Semi-global stabilization by an output feedback law from a hybrid state controller

Swann Marxa, Vincent Andrieub and Christophe Prieura

aGIPSA-lab, Department of Automatic Control, Grenoble Campus, 11 rue des Mathématiques, BP 46, 38402 Saint Martin d’Hères Cedex.
bUniversité Lyon 1 CNRS UMR 5007 LAGEP, France and Fachbereich C - Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstraße 20, 42097 Wuppertal, Germany.

Abstract

This article suggests a design method of a hybrid output feedback for SISO continuous systems. We focus on continuous systems for which there exists a hybrid state feedback law. A local hybrid stabilizability and a (global) complete uniform observability are assumed to achieve the stabilization of an equilibrium with a hybrid output feedback law. This is an existence result. Moreover, assuming the existence of a robust Lyapunov function instead of a stabilizability assumption allows to design explicitly this hybrid output feedback law. This last result is illustrated for linear systems with reset saturated controls.

Key words: Hybrid systems; Output feedback; Observers; High-gain

1 Introduction

In recent years, many techniques for designing a stabilizing control law for nonlinear dynamical systems have been developed. It is now possible to achieve stabilization of equilibria for a large class of models. However, due to Brockett’s necessary condition for stabilizability, it is well known that some systems cannot be stabilized by a continuous controller. Some of these systems can however be stabilized with a hybrid state feedback law, i.e. a discrete/continuous controller (see e.g. [Prieur and Trelat (2006)], where the Brockett integrator is stabilized with a quasi optimal hybrid control). Moreover, the use of hybrid control laws may be interesting to address performance issues (see e.g. [Prieur (2001)]). This explains the great interest of the control community in the synthesis of hybrid control laws (see [Goebel et al. (2012); Hespanha et al. (2008); Hetel et al. (2013); Fichera et al. (2013); Yuan and Wu (2014)].

The output feedback stabilization problem has also attracted the attention of numerous researchers. Indeed, employing a state feedback law is most of the cases impossible, since the sensors can only access to partial measurement of the state. Output feedback laws may be designed from a separation principle. More precisely, two tools are designed separately: a stabilizing state feedback law and an asymptotic state observer. However, if this approach is fruitful for linear systems, the separation principle does not hold in general for nonlinear systems. For instance, there exist stabilizable and observable systems for which the global asymptotic stabilization by output feedback is impossible ([Mazenc et al. (1994)]). Nevertheless, from weak stabilizability and observability assumptions, some semi-global results may be obtained (see e.g. [Teel and Praly (1994) or (Isidori, 1995 Pages 125-172)]. However, in this case the observer and the state feedback have to be jointly designed (not separately) (see also [Andrieu and Praly (2009)] for some global results).

The aim of this paper is to address the stabilization by hybrid output feedback law. In [Teel (2010)], a local separation principle is stated. However, the construction of the observer is not explicit. Here, from a hybrid state feedback controller and an observability property, an algorithm is provided to build hybrid output feedback laws which stabilize semi-globally the equilibrium plant. If moreover a robust Lyapunov function is known, the feedback law design becomes explicit.

This article is organized as follows. Section 2 introduces
the problem together with a hybrid stabilizability and a observability assumptions. The main result is given in Section 3.1. An equivalent stabilizability assumption in terms of Lyapunov function is considered in Section 3.2. This allows to give a more explicit theorem. Section 4 explains how to prove the first theorem from the second theorem. In Section 5 technical lemmas are stated in order to construct the suggested output feedback law. An illustrative example is given in Section 6. Finally, Section 7 collects some concluding remarks.

Note that this paper is an extension of the conference paper Marx et al. (2014). It includes a missing part (the observer design), proofs and a new illustration.

Notation: Given $\lambda \in \mathbb{N}$, $\mathbb{R}_{\geq \lambda} = [\lambda, +\infty)$. Given $n \in \mathbb{N}$, $I_n \in \mathbb{R}^{n \times n}$ denotes the identity matrix, i.e. $I_n = \text{diag}(1, \ldots, 1)$. Stars are used for symmetric terms. Given $n \in \mathbb{N}$, $L_{\text{loc}}(\mathbb{R}, \mathbb{R}^n)$ denotes the set of measurable locally bounded functions $u : \mathbb{R} \to \mathbb{R}^n$. A function $\alpha : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ belongs to class-\mathcal{K} (for short $\alpha \in \mathcal{K}$) if it is continuous, zero at zero, and strictly increasing. A function $\beta : \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ belongs to class-\mathcal{KL} (for short $\beta \in \mathcal{KL}$) if it satisfies (i) for each $t \geq 0$, $\beta(t)$ is nondecreasing and $\lim_{t \to 0} \beta(s, t) = 0$, and (ii) for each $s \geq 0$, $\beta(s, \cdot)$ is nonincreasing and $\lim_{s \to \infty} \beta(s, t) = 0$.

2 Problem statement

2.1 Hybrid state feedback law for a continuous time plant

The system under consideration is described by the following single-input single-output continuous dynamics:

$$
\dot{x}_p = f_p(x_p) + g_p(x_p)u, \quad y = h_p(x_p),
$$

where $x_p \in \mathbb{R}^{n_p}$, $y \in \mathbb{R}$, $u \in \mathcal{U} \subset \mathbb{R}$. Note that $f_p : \mathbb{R}^{n_p} \to \mathbb{R}^{n_p}$ and $g_p : \mathbb{R}^{n_p} \to \mathbb{R}^{n_p}$, $h_p : \mathbb{R}^{n_p} \to \mathbb{R}$ are $n_p + 1$ times continuously differentiable. \mathcal{U} can be bounded (it yields a saturated control problems). Inspired by Priure and Trélat (2006) and Sontag (1999), the origin, which is an equilibrium point for (1), is assumed to be stabilizable by a hybrid state feedback.

Assumption 1. (Persistent Flow Stabilizability) There exists a hybrid controller defined by $(\mathcal{F}_c, \mathcal{J}_c, f_c, g_c, \theta_c)$, where \mathcal{F}_c and \mathcal{J}_c are closed sets, $\mathcal{F}_c \cup \mathcal{J}_c = \mathbb{R}^{n+p+c}$, $g_c : \mathbb{R}^{n+p+c} \to \mathcal{U}_n$, $f_c : \mathbb{R}^{n+p+c} \to \mathbb{U}_n$ and $\theta_c : \mathbb{R}^{n+p+c} \to \mathcal{U}$ are continuous functions and a positive value λ in $[0, 1)$ such that the set $[0, 1] \times [0, 1] \times [0, 1] \times [0, 1] \times [0, 1]$ is asymptotically stable for the system:

$$
\begin{align}
\dot{x}_p &= f_p(x_p) + g_p(x_p)\theta_c(x_p, x_c) \\
\dot{x}_c &= f_c(x_p, x_c) \quad \in \mathcal{F}_c \times \mathbb{R}_{\geq 0} \\
\sigma &= 1 - \sigma
\end{align}
$$

with basin of attraction $\mathcal{B} \times \mathbb{R}_{\geq 0}$, where \mathcal{B} is an open subset of $\mathbb{R}^{n_p+n_c}$.

The problem under consideration in this paper is to design a stabilizing output feedback law based on this hybrid state feedback. The design presented in this paper requires an observability property for system (1) as described in the following section.

2.2 Observability notions

Following Gauthier et al. (1992), define the C^1 mapping $\phi : \mathbb{R}^{n_p} \to \mathbb{R}^{n_p}$ as follows:

$$
\phi(x_p) = \left[h_p(x_p) \quad L_f h_p(x_p) \quad \ldots \quad L_{f_p}^{n_p-1} h_p(x_p)\right]^T,
$$

where $L_{f_p}^{i} h_p(x)$ denotes the i-th Lie derivative of h_p along f_p. The observability assumption employed all along the paper can be now stated.

Assumption 2. (Global) Complete Uniform Observability (Gauthier et al. (1992)). System (1) is completely uniformly observable, that is

(i) The mapping $\phi : \mathbb{R}^{n_p} \to \phi(\mathbb{R}^{n_p}) = \mathbb{R}^{n_p}$ is a diffeomorphism;

(ii) System (1) is observable for any input $u(t)$, i.e. on any finite time interval $[0, T]$, for any measurable bounded input $u(t)$ defined on $[0, T]$, the initial state is uniquely determined on the basis of the output $y(t)$ and the input $u(t)$.
Remark 2. In [Marx et al. 2014], from a weaker observability assumption, i.e., an observability property holding for just one control, a finite-time convergent observer and a hybrid state feedback controller has been used to design an output feedback law. Such a strategy does not need a persistent flow stabilizability assumption. However only a weak stability property is obtained for the closed-loop system.

3 Semi-global output feedback result

3.1 First main result

Inspired by the approach of [Teel and Praly 1994], from Assumptions 1 and 2, a semi-global output feedback result may be obtained.

Theorem 1 (Semi-global asymptotic stability). Assume Assumptions 1 and 2 hold. Assume moreover that \(g_c \) satisfies that, for all \((x_p, x_c) \in B \cap J_c, \) the set

\[
\{ (x_p, g_c(w, x_c)), w \in \mathbb{R}^n \}
\]

is a compact subset of \(B, \) then the origin of system (1) is semi-globally asymptotically stabilizable by a hybrid output feedback. In other words, for all compact sets \(\Gamma \) contained in \(\mathbb{B} \setminus \{ x_p \in \mathbb{R}^n, (x_p, 0) \in B \}, \) there exist a \(C_1 \) function \(\Psi_p : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) and a positive real number \(c_c \) such that the set \([0] \times [0, 1] \) in \(\mathbb{R}^{n+c} \times [0, 1] \) is asymptotically stable for the system

\[
\begin{align*}
\dot{x}_p &= f_p(x_p) + g_p(x_p) u \\
\dot{\sigma} &= \Psi_p(x_p, y, u) \\
\dot{x}_c &= f_c(x_p, x_c) \\
y &= h_p(x_p) , \ u = \theta_c(x_p, x_c)
\end{align*}
\]

(\(x_p, x_c, \sigma \) \(\in J_c \times \mathbb{R} \geq 0 \))

(5a)

\[
\begin{align*}
x_p^+ &= x_p \\
x_c^+ &= g_c(x_p, x_c) \quad (x_p, x_c, \sigma) \in J_c \times \mathbb{R} \geq 0 \lambda. \\
\sigma^+ &= 0
\end{align*}
\]

(5b)

where \(\dot{x}_p \) is defined by \(2 \)

\[
\dot{x}_p = \text{sat}_c(x_p) ,
\]

(6)

with basin of attraction containing \(\Gamma \times \{ 0 \} \times \{ 0 \} \times \mathbb{R} \geq 0 \) (which is a subset of \(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^c \times \mathbb{R} \geq 0 \)).

The design of the output feedback law which proves this theorem is based on a Lyapunov inverse theorem. However, two data miss in the output feedback law given in Theorem 1: the positive real number \(c_c, \) the saturation level for the feedback law, and the observer dynamics \(\Psi_p. \) In order to give an explicit, the existence of a robust Lyapunov function is assumed, in the next section.

An important feature of this theorem is that an assumption needs to be imposed on the function \(g_c, \) (see equation (4)). This is due to a design of a set in which the solution should stay for a suitable duration. In the particular case in which \(B \) is \(\mathbb{R}^{n+c} \), the previous condition is trivially satisfied if \(g_c \) is such that

\[
|g_c(w, x_c)| \leq \gamma(|x_c|) , \ \forall (w, x_c) \in \mathbb{R}^{n+c} \cap J_c
\]

where \(\gamma \in \mathcal{K}. \) Moreover, note that there is a large class of systems that satisfy such a condition. For instance, switch systems or reset systems, as the one considered in Section 6 below.

3.2 Second main result

In this section an explicit result is introduced. It is based on the following assumption, where it is denoted \(X = \left[x_p^*, x_c^*, \sigma^* \right]^T. \)

Assumption 3 (Robust Lyapunov function). Let \(B \) be an open subset of \(\mathbb{R}^n \times \mathbb{R}^c \) and let denote \(\mathcal{A} := \{ 0 \} \times [0, 1] \) \(\subset B \times \mathbb{R} \geq 0. \) There exist a hybrid controller defined by \((F_c, J_c, f_c, g_c, \theta_c), \) where \(F_c \) and \(J_c \) are closed sets, \(F_c \cup J_c = \mathbb{R}^{n+c} \times \mathbb{R}^c, \) \(g_c : \mathbb{R}^{n+c} \to \mathbb{R}^c, \) \(f_c : \mathbb{R}^{n+c} \to \mathbb{R}^c, \) and \(\theta_c : \mathbb{R}^{n+c} \to \mathcal{U} \) are continuous functions, a positive value \(\lambda \) in (0, 1), positive values \(\alpha_1 \) and \(\alpha_2 \) in \((0, 1) \) and a \(C^1 \) proper function \(V : B \times \mathbb{R} \to \mathbb{R} \geq 0 \) satisfying \(\{ X \in B \times \mathbb{R} : V(X) = 0 \} = \mathcal{A}. \) For all positive real numbers \(l, \) the level set of \(V \) defined as

\[
D_l := \{(x_p, x_c, \sigma) \in B \times \mathbb{R} \geq 0 : V(x_p, x_c, \sigma) \leq l \} ,
\]

(7)

is a compact subset of \(B \times \mathbb{R} \).

Moreover, there exists a positive real number \(\varepsilon_r \) and an increasing \(C^1 \) function \(p : [0, \varepsilon_r] \to \mathbb{R} \) with \(p(0) = 0 \) such that for all \((X, e) \) in \(D_l \times \mathbb{R}^+ \) such that \(|e| \leq \varepsilon_r, \) the following inequalities hold.

- If \((x_p + e, x_c, \sigma) \in (B \cap J_c \times \mathbb{R} \geq 0 \)

\[
\frac{\partial V}{\partial X}(X)F(X, x_p + e) \leq -\alpha_1 V(x_p, x_c, \sigma) + \rho(|e|)
\]

(8)

- If \((x_p + e, x_c, \sigma) \in (B \cap J_c \times \mathbb{R} \geq 0 \)

\[
V(G(X, x_p + e)) - V(X) \leq -\alpha_2 V(x_p, x_c, \sigma) + \rho(|e|)
\]

where \(F \) is defined by

\[
F(X, e) := [(f_p(x_p) + g_p(x_p) \theta_c(., x_c))^T f_c(., x_c)^T 1 - \sigma]^T
\]

\[
\text{sat}_c(x) := \begin{cases} 1 & \text{if } |x| < \frac{1}{2} \\ 0 & \text{else} \end{cases}
\]

Given a positive real number \(c, \) \(\text{sat}_c : \mathbb{R} \to \mathbb{R} \) is the saturating vector function defined by \(\text{sat}_c(0) = 0 \) and \(\text{sat}_c(x) := \min \left\{ 1, \frac{1}{|x|} \right\} \) \(\forall x \neq 0. \)

\[\uparrow \]

A map is called proper if inverse images of compact sets are compact.
and G is defined by $G(X, \cdot) := [x_p^T \ g_c(\cdot, x_c)^T \ 0]^T$.

This assumption allows to obtain an explicit result.

Theorem 2 (Design of an output feedback law). Under Assumptions 2 and 3, assume that the set defined by (4) is a compact subset of B. Then the set $\{0\} \times [0, 1]$ in $\mathbb{R}^{n_p+nc} \times \mathbb{R}$ is semi-globally asymptotically stabilizable.

In other words, the conclusion of Theorem 1 holds. Moreover c_x is computed in Section 5.1 and ψ_p is computed in Section 5.2 from the Lyapunov function V together with the robustness margin ε_r and the positive value λ of Assumption 3, and from the function ϕ of Assumption 2.

Let us note that it is difficult to be more explicit since the derivations of c_x and Ψ_p are quite long and require several steps. This is already the case in [Teel and Praly (1994)]. Moreover, continuing what has been stated in Remark 1, it is crucial to have a Persistent-Flow Stabilizability in order to design explicitly our observer.

In a first step, c_x is computed in (11) in order to force the solutions to remain in a compact set for a certain amount of (flow) time. The function Ψ_p is a high-gain observer which is tuned in Lemma 2. It forces the error to reach the robustness margin obtained from Assumption 3 before the solution escapes the compact set.

The explicit construction of these two data and the proof that this output feedback law is a solution to Theorem 2 is reported in Section 5.

4 Proof of Theorem 1 from Theorem 2

In order to prove Theorem 1 from Theorem 2 it is sufficient to prove that Assumption 1 implies Assumption 3. This can be obtained from an inverse Lyapunov result. First, from (Goebel et al. 2012, Corollary 7.32) there exists a positive value $\alpha \in (0, 1)$ and a smooth proper function $V : B \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ satisfying

$$\{X \in B \times \mathbb{R} : V(X) = 0\} = \mathcal{A}$$

$$\frac{\partial V}{\partial X}(X)F(X, x_p) \leq -V(X), \quad \forall (x_p, x_c, \sigma) \in (B \cap J_c) \times [0, \lambda] \quad (9)$$

$$V(G(X, x_p)) - V(X) \leq -\alpha V(X), \quad \forall (x_p, x_c, \sigma) \in (B \cap J_c) \times \mathbb{R}_{\geq 0}$$

Let l be a positive real number such that the level set D_l is a compact subset of $B \times \mathbb{R}$. Consider the two functions r_1 and r_2 defined as

$$r_1(s) = \max_{|\varepsilon| \leq s, (x_p + \varepsilon, x_c, \sigma) \in D_l} \frac{\partial V(X)}{\partial X} F(X, x_p) + \frac{1}{2} V(X)$$

$$r_2(s) = \max_{|\varepsilon| \leq s, (x_p + \varepsilon, x_c, \sigma) \in D_l} V(G(X, x_p)) - \left(1 - \frac{1}{2} \alpha\right) V(X)$$

Since F, G are continuous and V is smooth, r_1 and r_2 are also continuous functions. Moreover $r_1(0) < 0$ and $r_2(0) < 0$. Therefore there exist ε_1^t and ε_2^t such that $r_1(s) < 0$ for all $s \leq \varepsilon_1^t$ and $r_2(s) < 0$ for all $s \leq \varepsilon_2^t$. Let $\varepsilon_r = \min(\varepsilon_1^t, \varepsilon_2^t)$. For all $|\varepsilon| \leq \varepsilon_r$ and $(x_p, x_c, \sigma) \in D_l$ it yields the following:

1. If $(x_p + e, x_c, \sigma) \in (B \cap J_c \times \mathbb{R}_{\geq 0})$,
 $$\frac{\partial V}{\partial X}(X)F(X, x_p) \leq -\frac{1}{2} V(X), \forall X \in B \cap J_c \times \mathbb{R}_{\geq 0}$$

2. If $(x_p + e, x_c, \sigma) \in (B \cap J_c \times \mathbb{R}_{\geq \lambda})$,
 $$V(G(X, x_p)) - V(X) \leq -\frac{1}{2} \alpha V(X), \forall X \in B \cap J_c \times \mathbb{R}_{\geq \lambda}.$$

Hence this Lyapunov function is the same than the one introduced in Assumption 3 with $\alpha_1 = \frac{1}{2}$ and $\alpha_2 = \frac{1}{2}$.

Consider now the increasing function $\rho : [0, \varepsilon_r] \rightarrow [0, +\infty)$ defined as follows:

$$\rho(s) \geq \max \left\{ \begin{array}{ll}
\max_{(x_p + e, x_c, \sigma) \in (D_{4\lambda} \cap J_c \times \mathbb{R}_{\geq 0}), |\varepsilon| \leq s} \nu_1(X, e) \\
\max_{(x_p + e, x_c, \sigma) \in (D_{4\lambda} \cap J_c \times \mathbb{R}_{\geq 0}), |\varepsilon| \leq s} \nu_2(X, e)
\end{array} \right\}$$

where

$$\nu_1(X, e) = \left| \frac{\partial V}{\partial X}(X) (F(X, x_p + e) - F(X, x_p)) \right|$$

and $\nu_2(X, e) = |V(G(X, x_p + e)) - V(G(X, x_p))|$. With this function, Assumption 3 is satisfied. This ends the proof of Assumption 3 from Assumption 1. Therefore, as soon as Theorem 2 is valid, Theorem 1 holds under Assumptions 1 and 2.

5 Construction of the output feedback law

In the next sections, we follow a similar approach to [Teel and Praly (1994)]. We first compute a saturation level c_x and a compact subset of $B \times \mathbb{R}$ denoted by D_l, such that when saturating the controller with c_x, the solution starting from $B \times \mathbb{R}$ remains in D_l for all time less than T_{min}. Then, with T_{min} and the margin of robustness c_r from Assumption 3, we design an observer such that the error dynamics converges to 0 asymptotically and such that, for all time higher than T_{min}, the error dynamics belongs to the margin of robustness. Finally, we prove the attractiveness and the stability of the closed-loop system with the output feedback law.
5.1 Selection of c_x and minimal time of existence of solutions

This section differs from the strategy employed in [Teel and Praly 1994]. Indeed, since we have a hybrid dynamics, the solution of the closed-loop system can jump. Therefore, the computation of T_{min} becomes difficult. However, thanks to the timer dynamics, we can assert that between two jumps the solution of the closed-loop system belongs to the flow set. This allows us to compute T_{min} and thus c_x.

In the remaining part of this subsection, we consider the system defined by

\[
\begin{align*}
\dot{x}_p &= f_p(x_p) + g_p(x_p)\vartheta_c(\omega, x_c) \\
\dot{x}_c &= f_c(\omega, x_c) \\
\dot{\sigma} &= 1 - \sigma \\
(\omega, x_c, \sigma) &\in \mathcal{F}_c \times \mathbb{R}_{\geq 0}, \\
x^+_p &= x_p \\
x^+_c &= g_c(\omega, x_c) \\
\sigma^+ &= 0
\end{align*}
\]

(10a)

\[
\begin{align*}
x^+_p &= x_p \\
x^+_c &= g_c(\omega, x_c) \\
\sigma^+ &= 0
\end{align*}
\]

(10b)

where ω is an external perturbation function in \mathbb{R}^{n_p}. Such a system is not a classical hybrid system as the ones introduced in [Goebel et al. 2012] since the flow and jump sets are defined with an external disturbance. Note that in the particular case in which $\omega = \hat{\omega}$, defined in (6), the solution to system (10) by adding the dynamics of x_p is also solution to system (5). Hence, this implies the well-posedness of the closed-loop system as considered in [Goebel et al. 2012, Chapter 2].

Two cases may be distinguished to construct the sets: i) Solution to (10) does not jump; ii) Solution to (10) jumps at least once. The first case is similar to the continuous case (and thus to [Teel and Praly 1994]). The second case takes into account the hybrid behavior of the system under consideration. Under Assumption 3, let $l_1 = \max_{s \in [0, 1]} V(x(s), 0, 0)$. Note that D_{l_1} is a compact subset of $B \times \mathbb{R}^2_{\geq 0}$ (see the notation employed in equation (7)). Let $l_2 > l_1$ such that $D_{l_2} \subset B \times \mathbb{R}^2_{\geq 0}$. To deal with the jump that can occur, we consider $D_{l_2}^* = \bigcup_{(x_p, x_c, \sigma) \in D_{l_2}} \{(x_p, g_c(w, x_c), 0), w \in \mathbb{R}^{n_p}\}$. Since it is assumed that the set defined in (4) is a compact subset of $B \times \mathbb{R}^2_{\geq 0}$, it yields that $D_{l_1}^*$ is also a compact subset of $B \times \mathbb{R}^2_{\geq 0}$. Let $l_3 > l_2$ such that D_{l_3} is a compact subset which satisfies $D_{l_2}^* \subset D_{l_3} \subset B \times \mathbb{R}^2_{\geq 0}$. Finally, let $l_4 > l_3$ so that D_{l_4} is a compact subset which contains D_{l_3}.

With these sets in hands, the positive real number c_x can be selected as

\[
c_x = \max_{(x_p, x_c, \sigma) \in D_{l_4}} \{|x_p|\}
\]

(11)

Let us now establish the following property for solutions to system (10) initiated from D_{l_4}.

Lemma 1. (Minimal existence time of solution in D_{l_4}) There exists $T_{\text{min}} > 0$ such that for all ω in $C_{\text{loc}}([0, +\infty); \mathbb{R}^{n_p})$ with $\omega(t) \leq c_x$ for all $t \in [0, T_{\text{min}}]$, and all $X \setminus := (x^+_p, x^+_c, \sigma^+) \in D_{l_4}$, all solutions $x(t, \cdot)$ to (10) with $X(0, 0) = X^\# \text{ and all } (t, j) \in \text{dom}(X)^\#$ then $X(t, j) \in D_{l_4}$ for all $0 \leq t \leq T_{\text{min}}$.

Proof. Let \hat{V} the positive real number defined by $\hat{V} = \max_{X \in D_{l_4}, |\omega(t) \leq c_x} \left(\frac{\sigma^+}{\mathcal{F}_c}(X)F(X, \omega)\right)$. In the remaining part of the proof, we show that Lemma 1 holds with T_{min} chosen as any positive real number satisfying

\[
T_{\text{min}} < \min \left\{ -\ln(1 - \lambda), \frac{l_2 - l_1}{\hat{V}}, \frac{l_4 - l_3}{\hat{V}} \right\}
\]

Let $X^\#$ be in D_{l_4} and let X be a solution to system (10) whose initial condition is $X^\#$. For all (t, j) in $\text{dom}(X)$. To ease the notation we denote $V(t, j) = V(X(t, j))$.

Let (t, j) in $\text{dom}(X)$ such that $0 \leq t \leq T_{\text{min}}$. To prove the lemma, we need to show that $X(t, j)$ is in D_{l_4}. First of all, we show that $j \leq 1$. Indeed, assume $j \geq 2$. This implies that there exist t_0 and t_1 such that $0 \leq t_0 < t_1 \leq t$ such that $(t_0, 0), (t_1, 0), (t_1, 1), (t_1, 2)$ are in $\text{dom}(X)$. Note that $\sigma(t_1, 1) = 0$ and $\sigma(t_1, 1) = \lambda$. Moreover, for all s in $[t_0, t_1]$, $(s, 1)$ is in $\text{dom}(X)$ and $\sigma(s, 1) = 1 - \sigma(s, 1)$.

Hence, integrating this equation between t_0 and t_1, we get that $t_1 - t_0 > -\ln(1 - \lambda) \geq T_{\text{min}}$. This is impossible, and therefore $j \leq 1$.

So two cases may be distinguished.

$j = 0$ This case is illustrated by Figure 1. $j = 0$ implies that $s \in [0, t]$ is a continuous mapping with $x(0, 0)$ in $D_{l_4} \subset D_{l_3}$. Hence we can define t^*, the largest time in $[0, t]$ such that $x(s, 0)$ is in D_{l_2} (i.e. $t^* = \max s \in [0, t], x(s, 0) \in D_{l_2}$). Note that if $t^* = t$ then this implies that $x(s, 0)$ is in D_{l_4}, hence the result. Assume $t^* < t$. This implies that for all s in $[0, t^*]$ we have $V(s, 0) = \sigma^+ \mathcal{F}_c(X(s, 0))F(X(s, 0), \omega(s)) \leq \hat{V}$. This gives $V(t^*, 0) \leq \hat{V}t^* + V(0, 0) \leq \hat{V}T_{\text{min}} + l_1 - l_2$. Hence $x(t^*, 0)$ is in the interior of D_{l_2}. It yields that there exists $\epsilon > 0$ such that $x(t^* + \epsilon, 0)$ is in the interior of D_{l_2} which contradicts the fact that t^* is an extremum.

$j = 1$ This case is illustrated by Figure 2. $j = 1$ implies that there exists t_0 in $[0, t]$ such that $(t_0, 0)$ and $(t_0, 1)$ are in $\text{dom}(X)$ and $(w(t_0, 1), x_c(t_0, 1))$ is in \mathcal{F}_c. Following the first case study, it is possible to show that $X(t_0, 0)$ is in D_{l_2}. Moreover,

\footnote{The definition of $\text{dom}(X)$ is borrowed from [Goebel et al. 2012, Definition 2.3].}
we have \(x_p(t_0, 1) = x_p(t_0, 0) \) and \(x_c(t_0, 1) = g_c(w(t_0), x_c(t_0, 0)) \). This implies that \(X(t_0, 1) \in D_t^e \). Note that \([t_0, t] \mapsto x(s, 1)\) is a continuous mapping with \(X(t_0, 1) \) in \(D_{t_3} \subset D_{t_4} \). As in the previous case, we define \(t^* \), the largest time in \([t_0, t]\) such that \(X(s, 1) \) is in \(D_{t_4} \) (i.e. \(t^* = \max_{s \in [t_0, t]} X(s, 1) \in D_{t_4} \forall t \in [t_0, s] \)). Note that if \(t^* = t \) then this implies that \(X(t, 1) \) is in \(D_{t_4} \), hence the result. Assume \(t^* < t \). This implies that, for all \(s \) in \([t_0, t^*]\), it holds \(\bar{V}(s, 1) = \frac{\partial \psi}{\partial x}(X(s, 1))F(X(s, 1), \omega(s)) \leq \bar{V} \). This implies \(V(t^*, 1) \leq \bar{V} t^* + \bar{V} + V(t, 1) \leq T_{\min} + t_3 < t_4 \). Hence \(X(t^*, 1) \) is in the interior of \(D_{t_4} \), and following the previous case, we get a contradiction.

This concludes the proof of Lemma 1.

5.2 Construction of \(\Psi_p \)

In this subsection we design a high-gain observer for the system (1). Since only continuous time dynamics are considered in this subsection, to simplify the notation, only the flow components of the time domain are considered. The function \(\Psi_p \) is selected to ensure that \(\hat{x}_p \) estimates the state \(x_p \) along solutions initiated in the projection of \(D_{t_4} \) on \(\mathbb{R}^{n_p} \) that is

\[
\Pi_p(D_{t_4}) = \{ x_p \in \mathbb{R}^{n_p}, \exists (x_c, \sigma) \in \mathbb{R}^{n_c} \times \mathbb{R}_{\geq 0} : (x_p, x_c, \sigma) \in D_{t_4} \}
\]

and as long as these solutions remain in the projection of \(D_{t_4} \) on \(\mathbb{R}^{n_p} \) that is

\[
\Pi_p(D_{t_4}) = \{ x_p \in \mathbb{R}^{n_p}, \exists (x_c, \sigma) \in \mathbb{R}^{n_c} \times \mathbb{R}_{\geq 0} : (x_p, x_c, \sigma) \in D_{t_4} \},
\]

The estimation property has to be obtained for all input \(u(\cdot) \) taking values in \(\mathcal{U} \cap [-\bar{u}, \bar{u}] \) with \(\bar{u} = \max_{x_p} \{ e_0, (x_c, \sigma) \in \Pi_p(D_{t_4})} \theta_p(x_p, x_c) \) where

\[
\Pi_{\ell}(D_{t_4}) = \{ (x_c, \sigma) \in \mathbb{R}^{n_c+1}, \exists x_p \in \mathbb{R}^{n_p} : (x_p, x_c, \sigma) \in D_{t_4} \},
\]

which is the projection of \(D_{t_4} \) on \(\mathbb{R}^{n_c} \). Moreover, the observer has to be designed such that the estimation error is smaller than the stability margin of the controller after \(T_{\min} \). More precisely, with Assumption 3, and letting \(l = l_4 \) yields the positive real number \(\varepsilon_p \) and the increasing mapping \(\rho \). The observer has to be designed such that the set \(\{ x_p, \hat{x}_p \} \in \mathbb{R}^{n_p} : |x_p - \hat{x}_p| < c_e \}, \) where \(c_e := \min \{ \rho^{-1} (\alpha/2), \rho^{-1} (\beta/2), \varepsilon_p \} \), is reached after \(T_{\min} \).

A possible approach to design such observer is to use high-gain observer methodology. With Assumption 2, from [Gauthier et al., 1992 Theorem 2], setting \(z = \phi(x_p) \in \mathbb{R}^{n_p} \), the system (1) can be rewritten as follows:

\[
\dot{z} = A(z) + B(z)u \tag{12}
\]

with \(z \) in \(\mathbb{R}^{n_p} \) and

\[
A(z) = \frac{\partial \phi(x_p)}{\partial x_p} f_p(x_p) = \left[z_2 \ldots z_{n_p} \chi(z) \right]^T
\]

\[
B(z) = \frac{\partial \phi(x_p)}{\partial x_p} g_p(x_p)
\]

\[
= \left[b_1(z_1) \ldots b_{n_l-1}(z_1, \ldots, z_{n_p-1}) b_{n_l}(z_1, \ldots, z_{n_p}) \right]^T
\]

where \(\chi := L_f \phi^{-1}(z) \) and \(b_i \) are locally Lipschitz functions as soon as \(f_p \) is smooth enough. From there, the following lemma may be obtained.

Lemma 2. (Tunable observer) Let \(\Psi_p : \mathbb{R}^{n_p} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^{n_p} \) be defined by

\[
\Psi_p(\hat{x}_p, y, u) = \left(\frac{\partial \phi}{\partial x_p}(\hat{x}_p, u) \right)^{-1} \left[\bar{A}(\phi(\hat{x}_p)) + \bar{B}(\phi(\hat{x}_p))u + \mathcal{L}K[y - h(\hat{x}_p)] \right] \tag{13}
\]
where $\tilde{A} : \mathbb{R}^{n_p} \to \mathbb{R}^{n_p}$ and $\tilde{B} : \mathbb{R}^{n_p} \to \mathbb{R}^{n_p}$ are functions

$$\tilde{A}(z) = [z_2 \ldots z_{n_p} \hat{\chi}(z)]^\top$$

$$\tilde{B}(z) = [\tilde{b}_1(z_1) \ldots \tilde{b}_{n_p-1}(z_1,z_2) \ldots \tilde{b}_{n_p-1}(z_1,z_2,\ldots,z_{n_p})]^\top$$

and

$$L = \text{diag}(\ell, \ldots, \ell^{n_p})$$

where ℓ is a positive real number larger than 1 and $K = [-k_1, \ldots, -k_{n_p}]^\top$ is such that the matrix

$$\mathcal{G} := \begin{bmatrix}
-k_1 & 1 & 0 & \ldots & 0 \\
\vdots & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & 1 & 0 \\
-k_{n_p} & 0 & \ldots & \ldots & 0
\end{bmatrix},$$

is Hurwitz. Note that the functions $\tilde{b}_i : \mathbb{R} \to \mathbb{R}$, $i = 1, \ldots, n_p$ and $\hat{\chi} : \mathbb{R}^{n_p} \to \mathbb{R}$ are such that

1. For all z in $\phi(D_{1_i})$, $\hat{\chi}(z) = \chi(z)$ and $\tilde{b}_i(z) = b_i(z)$ where χ and $(b_i)'$'s are defined in (12);
2. $\tilde{\chi}$ and \tilde{b}_i are globally Lipschitz functions.

Moreover there exists a class \mathcal{KL} function β such that for all solutions x_p to (1) and all solutions \hat{x}_p to

$$\dot{\hat{x}}_p = \Psi_p(\hat{x}_p, y, u)$$

with initial condition $(x_p^0, \hat{x}_p^0) \in \Pi_p(D_{1_i}) \times \Pi_p(D_{1_i})$, input $u(\cdot)$ taking value in $U \cap [-\bar{u}, \bar{u}]$, and for all t such that $x_p(s) \in \Pi_p(D_{1_i})$, where $s \in [0, t]$, the following holds:

1. $|x_p(s) - \hat{x}_p(s)| \leq \beta(|x_p^0 - \hat{x}_p^0|, s)$, $\forall s \in [0, t]$;
2. If $t \geq T_{\min}$, $|x_p(s) - \hat{x}_p(s)| \leq c_e$, $\forall s \in [T_{\min}, t]$.

Proof. There exists c_y such that, for all $(z^1, z^2) \in (\mathbb{R}^{n_p})^2$, $|\chi(z^1) - \chi(z^2)| \leq c_y|z^1 - z^2|$. Note also that from the definition of ϕ we have $y = h_p(\phi(x_p)) = z_1$. With the Lipschitz property, the \tilde{b}_i terms satisfy, for all $(z^1, z^2) \in \Pi_p(D_{1_i})^2$, $|\tilde{b}_i(z^1) - \tilde{b}_i(z^2)| \leq c_b \sum_{j=1}^i |z^1_j - z^2_j|$. Moreover, setting $\hat{z} := \phi(\hat{x}_p)$, it yields along the solutions to (16):

$$\dot{\hat{z}} = \tilde{A}(\hat{z}) + \tilde{B}(\hat{z})u + \mathcal{L}K[y - \hat{z}_1],$$

(17)

As standard in high-gain observer design, let \hat{e} be the scaled error components:

$$\hat{e}_i = \hat{z}_i - (\phi(x_p))_i,$$

(18)

Therefore, as soon as $x_p \in \Pi_p(D_{1_i})$, it holds

$$\dot{e} = \ell \mathcal{G} \hat{e} + \Delta(\hat{z}, x_p, u),$$

(19)

where $\Delta(\hat{z}, x_p, u)$ is obtained from $\hat{\chi}$ and \tilde{b}_i for all $i = 1, \ldots, n_p$. From the structure of the observation error, there exists a positive real number c_Δ such that for all (\hat{z}, x_p, u) in $\mathbb{R}^{n_e} \times \Pi_p(D_{1_i}) \times U \cap [-\bar{u}, \bar{u}]$ and for all $\ell > 1$ $|\Delta(\hat{z}, x_p, u)| \leq c_\Delta |e|$.

The matrix \mathcal{G} being Hurwitz, there exist a positive definite matrix P and a positive value d satisfying

$$P\mathcal{G} + \mathcal{G}^\top P \leq -dP.$$

(20)

Let $U : \mathbb{R}^{n_p} \to \mathbb{R}_{\geq 0}$ be the following (Lyapunov) function $U(e) = e^\top P \bar{e}$.

Its time derivative along the solutions to the system (19) with (\hat{z}, x_p, u) in $\mathbb{R}^{n_e} \times \Pi_p(D_{1_i}) \times U \cap [-\bar{u}, \bar{u}]$ and $\ell > 1$ satisfies the following inequalities.

$$\dot{U}(e) \leq -\ell dU(e) + 2e^\top P \Delta(\hat{z}, x_p, u)$$

$$\leq -\ell dU(e) + 2\Delta |e|$$

$$\leq -\ell dU(e) + 2e \frac{\lambda_{\max}(P)}{\lambda_{\min}(P)} U(e)$$

(21)

Consider a solution x_p to (1) and a solution \hat{x}_p to (16) with initial condition $(x_p^0, \hat{x}_p^0) \in \Pi_p(D_{1_i})^2$, input $u(\cdot)$ taking value in $U \cap [-\bar{u}, \bar{u}]$, and t such that $x_p(s)$ is in $\Pi_p(D_{1_i})$ for all s in $[0, t]$. With Grönwall lemma, we get along this solution

$$U(e(t)) \leq \exp \left(- \left(\ell d - 2c_\Delta \frac{\lambda_{\max}(P)}{\lambda_{\min}(P)} \right) t \right) U(e(0))$$

(22)

Moreover, for all (x_p, \hat{z}), it holds that

$$|\phi(x_p) - \hat{z}| \frac{\lambda_{\min}(P)}{\ell^{2n_p}} \leq U(e) \leq \frac{\lambda_{\max}(P)}{\ell^2} |\phi(x_p) - \hat{z}|^2,$$

hence,

$$|\phi(x_p(t)) - \hat{z}(t)| \leq \exp \left(- \left(\frac{\ell}{2} - c_\Delta \frac{\lambda_{\max}(P)}{\lambda_{\min}(P)} \right) t \right)\ell^{n_p-1} \frac{\lambda_{\max}(P)}{\lambda_{\min}(P)} |\phi(x_p) - \phi(\hat{x}_p^0)|.$$

(23)

Note that $\Pi_p(D_{1_i})$ and $\phi(\Pi_p(D_{1_i}))$ are compact subsets of \mathbb{R}^{n_p} and that the functions $\phi : \mathbb{R}^{n_p} \to \mathbb{R}^{n_p}$ and $\phi^{-1} : \mathbb{R}^{n_p} \to \mathbb{R}^{n_p}$ are continuous. Hence, the two class \mathcal{K} functions ν and ν^* can be defined as

$$\nu(s) = \max_{x_p \in \Pi_p(D_{1_i}), |x_p^0 - x_p| \leq s} |\phi(x_p) - \phi(x_p^0)|$$

$$\nu^*(s) = \max_{z \in \phi(\Pi_p(D_{1_i})), |z - z^*| \leq s} |\phi^{-1}(z) - \phi^{-1}(z^*)|.$$
These functions satisfy that, for all z in $\phi(H_p(D_{t_1}))$ and \dot{z} in \mathbb{R}^n,
\[
|\phi^{-1}(z) - \phi^{-1}(\dot{z})| \leq \nu^*(|z - \dot{z}|),
\]
with $1 \leq \nu^*(|z - \dot{z}|) \leq \nu(|\phi^{-1}(z) - \phi^{-1}(\dot{z})|) \leq \nu(|z - \dot{z}|)$.

Let now $\ell > 1$ be any positive real number such that
\[
\Omega(\ell) := \frac{\ell}{2} - c_\Delta \frac{\lambda_{\text{max}}(P)}{\lambda_{\text{min}}(P)} > 0
\]
and
\[
\nu(\exp(-\Omega(\ell)T_{\text{min}})\ell^{n-1}\mathfrak{M}) \leq c_e,
\]
where \(\mathfrak{M} := 2\frac{\lambda_{\text{max}}(P)}{\lambda_{\text{min}}(P)} \max_{z \in \phi(H_p(D_{t_1}))} |z|\). We can rewrite (26) as follows:
\[
\exp\left(-\frac{\ell}{2} T_{\text{min}} \right) \exp\left(T_{\text{min}} \frac{\lambda_{\text{max}}(P)}{\lambda_{\text{min}}(P)} \right) \ell^{n-1} \leq \nu^{-1}(c_e) \mathfrak{M}.
\]

Since the exponential function dominates the polynomial function, the condition (26) is satisfied, for \(\ell\) sufficiently large. From (23), (24) and (25) the first item of Lemma 2 holds with the function
\[
\beta(s, t) = \nu^*\left(\exp(-\Omega(t)\ell_t)\ell^{n-1}\frac{\lambda_{\text{max}}(P)}{\lambda_{\text{min}}(P)} \nu(s)\right).
\]

The second item of Lemma 2 is deduced from (23), (24) and (26) and the fact that \((x_p^0, \dot{x}_p^0) \in H_p(D_{t_1}) \times H_p(D_{t_2})\).

\(\square\)

5.3 Proof of Theorem 2

Consider the positive value c_e obtained in (11) and the function Ψ_p obtained in (13). In the first part of the proof, we show attractivity of the set \(\{0\} \times [0, 1]\) in $\mathbb{R}^{2n_p+\nu_n} \times [0, 1]$ along the solutions to system (5) whose initial condition is in $\hat{\Gamma} := \{0\} \times \mathbb{R}^p \subset B^p \times \{0\} \times \mathbb{R}$.

The stability is shown in a second part.

Note that the hybrid system (5) satisfies the basic assumptions for hybrid systems (Goebel et al. [2009], Assumption 6.5.) with the flow set \(\mathcal{F}^O = \{(x_p, \dot{x}_p, x_c, \sigma) \in \mathbb{R}^{2n_p+\nu_n} \times \mathbb{R}^p \times \mathbb{F}_c \times \mathbb{R}_{\geq 0} : \hat{\mathcal{F}}(x_p, \dot{x}_p, x_c, \sigma) \in \mathbb{R}^n \times \mathbb{F}_c \times \mathbb{R}_{\geq 0} \}
\]
and the jump set \(\mathcal{J}^O = \{(x_p, \dot{x}_p, x_c, \sigma) \in \mathbb{R}^{2n_p+\nu_n} \times \mathbb{R}^p \times \mathbb{F}_c \times \mathbb{R}_{\geq 0} : \hat{\mathcal{F}}(x_p, \dot{x}_p, x_c, \sigma) \in \mathbb{R}^n \times \mathbb{F}_c \times \mathbb{R}_{\geq \lambda}, \text{ where } \hat{\mathcal{F}} : (x_p, \dot{x}_p, x_c, \sigma) \mapsto (x_p, \text{sat}_{c_e}(\dot{x}_p), x_c, \sigma).\)

First Part: Attractivity. Let $X^\# := (x_p^0, \dot{x}_p^0, \sigma^0)$ be in $\hat{\Gamma}$ and consider a solution $X := (x_p, x_c, \dot{x}_p)$ to (5) whose initial condition is $X^\#$ and defined on its time domain denoted $\text{dom}(X)$.

Note that the system (5) can be rewritten as the hybrid system (10) with \(\omega = \text{sat}_{c_e}(\dot{x}_p)\) and \dot{x}_p is given with the observer (13).

With Lemma 1 and with the σ dynamics (persistent flow), we know that there exists j_0 such that (T_{min}, j_0) is in $\text{dom}(X)$ and for all (t, j) in $\text{dom}(X)$ with $t \leq T_{\text{min}}$ then \((x_p(t, j), x_c(t, j), \sigma(t, j))\) is in D_{t_1}. Thus, for all (t, j) in $\text{dom}(X)$ with $t \leq T_{\text{min}}$, the control input satisfies $|u(t, j)| \leq \bar{u}$. Let $\text{dom}_{D_{t_1}}(X)$ be the time domain of the solution restricted to the set D_{t_1}. With Lemma 2, for all (t, j) in $\text{dom}_{D_{t_1}}(X)$ with $t \geq T_{\text{min}}, |x_p(t, j) - \dot{x}_p(t, j)| \leq c_e$. Moreover, for all (t, j) in $\text{dom}_{D_{t_1}}(X)$ with $t \geq T_{\text{min}}$, we have $|x_p(t, j)| \leq c_e$. It implies
\[
|x_p(t, j) - \dot{x}_p(t, j)| = |\text{sat}_{c_e}(x_p(t, j)) - \text{sat}_{c_e}(\dot{x}_p(t, j))| \leq |x_p(t, j) - \dot{x}_p(t, j)| \leq c_e.
\]

It is now possible to show that for all (t, j) in $\text{dom}(X)$, $X(t, j)$ is in D_{t_1}. We will argue by contradiction to prove this assertion. By assuming that it is false, two cases may occur.

- The solution escapes D_{t_1} when flowing. Hence, there exists (t_0, j_0) in $\text{dom}(X)$ such that $(x_p(t_0, j_0), x_c(t_0, j_0))$ is in D_{t_1} and for all $\varepsilon > 0$, there exists $\delta < \varepsilon$ such that $(t_0 + \delta, j_0)$ is in $\text{dom}(X)$ and $(x_p(t_0, j_0), x_c(t_0, j_0))$ is not in D_{t_1}. Note that this implies that $(x_p(t_0, j_0), x_c(t_0, j_0))$ is not on the boundary of D_{t_1}. Consequently, this implies $V(t_0, j_0) = l_4$. Note moreover, keeping in mind that
\[
|x_p(t_0, j_0) - \dot{x}_p(t_0, j_0)| \leq |x_p(t_0, j_0) - \dot{x}_p(t_0, j_0)| \leq c_e \leq \varepsilon
\]
we get, from Assumption 3, $V(t_0, j_0) \leq \alpha_1 V(t_0, j_0) + \rho(c_e) \leq -\frac{\alpha_1 l_4}{2}$. This implies that the function $s \mapsto V(t_0 + s, j_0)$ is strictly decreasing. It contradicts the existence of small ε.

- The solution escapes D_{t_1} when jumping. Hence, there exists (t_0, j_0) in $\text{dom}(X)$ such that $(x_p(t_0, j_0), x_c(t_0, j_0))$ is in D_{t_1} and $(x_p(t_0, j_0), x_c(t_0, j_0))$ is not in D_{t_0}. Since $|x_p(t_0, j_0) - \dot{x}_p(t_0, j_0)| \leq c_e \leq \varepsilon$, with Assumption 3, it follows $V(t_0, j_0 + 1) \leq (1 - \alpha_2) V(t_0, j_0) + \rho(c_e) \leq (1 - \frac{\alpha_2}{2}) l_4 < l_4$. This is a contradiction with the escape of the solution from D_{t_1}.

Consequently, for all (t, j) in $\text{dom}(X)$, we have $x(t, j)$ is in D_{t_1}. Note that the timer forces the t direction of the time domain to be unbounded. Hence, thanks to the Lemma 2, $\lim_{t_1 \to +\infty} |\dot{x}_p(t_1, j) - x(t_1, j)| = 0$. We get the result employing the triangular structure of the system with the ISS property in D_{t_1} (i.e. Assumption 3) (see e.g. [Cai and Teel [2009] Theorem 3.1.1]).

Second Part: Stability. To conclude the proof, let us prove the stability property. Let S_e be defined by $S_e = \{(x_p, x_c, \dot{x}_p, \sigma) : V(x_p, x_c, \sigma) \leq \varepsilon \text{ and } |x_p - \dot{x}_p| \leq \varepsilon\}$, where $\varepsilon < l_1$. Moreover, let N_{l_1} be an open neighborhood of A defined as
\[
N_{l_1} = \{(x_p, x_c, \dot{x}_p, \sigma) : V(x_p, x_c, \sigma) < \frac{\varepsilon}{4}, \beta(|x_p - \dot{x}_p|, 0) < \min\left\{\rho^{-1}\left(\frac{\alpha_1 \varepsilon}{4}\right), \rho^{-1}\left(\frac{\alpha_2 \varepsilon}{4}\right), \frac{\varepsilon}{2}\right\}\}
\]

8
where \((\beta, \rho)\) and \((\alpha_1, \alpha_2)\) are the two functions and the two positive real numbers given in Lemma 2 and Assumption 3. Note that \(N_1 \subset S_\varepsilon\).

Now consider \(X\) a solution to the closed-loop system (5) starting from any point of \(N_1\) with time domain denoted \(\text{dom}(X)\). Let \(\text{dom}_S(X)\) denote the hybrid time domain of the solution restricted to the set \(S_\varepsilon\).

Let us show that this solution \(X\) remains in \(S_\varepsilon\). Note that \(\hat{x}_p(0,0)\) and \(x_p(0,0)\) are in \(\Pi_p(D_{t_0})\). With Lemma 2, it yields that for all \((t,j)\) in \(\text{dom}_S(X)\),

\[
|\dot{x}_p(t,j) - \hat{x}_p(t,j)| \leq \beta(|x_p(0,0) - \hat{x}_p(0,0)|, 0) \\
\leq \min \left\{ \rho^{-1}(\alpha_1 \varepsilon), \rho^{-1}(\alpha_2 \varepsilon), \frac{\varepsilon}{2} \right\}.
\]

Moreover, \((x_p(t,j), x_c(t,j), \sigma(t,j))\) is in \(D_{t_0} \subset D_{t_2}\), hence from the ISS inequalities that hold in \(D_{t_2}\) (see Assumption 3), we get for all \(t_2 > t_1\) and \(j\) such that \((t_1,j)\) and \((t_2,j)\) are in \(\text{dom}_S(X)\)

\[
\frac{d}{dt} V(x_p(t,j), x_c(t,j), \sigma(t,j)) \\
\leq -\alpha_1 V(x_p(t,j), x_c(t,j), \sigma(t,j)) + \alpha_1 \varepsilon \\
\frac{d}{dt} V(X(t_1,j)) \leq \frac{\varepsilon}{4}
\]

which implies with \(V(X(t_1,j)) \leq \frac{\varepsilon}{4}\)

\[
V(x_p(t,j), x_c(t,j), \sigma(t,j)) \leq \frac{\varepsilon}{4}, \quad t \in [t_1, t_2]
\]

Hence, it can not escape \(S_\varepsilon\) by flowing since it does not reach the boundary of \(S_\varepsilon\). Moreover, for all \((t,j)\) in \(\text{dom}_S(X)\) such that \((t,j+1)\) is in \(\text{dom}(X)\), from the ISS inequalities of Assumption 3 once again, it yields, if \(V(X(t,j)) \leq \frac{\varepsilon}{4}\)

\[
V(x_p(t,j+1), x_c(t,j+1), \sigma(t,j+1)) \leq \frac{\alpha_2 \varepsilon}{4} \leq \frac{\varepsilon}{4}
\]

Hence, \(X(t,j+1) \in S_\varepsilon\).

Thus, if the initial condition \(X^\#$ is in \(N_1\), then the solution remains in \(S_\varepsilon\). Since \(S_\varepsilon\) can be made as closed as wanted from \(A\), this proves stability of the set \(A\) and concludes the proof of Theorem 1.

\[\square\]

6 Application to a First Order Reset Element (FORE) system

To illustrate Theorem 1, the following second order system is considered:

\[
\dot{x}_p = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} x_p + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \text{sat}_{u_\varepsilon}(v), \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} x_p.
\]

With \(u = \text{sat}_{u_\varepsilon}(v)\), \(U = [-u_0, u_0]\) and \(u_0 = 3\), it is a system of the form (1). Note that the set of control \(U\) is bounded and that \(y = x_{p_1}\). Consequently, despite the fact that the dynamics are linear, the stabilization problem for this system is not an easy task although recent works [Yuan and Wu 2015, Hu et al. 2006] propose design methods for saturated actuators. The strategy presented in this paper can be also efficient for purely nonlinear systems as it is shown in Marx et al. (2014) where it is proven the existence of a hybrid output feedback for a chain of integrators with a nonlinearity from a state feedback uniting a global and a local controllers. Following Loquet et al. (2007), we compute the hybrid controller such that \(A = \{0\} \times \{0\} \times \{0\} \times [0, 1]\) is locally asymptotically stable for the FORE system

\[
\begin{align}
\dot{x}_p &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} x_p + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \text{sat}_{u_\varepsilon}(k x_c) \\
\dot{x}_c &= \begin{bmatrix} -2 & 0 \\ 0 & -12 \end{bmatrix} x_c - x_p \\
\dot{\sigma} &= 1 - \sigma \\
(x_p^+, M x_c &\geq 0) \quad \text{and} \quad \sigma \in \mathbb{R}_{\geq 0}
\end{align}
\]

(28a)

\[
\begin{align}
\dot{x}_p^+ &= x_p \\
x_c^+ &= 0 \\
(x_p^+ M x_c &\geq 0) \quad \text{and} \quad \sigma \in \mathbb{R}_{\geq \lambda}
\end{align}
\]

(28b)

with \(k = [-13 - 30]\), \(\lambda = 0.01\), \(M = \begin{bmatrix} 0 & -t_1 \\ -t_1 & 0 \end{bmatrix}\) and

\[
E(P_V) = \{x_p; x_c) \in \mathbb{R}^4, [x_p; x_c] P_V [x_p; x_c]^T \leq 1\} \subset B,
\]

where \(P_V\) is the positive definite matrix defined as \(P_V = \begin{bmatrix} 4.0560 & 0.6085 & 6.4905 & 0.6162 \\ 0.6085 & 4.0090 & 6.4905 & 0.6085 \\ 6.4905 & 0.6090 & 6.4905 & 0.6090 \\ 0.6162 & 0.6085 & 0.6090 & 5.9349 \end{bmatrix}\). The matrix \(P_V\) has been computed to satisfy a set of linear matrix inequalities (LMIs) given in Loquet et al. (2007, Theorem 3) employing the LMI solver [Sturm 1999]. Note that employing an equivalent continuous feedback law \(u_c = \text{sat}_{u_\varepsilon}(k x_c)\), without any reset, leads to a smaller estimation of the basin of attraction (i.e. the matrix \(P_C^4\) that describes the lower approximation of the basin of attraction has bigger eigenvalues than \(P_V\)). The set \(B\) denotes the basin of attraction and \(E(P_V)\) is a lower approximation of this one. Moreover, letting \(\alpha_1 = 0.4017, \alpha_2 = 0.6078, \varepsilon_r = 0.0550\) and the function \(\rho(|e|) := 13.3418|e|, \alpha_3 = 0.01\) and

(27)

Assumption 3 is satisfied.

Since (27) satisfies the well-known Kalman observability rank condition for the pair \((C, A)\), Assumption 2 holds for the sytem (27). Moreover, denoting the projection \(E(P_V)\) on \(\mathbb{R}^n_x\) by \(\Pi_p(E(P_V)) = \{x_p \in \mathbb{R}^2 : 4.0560 x_{p_1}^2 + 6.4905 x_{p_2}^2 + 1.3736 x_{p_1} x_{p_2} \leq 1\}\) and letting \(\Gamma = \{x_p \in \mathbb{R}^2 : 4.0560 x_{p_1}^2 + 6.4905 x_{p_2}^2 + 1.3736 x_{p_1} x_{p_2} \leq 0.6\} \subset \Pi_p(E(P_V)))\), hence, it is obtained from Theorem 1 that
the set \(\{0\} \times \{0\} \times [0, 1] \) is asymptotically stable for the system (28) with basin of attraction containing \(\Gamma \times \{0\} \times \{0\} \times \mathbb{R}_{\geq 0} \).

Following Lemmas 1 and 2, we aim at computing all the variables. Here, from the definition of \(\Gamma \), we let \(l_1 = 0.6 \) and \(l_2 = 0.7 \). Due to (28), \(q_c = 0 \) and thus \(D_{x_1}^2 \subseteq D_{\hat{x}_1} \).

It follows that \(l_3 = 0.8 \) and \(l_4 = 0.9 \) are suitable values. Thus, we can compute \(c_{\gamma} := \sqrt{P^{-1/2}QP^{-1/2}l_4} = 0.6624 \) where \(Q = \text{diag}(1, 1, 0, 0) \). We check that \(k_1 = -6 \) and \(k_2 = -9 \) are such that \(G \) defined in Lemma 2 is Hurwitz. With all these parameters, we numerically compute \(c = 0.0136 \), \(T_{\text{min}} = 0.01 \), \(T = [0.0009, 0.0077] \) and \(\mathcal{R} = 1.2070 \). Then we check that \(\ell = 1000 \) satisfies (26). Finally we can build the observer satisfying the structure of (13). Therefore we can apply Theorem 2 and state that closing the loop of (27) with the observer of the form (16) and the output feedback law coming from (28) leads to a semi-global stability.

With \((x_{p1}^p, x_{\hat{p}1}^p, \hat{x}_{p1}, \sigma_{\#}) = (0.15, 0, 0, 0, 0, 0) \subset \mathcal{E}(P) \times [0, 1] \). The time evolution of \(x_{p1} \) and \(\hat{x}_{p1} \) satisfying respectively (27) and (16) are given by Figure 3. The first figure illustrates the convergence of the observer, the second the asymptotic stability of the closed-loop system. Figure 4 illustrates the phase portrait of \(x_{p1} \).

7 Conclusion

An output feedback law has been designed for SISO affine systems for which there exists a hybrid state feedback under an observability assumption. Some special assumptions (for instance the existence of a timer) have been useful to deal with the hybrid case. The result has been applied to design a hybrid output feedback law from a FORE controller. Some open questions follow. Does an output feedback exist even with a less strong assumption than the Assumption 1, i.e. an assumption which does not state any knowledge of the time between two consecutive jumps? Can the design method be applied on systems for which it does not exist a continuous state feedback such as the Arstein’s circle? In Andrieu and Praly (2009), some output feedback laws are presented to achieve global stabilization of equilibrium point. Assuming stronger observability property, can such output feedback laws be achieved for hybrid case? Moreover, designing an observer that converges in finite time with a stability property, and thus adapting Andrieu et al. (2008) for the hybrid systems case, could be also a interesting research line.

References

Goebel, R., Sanfelice, R., and Teel, A. (2009). Hybrid...

