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With an exponential model including the gravitational constant as a time dependent parameter a mass function is derived where elementary particle masses are combined and related. The proton mass m p is derived as a function of the electron mass m e and fine structure constant α as m p =1,672621•10 -27 kg (1,672622•10 -27 kg, Δm/m=6•10 -7 ), the measured mass and the relative deviation of both are in brackets. The neutron mass then is calculated as a function of m p and α as m n =1,67492745 •10 -27 kg (1,67492747 •10 -27 kg, Δm/m≈10 -8 ). The tau mass is expressed as a function of m p and m e resulting in m τ = ,

•10

-27 kg ( , •10

-27 kg, Δm/m≈10 -5 ). The results for the neutron and tau are within the estimated standard deviation of the experimental values.

Introduction

The precise prediction and calculation of elementary particle masses still is not covered by any theory, e.g. the standard model. Even though the mechanisms that provide the specific particle masses are thought to be understood and confirmed by the discovery of the Higgs boson, a clue to why elementary particles have their specific mass values would be of great importance for our understanding of quantum objects and matter. A correlated unresolved issue is why and how nature offers such a wide scale of masses from neutrinos to galaxies and the observable universe itsself. This paper attempts to provide an approach to elementary particle masses by constructing an exponential model that covers the mass scale of the observable universe and allows to calculate the proton and neutron masses with an accuracy of 6 resp. 8 decimal digits. As a premise the gravitational constant G is assumed to be a function of time G(t) proportional to 1/t, compatible with Dirac´s conclusions from the Large Number Hypothesis LNH [START_REF] Dirac | Cosmological Models and the Large Numbers Hypothesis[END_REF]. As a result a set of mass dependend integers is observed and introduced. The relation of particle masses and integer values has already been pointed out by the formula of Koide [2] for lepton masses. It is compared with the result for the tau mass calculated with the appoach of this paper.

The Exponential Model

Estimations based on measurements of the mass and radius of the observable universe result in a ratio of these values that about matches the conditions of a black hole. Here the mass relates to the so far observable ordinary baryonic matter, thus not including dark matter nor dark energy. Within a space of a given radius the smallest rest mass greater zero that can be observed corresponds to a compton wavelength that is of the order of that radius. In this model the observable mass m U of the universe and the such defined smallest mass m γ inside are fitted by an exponential approach. The largest possible wavelength of a particle with mass m γ thus is of the order of the radius of the universe, which is proportional to m U . Assuming that the reduced compton wavelength r C of m γ is equal to the gravitational radius r G of the universe, then
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where m pl, r pl are the Planck mass and lenght resp. with the gravitational constant G, Planck´s constant ħ and the speed of light c [START_REF]CODATA Recommended Values[END_REF]. The observable horizon of the universe is the Schwarzschild radius r S =2r G . The initial mass of the exponential model is the Planck mass. To obtain an exponential scaling the Planck mass is multiplied by successive factors to obtain first the masses for the stable particles proton resp. electron.

The first step results in the proton mass m p = followed by the electron mass m e = and finally the smallest mass m

γ = = (2.1a)
where n is an integer and m x a mass to be determined. For m U it follows with Eq. (2.0b)
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For m x =m p and n=2 the result for m U and the approximate age t 0 =r S /c of the observable universe is
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This is in agreement with measurements of the mass and radius resp. the age [START_REF]Planck 2015 results. XIII. Cosmological parameters[END_REF] of the observable universe, where the measured values are in brackets. Now m U and m γ are defined as
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The model mass m U is assumed to always fulfil the mass radius relation of Eq. (2.0a). Provided the radius of the universe increases with time, m U is less for a smaller radius in the past and there is no singularity at an initial radius r 0 that exceeds the mass radius relation of Eq. (2.0a). But with Eq. (2.2b) this implies that the Planck mass cannot be a time independent constant, when assuming that the particle masses m e and m p are constant.

Here it is assumed that the gravitational constant G is a parameter G(t) that was larger in the past. Thus the Planck mass m pl (G(t)) and m U (m pl ) were smaller. The time dependencies of G(t) and m U (t) are compatible with the conclusions from the LNH, see Appendix C. For m U (t) beeing smaller in the past, there is eventually a condition reached when it is equal to the smallest observable mass m γ (t), which is referred to as the state of equilibrium. This state is derived and analysed.

State of Equilibrium

The state of equilibrium is defined by m E =m γ =m U . Since the smallest observable mass m γ cannot exceed the mass of the universe m U , it is the initial state of the model. The equilibrium values are:
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The equilibrium mass m E is smaller than the muon, between the electron and proton masses. To roughly estimate the ratio of the strength of gravitational to electromagnetic interaction at equilibrium, the interaction of two masses m E /2 is compared with the interaction of two elementary charges e:
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At equilibrium the gravitational and electromagnetic interaction converge and the spatial size of the model mass m U is with r S =2r E of the order of a proton.

Composition of the Equilibrium Mass

When m U is of the order of m E and thus exhibits the mass and size properties of an elementary particle, the value for G(t) is too large to neglect binding energy effects. It is assumed that within the space of m U there is a constituent mass m b as well as it´s self resp. binding energy m S c 2 . Futher it is assumed that there is an energy resp. mass contribution m Q from an elementary charge e distributed over the sphere of m U . Thus a general approach for the energy resp. mass content of m U is made. With Eq. (2.2b) it follows: 
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Inserting this into Eq. (4.4) results in
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which is about half the muon mass. Eq. (4.4) is rewritten by defining
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resulting in

= + + (4.7c) 
The general approach to particle masses is the equilibrium mass in Eq. (3.0). To solve Eq. (4.7c) for the proton mass m p the equilibrium mass will be generalized.

The Generalized Equilibrium Mass

The equilibrium mass in Eq. (3.0) is utilized for finding dependencies between elementary particle masses. Expressing it in units of the electron mass m e results in
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Replacing the proton by the neutron mass results in
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Thus both values group around the integer value 150. The relation of particle masses and integer values have already been pointed out by other authors such as Koide [2] with his pure empirical though astonishing precise and profound formula for lepton masses (see Appendix B). To evaluate whether the integer value for the proton resp. neutron mass is a random result, the electron resp. proton mass in Eq. (3.0) are replaced by other elementary particle masses. Here the lepton and meson masses smaller than the proton, the proton p, neutron n and the tau τ are applied, since this will be sufficient for the derivation of the proton mass. The elementary particles smaller than the proton are the electron e, muon μ, pions π0+, kaons k+0, the eta η, rho ρ, omega ω and K * +0, see Appendix A and [START_REF]CODATA Recommended Values[END_REF][START_REF]PDG Particle Data Group 7[END_REF]. The equilibrium mass is generalized as
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Every particle combination i, j is assigned a mass m´. The results for setting j=n and j=p resp. then relate the proton, neutron, pion, kaon,ωand η masses, where the measured values are in brackets:
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It is notable that the kaons and the adjacent pions are related pairwise and that ω is the equilibrium mass of the adjacent η with j=p. This approach is now investigated for i=e. Every elementary particle j is assigned a mass m´(e,j) and a mass number N(j), which is the ratio of m´(e,j) and the electron mass. The results are shown in Fig. 1. where the μ, pion π+, the symmetric grouping of the kaons, K * + and p, n build up an integer scheme. Thus the particles values N(j) are supposed to group around a scheme of integers and are assigned these integers: 

N(μ) = 35 
The proton is assigned N(p)=150 i.e. a mass m´(e,p) which is equal to the equilibrium mass m E in Eq. (3.0). In addition there is an exponential scaling for particle masses by an factor f N to be applied in the calculation of the neutron mass. For the range of particles from pion to tau:
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Then within an error of ≈10 The reason for this exponential behavior can be approached by assigning each particle a generalized equilibrium mass m´(i,e) with the properties

  independent of the definition of the Planck mass in Eq. (2.0b), which may vary depending on it´s derivation. Inserting m E for m pl into Eqs. (2.2a) and (2.2b) yields

( 4 .

 4 0a) where m α resembles a second order correction term. The binding energy m S c 2 is = , = ℏ then with Eqs. (2.0a) and (2.0b) ξ is a constant to be determined later. Then m U is for m b is defined by the square root within Y, hence Inserting Y into Eq. (4.3a) is a straightforward calculation and yields = ( ) ( (4.5) For the condition of equilibrium (Eq. (3.1)) the Planck mass in Eq. (4.5) is set equal to the equilibrium mass m E in Eq. (3.0):

Fig. 1 .

 1 Fig.1. N(j) for elementary particles from electron to neutron
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 3 N(π0+) f N = 64,18 = N(g), which is within the gap between π´s and K´s(5.3b)N(g) f N = N(K+0) N(K+0) f N = N(p,n) N(p,n) f N = N(τ) = 229,52

 

Successive ratios of an M-value and twice the preceeding M-value approach with values between 0,61786 and 0,61859 the golden ratio phi=0,618034 as shown in Fig. 2, which is the perfect ratio of resonances. These perfect proportions already have been found in experiments observing other quantum mechanical systems e.g. quantum phase transitions atomic chains [7]. Then the ratio of M(i)´s is f M ≈2phi and with Eq. (5.4)

which is consistent with Eq. (5.3a). With Eq. (5.1) particles m´ resp. N ratios are expressed as integer ratios which can be related to each other:

where u is a rational resp. integer number. An obvious example for the μ, the π´s and p,n is

With these approaches and results the proton mass can be calculated as a function of the electron mass.

Calculation of the Proton Mass

In Chapter 4 the mass m b in Eq. (4.7c) has been derived, which is a component of the equilibrium mass and now defined as a mass m´(e,j). Then according to Eqs. (5.1) and (5.2) m b is assigned a mass number N(b)=7n.

Thus Eq. (4.7c) becomes

The closest value m´ of a particle to m b in Eq. (4.7a) is the η with n=15:

and

The next possible mass number is N(b)=7n, n=16, thus

The second order contribution m c ξα 2 is solved in a seperate approach independently of Eq. (5.0). Considering Eq. (5.1), then Eq. (5.6) is rewritten as

where n 1 and n 2 are integers. Since m c ξα 2 also is assumed to be a mass m´(e,j), the approach is = (6.2b) and

where the right side of the equation is a second order correction term with a constant ξ´ to be determined. The number u is assumed to be an integer similar to common fine structure corrections which are of the order (uα) 2 .

With the results of Eq. (5.1), m e is considered a constituent mass of the generalized equilibrium masses m´(e,j). The left side of Eq. (6.2c) is assumed to be proportional to a self energy contribution of the electron, which is proportional to 3/5 and to m e . This is evident when replacing m b by m e in Eq. (4.0b) and since the Planck mass in the self energy term is proportional to m e .

Then from Eq. (6.2c) it follows

Solving Eq. ( 6.3) by inserting m c from Eq. (4.7b) results in ξ´u 2 =101,02. In a first approach the combination with the best fitting integer

is utilized to solve Eq. ( 6.3). The second order term in Eq. (6.0) now is = (6.5) which yields

Inserting N(b) and n 3 yields

Besides the integers in Eq. (4.4) resulting from the solution of Eq. (4.2) the proton mass depends on two integers N(b)=112 and n 3 =10 as a result of the quantisation approach in chapter 5. Solving Eq. (6.6) for m p with Eq. (4.7b) yields

and with defining

where the measured mass is in brackets, see Appendix A.

Calculation of the Neutron Mass

The factor f N in chapter 5 provides an exponential scaling of particle masses but no precise results as for the proton mass in chapter 6. But the assumption is that this is a function of the mass difference involved, i.e. that for small scales resp. mass differences the precision increases. To verify this the splitting of the neutron and proton mass is now approached with the principles previously deployed. With Eqs. (4.0c) and (6.0) it is assumed that the splitting is proportional to α and m p . Then with Eq. (6.2a) a related approach is

where according to Eqs. (5.2) and (5.6) n 1 and n 2 are assumed to be from the set of mass numbers and integers in the previous chapters, thus the number of possible combinations is limited. The factor f N from Eq. (5.3a) has been adjusted with the correct exponent, since it relates to ratios of m´ and thus of N(j), but masses m are applied here. Then with Eq. (5.1) it follows

Considering the previous results, then a supposable combination from the set of integers resp. mass numbers is n 1 =n 3 from the solution for the proton mass in Eq. (6.4) and n 2 =N(e)=1, resulting in

yielding a mass formula that with f N relates the pion, proton, neutron and tau masses

Then solving for the neutron mass and inserting f N and n 3 =10 yields

The factor f N from Eq. (5.3a) is the best fit for Eq. (5.3b). Replacing it by the theoretical value from the observation presented in Fig. 2 and Eq. (5.5) results in

with an accuracy of seven decimal digits. Solving Eq. (7.2) for m p yields

The results of Eqs. (7.2) and (7.4) are within the standard deviation of the measured masses, see Appendix A.

Calculation of the Tau Mass

The results of Eq. (5.1) shown in Fig. 1. can be written as:

´ , = ( = (8.0)

Here N(J) is the ratio of an equilibrium mass and the electron mass. The ratio of an equilibrium mass and the proton mass then is approached with

´ , = ( = (8.1)

since m´(e,j) is smaller than m p in the considered mass range, where I(j) are integers. For j=τ an accurate result for the tau mass m τ is obtained:

Inserting m p from Eq. (6.8) yields

which is within the standard deviation of the measured mass in brackets, see Appendix A. For a comparison the formula of Koide in Appendix B is used to calculate the tau mass [5] as a function of the muon and electron mass with the result m τ =3,16773•10 -27 kg. The accuracy of both results in principle allows to equate the tau mass in Eq. (8.2c) and in the Koide formula to relate the proton, electron and muon masses.

Discussion

The proton, neutron and tau as well as meson masses in the range probed can be calculated by defining a generalized equilibrium mass as a combination of two particle masses. For particular equilibrium masses which are a function of the electron mass, quantum structures i.e. mass numbers can be observed which allow to relate elementary particle masses. The proton and neutron masses then are a function of the finestructure constant, the electron mass and integers resp. an exponential factor, which does not seem to be accidentally due to the accurate results of six resp. eight decimal digits. The exponential dependencies of mass numbers can be traced back to the golden ratio, but their origin remains unresolved. This result is similar to the empirical formula of Koide (Appendix B), which relates the e, μ, and τ masses with two integers only with the accuracy of four to five decimal digits. Zenczykowski [8] is pointing out that this does not seem to be an 'accident' and thus strongly suggests an algebraic origin of mass. For the exponential model of mass scales which is needed for the calculations, the gravitational constant becomes a parameter G(t) that was larger in the past and results in a strength converging with electromagnetic interaction at the proton sized elquilibrium state. The results suggest that the origin of the observed elementary particle masses is linked to fundamental constants, an inherent algebraic structure and that the constancy of the gravitational constant has to be questioned.

Appendix A

Elementary particle masses in kg from [START_REF]CODATA Recommended Values[END_REF][START_REF]PDG Particle Data Group 7[END_REF] The values in brackets are the estimated standard deviations of the last digits of the measured masses.

Appendix B

The formula of Koide [2]:

The value of Q should be a random number, but it is exactly halfway between 1/3 when all lepton masses would be equal, and 1 when two masses would be neglectible, which suggests an unresolved physical meaning of the formula.

Appendix C

The time dependencies of G and m u derived by Dirac from the LNH [START_REF] Dirac | Cosmological Models and the Large Numbers Hypothesis[END_REF], resulting in G proportional 1/t and m u proportional t 2 , are solutions of G(t) and m u (G) in Eqs. (2.0b) and (2.2b). In the following m pl (G 0 ) and G 0 are the present values of the Planck mass and gravitational constant, whereas m pl (G x ) is the value for a specific G x .

When m U was smaller by a factor x, then with Eq. (2.2b) The solutions for G(t) thus depend on r(t). With Eq. (A1) and the approximation for the ages of the observable universe t 0 =2r G /c and t x =2r x /c resp. we get

Inserting G from Eq. (A2) into Eqs. (2.0b) and (2.2b), then the mass of the universe is:

These are the time dependencies of the gravitational constant and the mass of the universe concluded from LNH.