations between the temporal energy pro-
files within each frequency band.

We therefore propose to add to the MSS, the correlations between the onset-
energy-functions of the various frequency bands. The flowchart of the computa-
tion process of the MASSS descriptor is given in Figure 2 and described below.

1. same as section 4.1 step 1, with 32 Gammatone filters.

2. same as section 4.1 step 2, with a sampling rate of 22 Hz.

3. The number of frequency bands is reduced from 32 to 4 by summing adjacent
bands together. The resulting matrix is O(t, bi) i ∈ [1, 4].

4. Cross-correlation coefficients ccc(bi, bj) are computed between frequency bi
and bj using ccc(bi, bj) =

∑
k O(tk, bi) ·O(tk, bj).

5. For each band bi, we then perform a frame analysis of O(t, bi) and compute,
for each frame u, its auto-correlation: Rxxu(τ, bi) where τ denotes the time-
lag. The frame analysis is performed using a 0.5 seconds hop size and a 8
seconds window duration of rectangular shape.

6. Finally, for each frequency band bi, we compute the Scale Transform of
Rxxu(τ, bi) over τ and average it over frames u. We denote it by MSS(c, bi)
where c is the scale coefficient. We only retain the first 100 coefficient. The
dimensionaly of MSS(c, bi) is therefore (100, 4). We denote by MASSS the
concatenation of the MSS(c, bi) coefficients and the 10 ccc(bi, bj) coefficients.

5 Experiments

In this section, we compare the ability to represent rhythm of the proposed
descriptors. For this we evaluate their performances for a task of rhythm class
recognition.

5.1 Task of rhythm class recognition
The task consists in correctly recognizing the rhythm class of an audio track.
For this we use datasets annotated into rhythm classes (see section 5.2). We
evaluate the performances of the 2DMSS (section 4.1), the MSS alone, the cross-
correlation coefficients ccc alone, and finally both together (MASSS=MSS+ccc)
(section 4.2). We compare them to the best results published in [13] and [18].
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Table 1: Results on the 3 different datasets. All the results are in term of mean-
over-classes recall (except [13] which is an accuracy). The state-of-the-art results
are presented in italic. The results in bold are improving or performing equally
with state-of-the-art.

Ballroom Extended Ballroom Cretan dances
Method Result parameters Result parameters Result parameters

State-of-the-art 93,1% [18]
γ = 12

- - 77.8% [13] sr = 50 c = 160
sr = 50 c = 100

Proposal: 2DMSS 91.1%
γ = 32 nfft = 64; 512

- - 63,0%
γ = 32 nfft = 64; 512

sr = 13 nsc = 256; 4096 sr = 10 nsc = 256; 4096

Proposal: MSS 95,1%
γ = 32 b = 4

94,6%
γ = 32 b = 4

75,6%
γ = 8 b = 8

sr = 22 c = 100 sr = 22 c = 100 sr = 50 c = 60

Proposal: ccc 41,1% γ = 32 b = 4 31,1% γ = 32 b = 4 36,6% γ = 32 b = 10

Proposal: MASSS 96,0%
γ = 32 b = 4

94,9%
γ = 32 b = 4

77,2%
γ = 32 b = 10

sr = 22 c = 100 sr = 22 c = 100 sr = 22 c = 40

For all classification tasks, we use Support Vector Machines (SVM) with a radial
basis function kernel. Parameters of the SVM4 are found using grid-search. The
results are presented in term of mean-over-classes recall5using 10-fold cross-
validation.

5.2 Datasets
Ballroom. The Ballroom dataset contains 698 tracks of 30 seconds di-

vided into 8 music genres (‘ChaChaCha’, ‘Jive’, ‘QuickStep’, ‘Rumba’, ‘Samba’,
‘Tango’, ‘VienneseWaltz’, ‘Waltz’). This dataset was created for the ISMIR 2004
rhythm description contest [2]. It is extracted from the website www.ballroomdancers.com.
We consider the genre labels as classes of rhythm because in ballroom music,
the genre is closely related to the type of rhythm pattern.

Extended Ballroom. Although the Ballroom dataset is relevant for rhythm
classification, it suffers from several drawbacks: poor audio quality, small size,
presence of duplicates. We therefore decided to update it. Since www.ballroomdancers.com

4The range of search of gamma is [10−10; 105] and the range of search of C is [10−10; 105].

Table 2: Rhythm repartition of the Ballroom datasets
Class Ballroom Extended Ballroom v1

Chacha 111 455
Foxtrot 507

Jive 60 350
Quickstep 82 497

Rumba 98 470
Samba 86 468
Tango 86 464

Viennesewaltz 65 252
Waltz 110 529

Total 698 3992
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still exists and provides tempo and genre annotations for thousands of 30-second
tracks, we extracted all its content again. The new Extended Ballroom dataset
is now 6 times larger and has 1 new class ‘Foxtrot’. We show in Table 2 the
distribution of the number of tracks by rhythm class. It contains 3992 tracks di-
vided into 9 rhythm classes (four additional classes are not displayed since they
contained less tracks: Pasodoble (53), Salsa (47), Slowwaltz (65) and Wcswing
(23)). The dataset can be found at:

http://anasynth.ircam.fr/home/media/ExtendedBallroom along with the Python
scripts used to extract and clean this dataset. The main advantages of the Ex-
tended Ballroom dataset over the standard one are: better audio quality, larger
size, 1 new rhythm class and repetitions (manual annotations of duplicates,
karaoke, repetitions, . . . ). More details can be found in [17].

Greek dances. The third dataset is the “Greek dances” one. This dataset
was kindly provided by the author. It contains 180 excerpts of the following 6
dances commonly encountered in the island of Crete: Kalamatianos, Kontilies,
Maleviziotis, Pentozalis, Sousta and Kritikos Syrtos. It was introduced in [13].
This dataset is more challenging than the Ballroom one since: 1) the rhythm
classes have a wider tempo distribution hence a good rhythm descriptor will
have to be tempo-independent; 2) most rhythm classes share the same meter
(All the dances have a 2

4 meter except Kalamatianos which has a 7
8 meter);

hence recognizing the meter will not be sufficient to recognize the classes.

5.3 Discussion of results

In Table 1, we compare the performances obtained by our four rhythm descrip-
tors to the state of the art results of Holzapfel et al. [13] and Marchand et
al. [18]. The sign - denotes the fact that the results are not available for the
given configuration. All the results are presented in term of mean-over-classes
recall, except Holzapfel’s which is an accuracy. Along with the mean-recall, we
indicate the parameters used for computing our descriptors: γ (number of Gam-
matone filters), b (final number of frequency band after grouping), sr (sampling
rate of the onset-energy function), c (number of scale coefficients kept for each
frequency band), nfft and nsc (sizes of the 2D Fourier Transform and 2D ST
respectively).

First, it should be noted that the results of [18] on the Ballroom dataset
(93.1%) were based on a MSS with many frequency bands. The new results
presented as MSS (95.1%) are based on a reduced number of frequency bands
which seems beneficial. Over the two proposed new rhythm descriptors (2DMSS
and MASSS), only the MASSS succeeded to outperform the MSS descriptor.
For the Ballroom dataset, our MASSS descriptor outperforms (96,0%) state-
of-the-art methods (93.1%) by 3%. On the Extended Ballroom dataset, our
MASSS descriptor scores 94,9%. No comparison with state-of-the-art method is
possible since this dataset is new for the research community. While the results
obtained on this new dataset are slightly lower than those on the standard

5The recall score for a class is the number of correctly detected items over the number of
items in this class. The mean-over-class recall is the average of all recall scores of each class.
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Ballroom, one should consider that not only the number of files is 5 time larger
but also the number of classes is larger (9 over 8). Therefore 94.9% on 9 classes
is actually better than 96% on 8 classes. On the Cretan dances dataset, the
MASSS descriptor has a mean-recall of 77,2% which is somewhat equivalent to
state-of-the-art Holzapfel’s accuracy of 77,8%.

6 Conclusion
We proposed two novel audio descriptors (2DMSS and MASSS) that allows
representing in a shift and scale invariant way the time and frequency content of
an audio signal and differ by the way they model the inter-relationship between
the various frequency bands.

The first one, named 2DMSS, is based on the application of the Scale Trans-
form along the two dimensions of time and frequency. This method was not suc-
cessful and lead to lower scores than our initial results [18]. It can be explained
as follow. While this 2D representation allows representing the inter-relationship
between the various frequency bands, it also produces shift-invariance over fre-
quency, including invariance when circularly rotating the frequency axis. This
means that low and high frequencies can not be distinguished any more, which
is not a desired property

For this reason, we proposed a second representation which uses statistics
(inspired by the auditory experiments of McDermott) to represent the inter-
relationship between the various frequency bands. This second descriptor,
named MASSS, provides the new top-results for these datasets. We see that
in each of the three experiments, adding the cross-correlation coefficients im-
proves the classification result: 0,9% for the Ballroom, 0,3% for the Extended
Ballroom and 1,6% for the Cretan dances dataset. These are promising scores
and future works will concentrate on testing MASSS as input to other classifi-
cation tasks.
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