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Effect of packing characteristics on the discrete element
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Univ. Grenoble Alpes, CNRS, SIMAP, F-38000 Grenoble, France

Abstract

Discrete Element Method (DEM) simulations are used to model the elastic

properties of a continuous material. The preparation route of the particle

packing is shown to have a significant effect on the macroscopic proper-

ties. We propose simple relations, generalized from the mean field solution,

that are able to fit DEM results. These relations introduce only basic mi-

crostructural features such as the coordination number and the packing den-

sity. When the tangential to normal stiffness ratio increases above unity, the

material becomes potentially auxetic. Buckling is also explored with DEM,

and results on cylindrical bars are compared to the classic Euler results for

critical stress.
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1. Introduction

Originally designed for granular materials [6], the Discrete Element Method

(DEM) has been employed in the recent years to model continua. DEM,
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when used to model continuous materials, bears some resemblance with lat-

tice methods, which model a solid as a set of nodes (with no volume or mass)

connected by beam elements through which both attractive and repulsive

forces and torques can be transmitted [27]. This type of method has proven

very efficient for simulating fracture, although crack closure may be an is-

sue since nodes carry no volume. A comparable route has been adopted by

models to simulate the behavior of cohesive materials with bonded particles

under a static or kinematic assumption [9, 12, 23, 15]. Peridynamics is also

a similar method proposing a theory of continuum mechanics with a non-

local model that can simulate fractures and discontinuities [29]. However,

the simulation of Poissons ratios other than 1/4 is not straightforward with

Peridynamics [18].

In DEM , the solid is represented by bonded particles that rearrange

under applied deformation according to Newton’s second law. In general,

these particles are spherical to ease distance calculation and to benefit from

the existing literature on spherical contact forces [35, 31, 2, 13]. In specific

applications, it is more interesting to use other shapes, like tubes for example

[16]. Nevertheless, spheres have the advantage of ensuring isotropy of the

contact network when packed randomly [32, 2]. Also, they may be used

to obtain a mesh for complex geometries, for example when starting from

three-dimensional images of real objects [10].

Most of the above-cited examples of DEM applications for continuum are

actually interested in breaking the initial continuum material into discrete

entities to model damage and fracture. This is because DEM has shown a

great ability to model fracture in continuous material. Indeed, the inher-
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ent discrete nature of DEM provides an effective formulation with in-built

natural discontinuities. DEM has the additional advantage, as compared

to the lattice or to the finite element methods, of dealing naturally with

post-fracture stages where crack closure may play a role.

In this paper, we aim to provide relations that link the bulk elastic proper-

ties of a solid simulated by a packing of bonded particles to the microscopic

and macroscopic characteristics of the packing. These relations introduce

macroscopic basic parameters that define the structure of the packing, such

as the coordination number (the average number of bonds per particle) and

the packing density. The microscopic properties of the bonds, i.e. their nor-

mal stiffness and their tangential to normal stiffness ratio, are also included.

These relations are generalization of the classical mean field solutions ap-

plied to a random packing of spherical particles. They should provide simple

and useful guidelines for the generation of particle packings. We explore

also the capability for DEM to reproduce auxetic (negative Poisson’s ratio)

materials. Finally, the possibility to use DEM to model buckling in quasi-

static conditions is demonstrated. DEM-type simulations were carried out on

half-spherical shell under dynamic conditions, but were not compared quan-

titatively to analytical results [15]. Here we attempt a direct comparison

with Euler’s formulation under quasi-static conditions on a cylindrical bar.

2. Model description

Spherical particles with radius R are connected to each other through

solid bonds that transmit normal and tangential forces and resisting moments

(Fig. 1). An equivalent radius at the bond between two spheres of radii Rp

3



Rp

T 
N 

MT 

MN 

Rq 

lpq 

Figure 1: Sketch of the bond between two spherical particles p and q transmitting normal

and tangential forces and resisting moments.

and Rq is defined as:

R∗ =
RpRq

Rp +Rq

(1)

The normal and tangential forces acting on the bond are given by simple

linear elastic laws:

N = −KNδNn = −2ΣNR
∗δNn (2)

T = −KT δT t = −2ΣTR
∗δT t (3)

where δN and δT are the normal and tangential relative displacements be-

tween the two particle centers and n and t are the unit vectors normal and

parallel to the contact plane, respectively. The normal and tangential stiff-

nesses KN and KT are size dependent. Thus, we prefer using material pa-

rameters ΣN = KN

2R∗
and ΣT = KT

2R∗
, which have the unit of stress and allow
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macroscopic elastic properties to be independent of the sphere size. Noting:

α =
ΣT

ΣN

(4)

we restrict our investigation to the range 0 < α ≤ 10. The standard case is

given by 0 < α < 1, while we will show that α ≥ 1 potentially leads to auxetic

properties (negative Poisson’s ratio). Forces are taken positive in tension

while the tangential force opposes the accumulated tangential displacement.

Damping forces are included for computational convenience. They oppose

the normal relative displacement velocity at the bond:

N
v
= −ηn

dδN
dt

n (5)

where ηn is the damping coefficient, which is chosen as a fixed fraction ξ of

the critical damping:

ηn = 2ξ
√

2mΣNR∗ (6)

A value of 0.05 for ξ ensures underdamped behavior together with negligible

effect on macroscopic stresses in quasi-static conditions. Similarly, damping

forces oppose the tangential relative displacement velocity with ξ = 0.025.

Bonds transmit resisting moments, MN and MT , in the normal and tan-

gential directions with a formulation originally proposed by Potyondy and

Cundall [24]:

MN = −4ΣT (R∗)3 θN (7)

MT = −2ΣN (R∗)3 θT (8)

where θN and θT are the accumulated relative rotations in the normal and

tangential directions in the contact framework (Fig. 1). Note that in a

packing with multimodal size particles, the stiffness and resisting moments
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from one bond to another are distributed due to the use of the equivalent

radius R∗ in Eqs. (2) to (8).

The macroscopic stress tensor in the packing is calculated from Love’s

formulation [36, 5]:

Σij =
1

V

∑

contacts

Filpq,j, (9)

where the summation is made on all contacts and where V is the sample

volume, Fi is the ith component of the total contact force (with normal and

tangential terms), and lpq,j is the jth component of the lpq vector connecting

the centers of two particles p and q (Fig. 1). The simulations described

hereafter have been carried out on our in-house code dp3D.

3. Sample preparation

Three dimensional cubic samples were prepared by packing 5000 spherical

particles within a box bounded by periodic conditions. Under periodic bound-

ary conditions, when a particle protrudes outside the periodic cell through

a given face, it interacts with the particles on the opposite face. The first

preparation step consists of creating a gas of particles. This is attained by

locating particles randomly into the volume with the only constraint that

they do not contact each other. Using a packing of nearly monomodal par-

ticles (R̄ ± 5%) with an average radius R̄, a relative density of D0 = 0.3 is

initially obtained. Ten such initial samples were generated using different

random seeds to compute standard deviations for each set. As described in

the next section, the standard deviation on the elastic properties was small

enough to consider that ten samples for each set of conditions are sufficient.

Following this first step, a relative density of 0.65 is sought for, using three
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different preparation routes. The lengths of the cubic simulation box, after

densification to 0.65, are Lx = Ly = Lz = 32R̄. We found that, under pe-

riodic conditions, this size together with 5000 particles is enough to obtain

statistically meaningful results.

The first route simply prescribes an affine displacement to all particles to

impose a macroscopic isostatic densification until the preset relative density is

attained (D = 0.65). This densification technique leads to significant relative

interpenetration between particles. We define this packing preparation route

as unjammed.

In the second method, starting from the initial relative density of 0.3,

the initial gas of particles is isostatically densified by moving inwards the

periodic bounds. No normal tensile force nor tangential friction nor resist-

ing moment is transmitted (i.e. only normal repulsive forces are used) at

this stage. Weak jamming is obtained by imposing a control pressure Pc to

the packing (using Eq. (9)) with a proportional controller that dictates the

hydrostatic strain-rate to the periodic bounds as described elsewhere [20].

The control pressure is several orders of magnitude smaller than the stiffness

(Pc/ΣN = 1.0E−07). The stiffness of particles is thus large enough to ensure

that relative interpenetration between particles is negligible at this stage.

Force equilibrium is imposed in a quasi-static configuration by resolving ex-

plicitly the second law of Newton as classically done in the DEM and by

ensuring that the total force applied on particles is smaller than 10−3Nmax,

where Nmax is the maximum contact force on the particle. This scheme is

imposed until a preset relative density of D0 = 0.5 is attained. This relative

density is much below the Random Close Pack relative density (0.63-0.64).
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Such a low value is still interesting because it ensures a fast sample prepara-

tion since particles rearrange easily. This packing is further densified, using

affine displacement, up to D = 0.65. We define this packing preparation as

weakly jammed.

The third method aims at obtaining a fully jammed packing by continu-

ing the densification scheme described above at the control pressure Pc until

the densification rate attains very low values [20]. At this point, we consider

that further densification is prevented by the full jamming of the particle

assembly. A few particles (rattlers) with less than 4 contacts are still ob-

served (< 2%). All other particles cannot be displaced without generating

an increase in contact forces with neighboring particles, thus qualifying this

packing as jammed [33]. The relative density of this jammed packing is

D = 0.636 ± 0.0004 and the coordination number is Z = 6.03 ± 0.011. As

with the two other methods, this packing is further slightly densified with

affine displacement of particles to attain D = 0.65.

The final affine displacement imposed to particles to attain the final pack-

ing density 0.65 allows all three packings to have the exact same density. It

modifies only very slightly the microstructure of the jammed packing. We

have studied the fabric tensor [25] of the packings generated through this

methodology and found that they did not exhibit any sign of anisotropy.

We have thus three preparation methods: unjammed, weakly jammed, and

fully jammed, which lead, after the last affine densification to three packings

that exhibit the same number of particles and the same relative density

(D = 0.65), but their microstructures differ markedly as demonstrated by the

increasing coordination number with jamming extent: Z = 4.52±0.02, 5.39±
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Figure 2: Typical packings for the three preparation routes investigated, starting from the

same gas of particles. Packing density is 0.65 after affine densification. Colors indicate

the number of contacts per particle (coordination number).

0.02, 6.56 ± 0.02, respectively. Fig. 2 shows the typical packings associated

with each preparation route. It is difficult to discern differences between

the three packings. However, the coordination number of each particle is a

clear indication of the marked characteristics of the jammed microstructure

as compared to the unjammed and weakly jammed.

The differences between the preparation routes is also clear when exam-

ining Fig. 3, which plots the distribution of interparticle distances between

contacting particles. Fig. 3 shows that the unjammed packing exhibit a very

large distribution, entirely resulting from the affine densification process im-

posed to the initial gas of particles. On the opposite, the jammed packing

presents a very narrow range of interparticle distance and these distances

are close to the diameter of particles (small interpenetration of particles).

The weakly jammed packing shares important qualitative features with the

jammed packing. Although it exhibits a broader distribution and smaller
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Figure 3: Distributions of interparticle distance lpq normalized by the average diameter of

particles, for the three preparation routes investigated. Packing density is 0.65 after affine

densification. Average coordination are indicated for each preparation route.
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(a) (b) 

Figure 4: Effect of the interaction range on the bonding stage between particles. (a)

κ = 1.000 (b) κ > 1.

interparticle distances as compared to the jammed packing, it still presents

the same trends as the jammed packing. In short, the unjammed packing is

characterized by a small number of contacts that are very broadly distributed

in size, while the jammed packings have a large number of smaller contacts.

From these three initial packings, bonds are installed between two parti-

cles p and q with radii Rp and Rq when the following criterion is met:

κ (Rp +Rq) ≥ |lp,q| (10)

where |lp,q| is the center to center distance between particles p and q (Fig. 1),

and κ is the interaction range (κ ≥ 1.0). Four values for κ were tested: κ =

1.000, 1.025, 1.050, 1.075. κ = 1.000 leads to the classic granular description

of the packing where only particles in contact are bonded. For κ > 1, an

interaction range bonds particles that are not geometrically in contact but are
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Table 1: Average number of bonds per particle for the 3 preparation routes at D = 0.65

for the 4 values of the interaction range κ

Zb

preparation κ = 1.000 κ = 1.025 κ = 1.050 κ = 1.075

unjammed 4.52±0.02 5.00±0.01 5.49±0.02 5.99±0.01

weakly jammed to 0.5 5.39±0.02 5.81±0.01 6.23±0.01 6.56±0.01

jammed to 0.637 6.56±0.02 7.46±0.01 8.06±0.01 8.57±0.02

neighbors (Fig. 4). This feature provides the possibility to adjust the degree

of interlocking of the particles forming the numerical medium as proposed

by [13] or [28]. The average numbers of bonds per particle, denoted as Zb,

are listed in Table 1. Zb is strictly equal to Z for κ = 1.000 and increases

with increasing interaction range κ.

4. Elastic properties

The macroscopic elastic properties of the cubic numerical samples, of

which the preparation has been described in the preceding section, have been

obtained by testing them uniaxially under fully periodic conditions. Eq.

(.1) in the appendix is used to determine the macroscopic stress response

to the imposed strain and the two macroscopic elastic constants, Young’s

modulus E and Poisson’s ratio ν. The normal to tangential stiffness ratio

(α = ΣT/ΣN) has been varied from 0.005 to 10 to test the range of elastic

constants attainable with potentially auxetic materials (ν < 0 for α > 1).

The two parameters discussed in the preceding section (D and Zb), which

describe the average microstructure of the packing of particles, can be advan-
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tageously used to propose a simple normalization of the Young’s modulus:

Ẽ =
E

ZbDΣN

(11)

The rationale for Eq.(11) is detailed in the appendix. It derives from the

mean field assumption, which has been used to model particulate packings

[5, 17, 19]

The effect of the ratio between the tangential and normal stiffnesses

(α = ΣT/ΣN) may be captured for the normalized Young’s modulus by

the following simple equation:

Ẽ =
κn

2π

a1 + a2α

4 + a3α
(12)

where n is a rational number, and ai are fitted parameters. Similarly, for the

Poisson’s ratio:

ν =
1− b1α

b2 + b3α
(13)

where bi are fitting parameters. The simple form of Eqs. (12) and (13)

originate from a generalization of the equations that describe the elastic

behaviour of an aggregate of bonded particles under the approximations of

a mean field or of a static solution [17], as detailed in the Appendix.

We first specialize this study to α values in between 0 and 1, which is the

standard case. For this range, Fig. 5 shows the normalized Young’s modulus

multiplied by 2πκ−n and the Poisson’s ratio ν for the four values of interaction

ranges κ and with the three preparation methods. The value of n is fitted to

obtain an approximate master curve for all simulation points. Error bars are

calculated from the standard deviations on ten simulations. The standard

deviations are less than 0.05 and 0.01 for the normalized Young’s modulus
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and Poisson’s ratio, respectively. They are thus barely discernible in Fig. 5,

indicating small dispersion from one random sample to another. The fact that

all curves fall on a master curve indicates that our simple normalization of

the Youngs modulus by the coordination number and by the relative density

(Eq. (11)) is effective.

For all packings, the normalized Young’s modulus increases and the Pois-

son’s ratio decreases as the tangential stiffness increases as predicted quali-

tatively by the mean field model (see appendix) and by the static hypoth-

esis model from Liao et al. [17]. Still, the normalized Young’s moduli of

unjammed and weakly jammed prepared packings are significantly smaller

than those predicted by the mean field and static models. The fully jammed

packing is much closer to the mean field model. In particular, the slope is

very similar in a large range of α values. This is because the mean field model

has been derived under the assumption of point contacts between particles

that are distributed with uniform probability over their surface [34]. The un-

jammed and weakly jammed packings hardly satisfy these two assumptions

at all. Discrete element simulations consistently lead to a softer response

as compared to the mean field model. This is expected since quasi-static

DEM ensures force equilibrium, in contrast with the mean field method,

which does not. It is expected that the mean field method, because of its

imposed assumption on uniform strain, leads to a stiffer response than the

true behavior.

Table 2 lists the values of the fitting parameters ai and bi. These equa-

tions allow the macroscopic elastic properties of a packing of particles to

be predicted with simple forms using important microstructural parameters
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Table 2: Parameters ai, n and bi of Eqs. (12) and (13) fitted for the three preparation

routes (0 < α ≤ 1).

preparation a1 a2 a3 n b1 b2 b3

unjammed 0.18 5.45 9.64 5 0.24 3.38 6.91

weakly jammed to 0.5 0.42 7.45 8.68 2 0.55 3.02 5.75

jammed to 0.637 1.09 6.72 5.12 1 0.80 3.07 4.07

mean field 2 3 1 0 1 4 1

static hypothesis 0 10 6 0 1 2 3

(bond coordination number, interaction range of these bonds, and density).

Of particular interest is the value of the a1 parameter, which dictates the

behavior of the packing when the bond tangential stiffness vanishes. As dis-

cussed by Liao et al. [17], if a1 tends to zero (as in the static hypothesis or

for unjammed packings), a packing with smooth particles (zero bond tangen-

tial stiffness) has no shear modulus but retains bulk modulus if its Poisson’s

ratio tends to 0.5. In that case, the packing resists isotropic bulk stresses but

no deviatoric stress. It thus behaves as a fluid. Reversely, if a1 is non-zero,

packings do retain shear modulus and behave solid-like.

The same methodology is used to obtain the behaviour of packings in

the range 1 ≤ α ≤ 10. These packings potentially lead to auxetic materials

(negative Poisson’s ratio) as shown previously in 2 dimensions from analytical

considerations similar to those developed in the appendix [3] or by discrete

element simulations [8]. The same tendencies are observed in this range of

α values than in the standard 0 < α ≤ 1 range (Fig. 6). The normalized

Young’s modulus is in relatively good accordance with the mean field model
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Figure 5: Evolution of (a) the normalized Young’s modulus Ẽ and (b) the Poisson’ ratio

for the three preparation routes and for various values of the interaction range κ, in the

0 ≤ α ≤ 1 range.
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Figure 6: Evolution of (a) the normalized Young’s modulus Ẽ and (b) the Poisson’ ratio

for the three preparation routes and for various values of the interaction range κ, in the

1 ≤ α ≤ 10 range .

17



Table 3: Parameters ai, n and bi of Eqs. (12) and (13) fitted for the three preparation

routes (1 ≤ α ≤ 10, potentially auxetic materials).

preparation a1 a2 a3 n b1 b2 b3

unjammed 1.10 0.86 0.72 6 0.54 6.41 1.10

weakly jammed to 0.5 1.62 1.33 0.72 3 0.75 6.00 1.07

jammed to 0.637 2.06 2.07 0.78 1.5 0.91 5.09 0.99

for the fully jammed packing, while it deviates markedly from this model and

from the static hypothesis model for the two other preparations. Also, the

Poisson’s ratio is further decreasing with increasing stiffness ratio α values

down to negative values. Poisson’s ratio of the order of -0.5 are obtained

for α = 10. Introducing the interaction range parameter κ into the fitting

Eq. (12) allows a master curve Ẽκ−n to be obtained. However, this was not

possible with the Poisson’s ratio, and we prefer to present directly the Pois-

son’s ratio values as a function of α without proposing a complex correlation

between Poisson’s ratio and α.

5. Application example: buckling of a cylindrical bar

Using the sample preparation method described in section 3, we have

built cylindrical samples with length l and radius r. However, instead of

periodic conditions, a rigid cylinder and two planes were used as boundary

conditions. Once jammed, the cylinder and the planes were removed and

bonds were installed. Fixed-fixed conditions are applied as boundary con-

ditions by blocking translation and rotation of the particles in contact with

the two planes.
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We investigated l/r ratios in between 10 and 120 with the same number

of particles per unit length. Thus, for l/r = 10, 10 000 particles were used

while 100 000 particles were used for l/r = 100. Three samples were gener-

ated for a given l/r value to estimate dispersion. This was simply obtained

by using different random seeds for the initial gas of particles. We have

limited the sample number due to the CPU intensiveness of the simulations

involving buckling. Simulations with 100 000 particles and large strains (to

attain buckling), although heavily parallelized, are too long to allow for good

statistics with a larger number of samples.

As in the preceding section, the same preparation routes were tested

(unjammed, weakly jammed and jammed). A value α = 0.2 was chosen

for the tangential to normal stiffness and the interaction range κ was set to

unity. These values lead to a Poisson’s ratio of the order of 0.2. No initial

imperfection in the geometry, in the material properties or in the loading

direction were introduced. This in contrast with the method classically used

in Finite Element Method [4, 26, 22], where a small imperfection in the

element nodal points or in the load application is imposed to ensure the

initiation of buckling. However, it should be clear that the randomness of

the packing provides some imperfection at the microscale.

Euler’s critical stress is given by [7]:

σEuler =
π2E

4
(

k l
r

)2
(14)

where k = 0.5 for the fixed-fixed conditions used here. Alternative solutions

have been proposed. For example, Mazzilli [21] has shown that the analytical
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solution:

σMazzilli =

(

1−

√

1−
π2

(

k l
r

)2

)

E

2
(15)

compares better to the critical load computed by numerical integration of

the exact equation of equilibrium than Euler’s formulation. However, the

difference is only noticeable for bars with small slenderness.

Fig. 7 shows typical stress-strain curves. Axial stresses and strains are

normalized by σEuler and ǫEuler respectively (ǫEuler = σEuler/E). Fig. 7

indicates that the critical strain is larger than the critical strain given by

Euler’s formulation. Also, the post-buckling behaviour depends on the l/r

ratio with a more abrupt decrease of stress as the l/r ratio increases. As
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shown in Fig. 7, buckling is characterized by a clear maximum in the stress-

strain curve. However, a non-linear region exists prior to this maximum.

Still, we compare the critical Euler buckling stress to this maximum stress.

Fig. 8 summarizes the simulation results for the three preparation routes

investigated here. The critical stress obtained from the simulation is normal-

ized by σEuler. The randomness of the granular structure inevitably results

in some dispersion illustrated by error bars in Fig. 8. The three prepara-

tion routes lead to larger maximum stresses than the Euler’s formulation for

large l/r. However, our definition of the critical stress (see typical stress-

strain curves Fig. 7) should lead in any case to an upper bound. Also, the

overestimation of the critical stress would suggest that dynamics may be at

play in our simulations which attempt to approach the quasi-static limit.

Indeed, dynamics lead to buckling stresses that exceed Euler critical stress

[14]. We have investigated this issue by calculating the normalized kinetic

energy per particle:

Ẽkin =
Ekin

nmax (NR)
(16)

where Ekin is the kinetic energy of the system, n the number of particles, N

and R the normal force (Eq. (2)) and the particle radius, respectively. Ẽkin

should stay reasonably below 10−08 to ensure quasi-static conditions [1]. Fig.

9 indicates that this condition is satisfied before buckling for the two lowest

values of l/r. For the largest slenderness, dynamics may explain partially

the stress overestimation exhibited by DEM simulations.

21



0.9

1

1.1

1.2

1.3

0 20 40 60 80 100 120

σ c
 /σ

E

l/r

unjammed
weakly jammed

fully jammed

Figure 8: Critical buckling stresses normalized by Euler’s stress versus the l/r ratio for

the three preparation routes investigated. Mazzilli’s solution (Eq. (15) (−−−) is plotted

for completeness [21].
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of the ratio l/r, as in Fig. 7.
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6. Concluding remarks

The elastic properties of numerical samples made of particles linked by

elastic bonds have been investigated. The preparation route used for the sam-

ples clearly has an effect on these properties. We have shown that when the

ratio of tangential to normal stiffness (α) is smaller than unity, the Young’s

modulus and the Poisson’s ratio are well described by simple equations (Eqs.

(12) and (13)), which introduce microstructural properties of the packing of

spheres that has served to generate the numerical sample. These microstruc-

tural properties are the average coordination number and the packing density.

The proposed equations are generalizations of the mean field and static so-

lutions. They give approximate values of the elastic properties that should

be expected for a given numerical sample, knowing its packing history.

Our results also indicate that, with the standard bond model used here,

it is difficult to attain Poisson’s ratio above 0.3. This is inherent to the fact

that the Poisson effect is not introduced at the micro level in the bonds, since

discrete element simulations are based only on pair interactions. Taking into

account a more accurate strain field would require a more complex coupling

between bonds. This has been proposed analytically [12] and developed

numerically with an explicit calculation of bond interaction on the elastic

field [11].

The three preparation routes investigated here involve very different effort

in terms of CPU time to create the packing that meshes the numerical sample.

The unjammed route is a very rapid method since it only requires the random

deposition of spheres into the volume. The fully jammed preparation route

is much more CPU demanding if a density close to the Random Close Pack
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(RCP) is sought for. The weakly jammed route is an interesting compromise.

It allows for a wider span of attainable Poisson’s ratio (also in the auxetic

domain) than the unjammed route but is much less CPU demanding since

densification rates in the low density domain are much faster than close to

the RCP.

For bonds with tangential to normal stiffness greater than unity, we have

shown that hypothetical auxetic materials built from discs [3, 8], may also

be generated in 3 dimensions. The requirement that bonds be softer in the

normal direction than in the tangential direction is difficult to satisfy with

standard materials. However, some interesting designs have been proposed

in the literature for granular-like materials [8] .

As an application example, we have shown that the simple bond model

proposed here, with no built-in buckling mechanism, is capable of simulat-

ing buckling. A buckling application example of DEM-type simulations was

proposed on half-spherical shell under dynamic conditions [15]. Here, we

have attempted to ensure quasi-static conditions to enable quantitative com-

parison with Euler’s formulation. It should be clear that the DEM is not

the most appropriate method for simulating buckling. The finite element

method, supported by decades of research on the subject, is a far more effec-

tive method. However, when post-buckling is accompanied by fracture, the

DEM may be an interesting option. This is because, the topological modifi-

cations (branching, bifurcation, and new surface generation) that come with

fracture are easier to capture with DEM than with the finite element method.
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Appendix. Elastic behaviour of an aggregate of bonded particles

under the approximation of a mean field solution

The spherical particle kinematics may be simply treated under the ap-

proximation of a mean field solution (Voigt hypothesis) for a monomodal

packing. In that case, the motion of each particle center relative to a refer-

ence particle is dictated by the macroscopic deformation gradient and force

equilibrium is not enforced. We start from the formulation derived by [17],

which considers the case of bonds transmitting both normal and tangential

forces (but no resisting moment). The model is similar to those proposed in

[5, 34, 30, 19]. Starting from Eq. (9) under the assumption of a random pack-

ing of particles of uniform radius R, it leads to the stress-strain relationship

under the mean field assumption (Eq. (38) in [17]):

σij =
ZbD

10π
(2 + 3α)

[

εij +
1− α

2 + 3α
εkkδij

]

ΣN (.1)

The Poisson’s ratio is then readily given by

ν =
1− α

4 + α
(.2)

while the normalized Young’s modulus simplifies to

Ẽ =
E

ZbDΣN

=
1

2π

2 + 3α

4 + α
(.3)

An alternative expression has been derived by [17], based on the static

hypothesis (or best-fit model). It leads to:

σij =
ZbD

2π

5α

3 + 2α

[

εij +
1− α

5α
εkkδij

]

ΣN (.4)

Thus, for the static hypothesis the Poisson’s ratio is

ν =
1− α

2 + 3α
(.5)
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while the normalized Young’s modulus is given by

Ẽ =
5

2π

α

2 + 3α
(.6)

We use generalized forms of Eqs. ((.2), (.3), (.5) and (.6)) in section 4 to fit

the numerical results for the Poisson’s ratio and the Young’s modulus.
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