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Abstract
Mathematical models do not explicitly represent the influence of soil microbial diversity on

soil organic carbon (SOC) dynamics despite recent evidence of relationships between

them. The objective of the present study was to statistically investigate relationships

between bacterial and fungal diversity indexes (richness, evenness, Shannon index,

inverse Simpson index) and decomposition of different pools of soil organic carbon by mea-

suring dynamics of CO2 emissions under controlled conditions. To this end, 20 soils from

two different land uses (cropland and grassland) were incubated with or without incorpo-

ration of 13C-labelled wheat-straw residue. 13C-labelling allowed us to study residue minera-

lisation, basal respiration and the priming effect independently. An innovative data-mining

approach was applied, based on generalized additive models and a predictive criterion.

Results showed that microbial diversity indexes can be good covariates to integrate in SOC

dynamics models, depending on the C source and the processes considered (native soil

organic carbon vs. fresh wheat residue). Specifically, microbial diversity indexes were good

candidates to help explain mineralisation of native soil organic carbon, while priming effect

processes seemed to be explained much more by microbial composition, and no microbial

diversity indexes were found associated with residue mineralisation. Investigation of rela-

tionships between diversity and mineralisation showed that higher diversity, as measured

by the microbial diversity indexes, seemed to be related to decreased CO2 emissions in the

control soil. We suggest that this relationship can be explained by an increase in carbon

yield assimilation as microbial diversity increases. Thus, the parameter for carbon yield

assimilation in mathematical models could be calculated as a function of microbial diversity

indexes. Nonetheless, given limitations of the methods used, these observations should be

considered with caution and confirmed with more experimental studies. Overall, along with

other studies on relationships between microbial community composition and SOM dynam-

ics, this study suggests that overall measures of microbial diversity may constitute relevant

ways to include microbial diversity in models of SOM dynamics.

PLOS ONE | DOI:10.1371/journal.pone.0161251 August 23, 2016 1 / 20

a11111

OPEN ACCESS

Citation: Louis BP, Maron P-A, Menasseri-Aubry S,
Sarr A, Lévêque J, Mathieu O, et al. (2016) Microbial
Diversity Indexes Can Explain Soil Carbon Dynamics
as a Function of Carbon Source. PLoS ONE 11(8):
e0161251. doi:10.1371/journal.pone.0161251

Editor: R. Michael Lehman, USDA Agricultural
Research Service, UNITED STATES

Received: February 25, 2016

Accepted: August 2, 2016

Published: August 23, 2016

Copyright: © 2016 Louis et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by: 1. French
National Agency for Research, grant number ANR-
08-STRA-06, http://www.agence-nationale-recherche.
fr/en/project-based-funding-to-advance-french-
research/; 2. Chair of “Ecologically Intensive
Agriculture” (Agrocampus-Ouest, Oniris, Groupe
ESA, Agrial, Terrena, Triskalia), grant number 8206-
R2013229, http://www.chaire-aei.fr/; 3. Brittany
Regional Council, grant number 0461/COH13000/
00001042ared-cohorte2013-dynamod, http://www.
bretagne.bzh/jcms/JB080225_11542/fr/english. The

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0161251&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.agence-nationale-recherche.fr/en/project-based-funding-to-advance-french-research/
http://www.agence-nationale-recherche.fr/en/project-based-funding-to-advance-french-research/
http://www.agence-nationale-recherche.fr/en/project-based-funding-to-advance-french-research/
http://www.chaire-aei.fr/
http://www.bretagne.bzh/jcms/JB080225_11542/fr/english
http://www.bretagne.bzh/jcms/JB080225_11542/fr/english


Introduction
Among soil biological processes, mineralisation of soil organic matter (SOM) is essential, as
SOM is a key component contributing to many functions and services in soil ecosystems [1,2].
Mathematical models are useful tools to quantitatively describe processes involved in SOM
dynamics and help predict the influence of management practices [3]. Many SOM dynamics
models have been developed to date, and microorganism biomass is increasingly represented
explicitly [4]. However, microbial diversity is nearly absent in these models despite new evi-
dence of its role in SOM dynamics. Two main reasons have led to this absence: i) from a con-
ceptual perspective, SOM dynamics models performed sufficiently well without needing to
consider microbial diversity [5]; and ii) for a long time, technical limitations have hindered
demonstration of a relationship between microbial diversity and SOM dynamics, as well as
identification of qualitative variables to better describe the microbial pool. The latest technical
advances in molecular biology have made the latter possible, and recent results have shown
that microbial diversity can significantly influence transformation of carbon (C) and nitrogen
(N) in the soil [6–9]. For instance, Baumann et al. [6] found reduced lignin and wheat sugar
decomposition, while Philippot et al. [8] showed reduced denitrification activity with low
microbial diversity.

These results qualitatively demonstrated a microbial diversity-SOM dynamics relationship.
However, there is still a need to quantitatively describe this relationship between microbial
diversity and SOM dynamics processes and make it possible to integrate it in SOMmodels.
Increasing evidence in the literature indicates that taxonomic and functional compositions of
microbial communities are strong drivers of SOM processes [10], and bacterial phyla have
been identified as functional groups [11]. However, phylum is a high taxonomic rank, and
members of the same phylum can exhibit different functional traits. Consequently, knowledge
about microbial composition and functional traits currently remains limited, and further study
is required to understand the relationship between microbial composition and C and N
dynamics and identify key taxa as indicators of microbial community functional traits [12].
Given this lack of knowledge, we argue that it remains difficult to use microbial composition to
build the quantitative relationships discussed above, which are necessary to parameterise pre-
dictive models. Interesting modelling approaches have integrated microbial diversity by repre-
senting different functional groups of microorganisms according to their differing affinities for
organic substrates [13,14] or enzyme-production strategies [15]. However, because of the lim-
ited knowledge, the microbial groups in these models are conceptual; thus, it is challenging to
validate these models with empirical data [16]. In contrast, promising demonstrations of the
microbial diversity-SOM dynamics relationship have occurred using microbial diversity
indexes (e.g. richness, evenness, Shannon index) to assess microbial diversity [6–9]. This sug-
gests that overall microbial diversity indexes could be relevant covariates of SOM dynamics.
Since high-throughput sequencing can now easily quantify microbial diversity in environmen-
tal samples, it is possible to assess the increase in accuracy of SOM dynamics models due to
integrating microbial diversity via these covariates.

Recently, Tardy et al. [9] showed that microbial diversity explained C dynamic differently
according to the quality of C substrates. In particular, they demonstrated that the importance
of bacterial vs. fungal diversity may vary with the recalcitrance of C substrates, in agreement
with other studies which demonstrated that fungi decompose recalcitrant substrates better
than bacteria [17]. Additionally, quantitative and qualitative improvement of SOM is generally
observed in agroecosystems favouring a fungal-dominated community [18]. Consequently, we
hypothesise that model accuracy will improve if the microbial variables distinguish bacterial
and fungal diversity, each of which influence dynamics of SOM pools differently as a function
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of their recalcitrance. Knowing this, it is necessary to go further by building quantitative rela-
tionships between C dynamics and bacterial and fungal diversity indexes to investigate the
implication of integrating microbial diversity in SOM dynamics models.

The objective of the present study was to statistically investigate the relationships between
bacterial and fungal diversity and decomposition of C pools, characterised by the pattern of
CO2 emissions under controlled conditions. In particular, we aimed to i) confirm the relevance
of microbial diversity indexes as covariates to explain variability in CO2 emissions, ii) build
quantitative relationships between microbial diversity and CO2 emissions and iii) evaluate
implications of integrating microbial diversity in SOM dynamics models. Twenty soils with a
variety of characteristics and two different land-use histories (cropland and grassland) were
incubated with and without addition of 13C-labelled wheat residue in soils. 13C-labelling
allowed us to distinguish and separately analyse the relationship between bacterial and fungal
diversity and mineralisation of different sources of OC (soil, wheat residue), as well as the inter-
action between mineralisation of these two sources (priming effect). Land-use history was
taken into account because of the increasing body of evidence that these two land uses differ
greatly in their influence on microbial diversity in the soil [19–22], which has consequences for
C cycling [9]. Consequently, we hypothesised that studying these two land uses could reveal
contrasting diversity-SOM dynamics relationships that are important to understand. Diversity
of bacterial and fungal communities was characterised by high-throughput sequencing of ribo-
somal genes. We applied an innovative data mining approach, based on generalized additive
models (GAM) [23,24] and a predictive criterion, to select covariates that better explain vari-
ability in CO2 emissions for each C source and explore the relative importance of bacterial and
fungal diversity, along with classic soil properties which influence SOM dynamics. The GAM
approach provides quantitative relationships useful for integrating microbial diversity in SOM
dynamics models.

Materials and Methods

Data source
Soil samples and analyses. We considered a database of 20 agricultural soils sampled

from the French Soil Quality Monitoring Network (RMQS) [25]. The 20 locations of these soils
had high variability in soil properties (in particular pH and texture) for two land-use classes:
cropland (10 soils) and grassland (10 soils). Croplands corresponded to monoculture systems
or crop rotations with or without short-term grasslands. Grasslands corresponded to perma-
nent or long-term grasslands (more than ten years). Concerning abiotic soil properties, texture
was measured by standardized 5-fraction granulometry (NF X 31–107), soil organic carbon
(SOC) content was measured by standardized dry combustion (NF ISO 10694) and pH by
standardized 1:5 water suspension (NF ISO 10390) [26]. These samples were then air-dried
and stored in the French national soil sample archive following the protocol described by Ratié
et al. [27]. S1 Table provides more information about the locations and studied soils. The field
studies were carried out on private lands where owners gave permission to conduct the soil
samplings. Since no protected areas were involved, no specific permissions were required. The
field studies did not involve endangered or protected species.

Carbon mineralisation measurements. C mineralisation was measured using microcosm
respiration following the procedure of Tardy et al. [9]. Microcosms were established by placing
30 g of equivalent dry soil supplemented with sterile water to attain 60% soil water-holding
capacity in 150 ml hermetically sealed plasma flasks. These microcosms were pre-incubated at
20°C for three weeks to avoid the heavy disturbance (overestimation of C mineralisation)
caused by adding water after storage. Three replicates of each microcosm were then amended
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with 13C-labelled powder of wheat residues (5 mg g-1 dry weight of soil) while three others
were not (control). Both amended and control microcosms were mechanically mixed. The 120
microcosms (20 locations × 2 treatments (control and amended) × 3 replicates) were incubated
in the dark for 80 days under controlled temperature (20°C) and moisture conditions (60% of
water-holding capacity).

Respired CO2 was measured after 3, 7, 14, 21, 28, 44, 60 and 80 days of incubation in micro-
cosms. The gaseous phase was sampled in 10 ml airtight flasks to measure the CO2 concentra-
tion and in 12 ml airtight flasks to determine the C isotope (13C) abundance. The
concentrations measured at each sampling date corresponded to the CO2 accumulated between
two sampling dates. 13C-labelling of the plant residues allowed separating SOC (Rs) and plant-
residue (Rr) mineralisation (μg C-CO2 g

-1 soil) using mass-balance equations:

Rs þ Rr ¼ Rt and Rs � A13
s þ Rr � A13

r ¼ Rt � A13
t ð1Þ

Rs ¼
Rt � A13

t � Rr � A13
r

A13
s

ð2Þ

where A13
i ; i ¼ fs; r; tg is the 13C abundance in soil C, plant residue and total respired CO2 (Rt)

emitted by amended soil, respectively.
In this study, the priming effect (PE) was calculated as:

PE ¼ Rs;amended

Rs;control

ð3Þ

where Rs,amended and Rs,control are SOC mineralisation in amended and control microcosms,
respectively. PE was calculated as a ratio, rather than the more traditional difference between
Rs,amended and Rs,control, to avoid negative values. This allowed a log-transformation to meet the
assumptions of the statistical models used later.

To assess differences in C mineralisation rates between cropland and grassland, a two-way
analysis of variance (ANOVA) was performed on each mineralisation kinetic rate (Rs,control,
Rs,amended, Rr and PE). The model included a fixed factor, “land use”, and a random factor,
“time”. Post-hoc analysis, based on Tukey’s honest significant difference test [28], was per-
formed to assess differences between each level of both factors and their interaction.

Microbial biomass and diversity determination. Following Tardy et al. [9], the microbial
community was analysed in each soil just after pre-incubation and before incubation. Micro-
bial DNA was extracted from 1 g of each soil replicate using a slight modification of the ISO-
10063 procedure [29]. DNA concentrations were determined and used as estimates of molecu-
lar microbial biomass [30]. After DNA purification (MinElute gel extraction kit, Qiagen, Cour-
taboeuf, France), bacterial and fungal diversity was determined for each soil. For bacteria, a 16S
rRNA gene fragment with sequence variability and about 450 bases for 454 pyrosequencing
was amplified by PCR using primers F479 and R888. For fungi, an 18S rRNA gene fragment of
about 350 bases was amplified using primers FR1 and FF390. After the pyrosequencing proce-
dure, as described in Tardy et al. [9], bioinformatic analyses were performed on the 16S and
18S rRNA gene sequences to cluster them at 95% sequence similarity into operational taxo-
nomic units (OTU). From OTUs, quantitative diversity indexes were calculated, such as bacte-
rial and fungal richness (number of OTUs), as well as other indexes that consider OTU
abundance (Shannon index, H’; evenness, J’; and inverse Simpson index, 1/D). H’ increases
with an increase in richness and the equity of OTU abundance. J’ (range = 0–1) provides infor-
mation only about the equity of OTU abundance and equals the ratio of H’ to its maximum
potential value (i.e. if all OTUs had the same abundance). The index 1/D gives the probability
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that two individuals randomly selected from a sample will belong to the same OTU; higher val-
ues indicate greater diversity. It gives more weight to the more abundant species in a sample.
The addition of rare species to a sample causes only small changes in its value, contrary to H’.

A minimal dataset with the mean values of all the response variables and covariates is avail-
able in supporting information (S2 Table).

Statistical selection of soil properties that better predict mineralisation
kinetics
We assumed that mineralisation kinetics (Rs, Rr, PE) are influenced by soil properties. The
objective was to verify whether microbial diversity parameters are as suitable for predicting C
mineralisation as the abiotic soil properties frequently considered in SOMmodels. Using GAM
[23,24], soil properties − including microbial diversity − were statistically selected to explain
variability in mineralisation kinetics. Properties were selected for each mineralisation kinetic
(Rs,control, Rs,amended, Rr and PE) using themgcv package [31] in the free statistical software R (R
Core Team) [32].

Theory of generalized additive models. The structure of a GAM [23,24] can be written
as:

gðEðYiÞÞ ¼ aþ f1ðx1iÞ þ f2ðx2iÞ þ . . .þ fpðxpiÞ ð4Þ

where Yi is a response variable following some exponential family distribution, α is the inter-
cept of the model, and {fj, j = 1,. . .,p} are functions of the covariates xj. This structure allows for
nonlinear dependence of the response on the covariates. As functions fj’s are not necessarily
known, they are specified as smooth functions rather than detailed parametric ones. Smooth
functions are flexible data-driven functions estimated by semi-parametric methods often using
a spline basis. Nevertheless, the fj’s can also be specified as known functions − e.g. identity func-
tion for a linear dependence or a power-family function for a polynomial dependence − in
which case the model becomes a generalized linear model. As for generalized linear models, the
link function g allows for a non-normal distribution of E(Yi).

Stepwise selection of soil properties. The response variable to predict with the GAM
referred to C-CO2 respired at each measurement date: we focused on the rate of respired
C-CO2 (ΔR/Δt), defined as the amount of respired C-CO2 divided by the number of days
between two measurement dates. To avoid heteroscedasticity in models, the logarithm of this
rate for the eight measurement dates was used as a response variable for mineralisation
kinetics.

The covariates considered for selection with GAM included the abiotic soil properties influ-
encing C mineralisation usually considered in SOMmodels, as well as microbial diversity indi-
cators. The abiotic variables considered were texture properties (clay, silt, sand and clay + fine
silt contents), SOC content, soil C:N ratio and pH. The biological covariates were microbial
richness, J', H' and 1/D for both bacteria and fungi. We also included molecular microbial bio-
mass, as it can explain C dynamics greatly, especially interactions between residue and SOC
mineralisation [33,34]. One-way ANOVA was performed to assess the significance of differ-
ences between means of soil properties of cropland and grassland.

Relationships between soil properties and the response variable were built with smooth
functions estimated by penalised cubic regression splines (s). However, we also allowed fj to be
known parametric functions such as identity (I) or polynomial of degree 2 (poly2) or 3 (poly3).
Using these functions reduced the risk of overfitting, a well-known limitation of the GAM
approach [31]. To assess differences in relationships with cropland and grassland soils, each
combination of soil properties and functions fj interacted with a covariate factor corresponding
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to “land use”. By doing this, cropland and grassland soils could have different relationships
between soil properties and response variables.

Since rates of respired C were time dependent, time (used as a categorical variable) was an
obligatory covariate in the GAM. Since measures in mesocosms occurred over time, the covari-
ate “time” represents a temporal pseudo-replication and, consequently, was considered as a
random factor. Consequently, the simplest model selected (Fig 1; step 0, initial model) was:

Y ¼ mþ time ð5Þ

where Y is the response variable (mineralisation kinetic), μ is the intercept, and time is the ran-
dom effect of covariate time (in days). We defined P as all soil properties–which were potential
covariates in GAM–and S as the soil properties selected during the selection procedure. Start-
ing from Eq 5, the steps of the selection procedure were (Fig 1):

1. Calculate a mean squared error of prediction (MSEP) of the currently selected model by
cross-validation:

MSEP ¼ 1

N

P
iðyitu � ŷ�i;tuÞ2 ð6Þ

where yitu is the value of the response variable for soil i at time t for replicate u, ŷ�i;tu is the

estimated value of the response variable for soil i at time t for replicate u using the selected
model calibrated without values of soil i, and N is the total number of values for the response
variable. MSEP is a classic indicator of the predictive quality of a model. Cross-validation
estimation of MSEP is known to be less subject to overfitting than a classic goodness-of-fit
index.

2. To avoid problems associated with collinearity of covariates in GAM [35], pre-select soil
properties based on a variance-inflation factor in linear models between each soil property
in P and the soil properties already selected in the model (S) with a threshold of 4 [36].

3. Build all potential improved models by adding one of each combination of pre-selected soil
properties in R and associated functions (I, poly2, poly3, and s) or by removing one previ-
ously selected soil property. The latter enabled removing previously selected soil properties
in case they contained redundant information with newly selected ones.

4. Calculate MSEP for each model by cross-validation.

5. Watch for the model k with the smallest MSEP:

a. If the MSEP of model k is smaller than that of the currently selected model (step 1),
model k becomes the new selected model. If model k was better because of a newly added
soil property from P, this soil property becomes the one selected and moves to group S
(i.e. those previously selected). If model k was better because of the removal of a previ-
ously selected soil property, the latter moves from group S to P. The procedure returns to
step 1.

b. If the MSEP of model k is greater than that of the currently selected model (step 1), there
is no more improvement, and the procedure stops. The current model is the final one,
and S contains all of the pre-selected soil properties that best predict the response
variable.

Assessment of selected models. After the selection procedure, model residuals were
graphically checked for identical and independent distribution hypotheses, as GAM can be
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sensitive to violation of distribution assumptions [31]. The total percentage of explained devi-
ance (%Dev) was measured to assess the goodness-of-fit of the selected models. To assess the

Fig 1. Predictor selection procedure using generalized additive models. P is the set of potential covariates, S is the
set of selected covariates, V is a sub-set of P that contains potential covariates not collinear with covariates in S (i.e.
already selected), MSEP() indicates the function to calculate MSEP, fj’s are functions (smooth or parametric) to represent
relationships between covariates and the response variable (Y) and CVmeans cross validation.

doi:10.1371/journal.pone.0161251.g001
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predictive quality of the selected models, the ratio of inter-quartile range to root MSEP (RPIQ)
was calculated as the ratio of the inter-quartile range (IQR) of the response variable to the
square root of the MSEP calculated according to Eq 6. RPIQ, developed by Bellon-Maurel et al.
[37], represents the degree to which the dispersion of the response variable exceeds the model’s
prediction error. Higher RPIQ indicates better predictive quality of the model.

Relative importance of selected soil properties. The relative importance of selected soil
properties was assessed by estimating the contribution of each selected soil property to the
deviance using the R package vegan [38]. To achieve this, each component of the linear predic-
tor, i.e. the transformation of each soil property by its I, poly2, poly3 or s function, was
extracted from the model, and redundancy analysis was performed between the response vari-
able and these components. Following a variance partitioning approach, the percentage of devi-
ance explained by each component was calculated using the sum of squares from an ANOVA
of the redundancy analysis result.

Results

Comparison of soil properties and cumulative respiration of cropland and
grassland
Except for bacterial 1/D, Bacterial J’ and Silt (P = 0.002, 0.079 and 0.053, respectively), soil
properties did not differ significantly between cropland and grassland soils at the 10% level of
significance between cropland and grassland (Fig 2). However, the dispersion of SOC content
was slightly larger in grassland soils than in cropland soils, as the median in grassland soils was
higher than the third quartile in cropland soils.

Regarding soil functioning, ANOVA showed significant differences (P< 0.05) between
incubation times (Fig 3). Significant differences (P< 0.05) were also observed between crop-
land and grassland at each time of incubation, except for the PE, whose difference was signifi-
cant only at 3 and 7 days (P = 0.002 and 0.007, respectively) and at 14 days at the 10% level of
significance (P = 0.069).

Quality of selected models
The selected models were able to explain large percentages of the variability in mineralisation
response variables, as %Dev ranged from 74% for the PE model to 93% for the residue and con-
trol mineralisation model (Table 1). For all models, a large percentage of explained deviance
was due to the time covariates, ranging from 33% in control soil mineralisation to 93% in
residue mineralisation. Predictive qualities of the models were more variable, ranging from
moderate (RPIQ�2) to good (RPIQ�6). RPIQ values increased in the following order: PE
(RPIQ = 2), control soil mineralisation (RPIQ = 2.9), amended soil mineralisation (RPIQ = 4),
and residue mineralisation (RPIQ = 6). Model complexity had the opposite order, as assessed
by the total degrees of freedom in the models.

Relative importance of selected soil properties in predictions of
mineralisation kinetics
All selected soil properties were significant in the models, except SOC content in PE models
(P = 0.45) (Table 1). Among selected abiotic soil properties, texture covariates were selected for
three models, but with a high relative importance only for Rs,control (8%), which was positively
related to sand content (Fig 4). SOC content in interaction with land-use history was highly
positively related to Rs,amended (13%), while the C:N ratio in interaction with land-use history
was negatively related to Rs,control variability (7%). Soil pH was selected in models for Rs,amended
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and PE, explaining 12% and 13%, respectively; however, it was negatively related to Rs,amended

and positively related to PE.
Among selected biological soil properties, molecular microbial biomass was influential only

for PE, with a positive relationship and a low relative importance (3%). None of the diversity
indexes were selected for Rr. In control incubation, a polynomial relationship with bacterial J'
in interaction with land-use history explained 44% of Rs,control variability. The relative impor-
tance of microbial diversity indexes in other models was lower: fungal 1/D, associated with a

Fig 2. Variability in soil property values in croplands and grasslands. Bottom and top whiskers of boxplots extend to
the lowest and highest values, respectively. Units of soil properties are [g.kg-1 soil] for texture variables and soil organic
carbon (SOC) content, [μg DNA.g-1 soil] for molecular biomass, [number of operational taxonomic units (OTUs)] for
bacterial and fungal richness, [pH unit] for pH and dimensionless for C:N ratio and bacterial and fungal Shannon index
(H’), evenness (J’) and inverse Simpson index (1/D). Dashed lines above boxplots indicate significant differences
between cropland and grassland, and the symbol shows the level of significance (*** P<0.001, ** 0.001<P<0.01, *
0.01<P<0.05, ° 0.05<P<0.1).

doi:10.1371/journal.pone.0161251.g002
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polynomial function, explained 9% of PE variability and less than 1% of that in Rs,amended. Fun-
gal richness was negatively related to Rs,control and explained 4% of its variability.

Fig 3. Variability in mineralisation rate and priming effect (PE) in croplands and grasslands at each sampling time.
(A) Control-soil mineralisation rate (Rs,control, mg C-CO2 g

-1 soil day-1), (B) residue mineralisation rate (Rr, mg C-CO2 g
-1 soil

day-1), (C) amended-soil mineralisation rate (Rs,amended, mg C-CO2 g
-1 soil day-1) and (D) PE (dimensionless). Bottom and top

whiskers of boxplots extend to the lowest and highest values, respectively. Dashed lines above boxplots indicate significant
differences between cropland and grassland, and the symbol shows the level of significance (*** P<0.001, **
0.001<P<0.01, * 0.01<P<0.05, ° 0.05<P<0.1). Different letters above boxplots indicate significant (P<0.05) differences
between incubation times.

doi:10.1371/journal.pone.0161251.g003
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Discussion

Quality of the selected models
Except for bacterial 1/D, bacterial J’ and silt content, there was as much variability in soil prop-
erty values and mineralisation response variables within each set of soils (cropland and grass-
land) as between the two sets, indicating that differences in the relationships built by the GAM
approach for cropland and grassland were due more to differences in processes driving C
dynamics between the land-uses than to differences in soil properties. However, the low power
of the ANOVA–due to a small dataset (n = 10 for each set)–decreased its ability to detect signif-
icant differences. Grasslands tended to have higher and more variable SOC contents than crop-
lands [39] and higher values of bacterial diversity indexes (H', J', 1/D). In terms of functioning,
PE tended to be slightly higher in croplands, which agrees with a recent study showing an
increase in PE intensity with an increase in land-use intensity [9].

Much of the variability was explained by the selected soil properties, as demonstrated by the
percentage of deviance explained by each model. Thus, the soil properties contained enough
information to explain SOC mineralisation. However, predictive quality depended more on the
model. Not surprisingly, predictive quality was linked to model complexity, as assessed by its
degrees of freedom (Table 1): the simpler the model, the higher was its predictive quality. The

Table 1. Assessment of models and covariates selected for eachmineralisation parameter.

df Variance
explained (%)

RPIQ Covariates Interactiona Relationb Significancec Relative Importanced

(%)

Control soil mineralisation
(Rs,control)

18.98 93 2.9 Time NO RF *** 33

Sand NO P3 *** 8

C:N ratio YES I *** 7

Bacterial J’ YES P3 *** 44

Amended soil mineralisation
(Rs,amended)

13.98 90 4 Time NO RF *** 60

SOC YES I *** 13

pH NO I *** 12

Fungal richness NO P2 *** 4

Fungal 1/D NO I *** <1

Residue mineralisation (Rr) 8.99 93 6 Time NO R *** 93

Silt NO I *** <1

Priming effect (PE) 19.98 74 2 Time NO RF *** 46

Clay+Fine Silt YES P2 *** 1

SOC NO I ns 1

C:N ratio YES s ** 1

pH NO I ** 13

Molecular
biomass

NO I ** 3

Fungal 1/D NO s *** 9

df, degrees of freedom; RPIQ, Ratio of inter-quartile range to root Mean Square Error of Prediction; J’, evenness; SOC, Soil Organic Carbon; 1/D, inverse

Simpson index
a Interaction with land-use?
b Type of relationship selected: RF, random factor; I, identity; P2, polynomial of degree 2; P3, polynomial of degree 3; s, smooth function
c Significance of selected covariates based on the Fisher test: *** P<0.001; ** 0.001<P<0.01; * 0.01<P<0.05; ° 0.05<P<0.1; ns (not significant) P>0.1
d Relative importance of selected covariate based on variance partitioning

doi:10.1371/journal.pone.0161251.t001
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Fig 4. Selected soil properties and associated estimated relationships for eachmineralisation parameter. (A) Control soil mineralisation
(Rs,control), (B) residue mineralisation (Rr), (C) amended soil mineralisation (Rs,amended) and (D) priming effect (PE). The x-axis represents the selected
soil property values, and the y-axis (dimensionless) represents the relative change in the mineralisation parameter when selected soil property values
vary. Units of soil properties are [g.kg-1 soil] for texture variables and soil organic carbon (SOC) content, [μg DNA.g-1 soil] for molecular biomass,
[number of operational taxonomic units (OTUs)] for fungal richness, [pH unit] for pH and dimensionless for C:N ratio, bacterial evenness (J’) and fungal
inverse Simpson (1/D). To facilitate reading, the relative change in the mineralisation parameter equals zero when the selected soil properties are at
their minima. Solid black lines represent estimated relationships between the mineralisation parameter and the selected soil properties, regardless of
land use (no interaction). Dashed and dotted black lines represent estimated relationships for cropland and grassland, respectively. Blue areas indicate
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model for PE was the most complex but had the lowest quality, suggesting that processes
involved in PE are also complex or that more relevant covariates, such as mineral nutrient
availability [40,41], were not included.

Relevance of microbial diversity indexes in explaining SOM dynamics
Microbial diversity indexes were selected for three activities describing SOM dynamics, dem-
onstrating their ability to explain variability in SOM dynamics. The absence of microbial diver-
sity indexes in the residue mineralisation model did not agree with results of a previous study
[9], which observed a large importance of fungal richness using the same substrate. Indeed, on
complex substrates such as wheat, the influence of microbial diversity may increase [42]. How-
ever, in our study, fungal communities may have been sensitive to the drying and long storage
of soils [43]. Also, Tardy et al. [9] described mineralisation as the area under the curve of CO2

emissions, which captured mineralisation dynamics throughout the incubation period. As time
is no longer needed in this model of mineralisation, other explanatory covariates can be
detected more easily. The time variable was able to explain nearly all the variability in the resi-
due mineralisation rate. In other words, variability in the residue mineralisation rate at each
sample time was relatively small (coefficient of variation = 4–14%), likely due to using only one
type of residue, and residue quality has been shown as an important driver of residue minerali-
sation [44].

Control soil mineralisation was explained better by bacterial diversity, while amended soil
mineralisation and PE were explained better by fungal diversity. This difference can be
explained by the observed activation of the fungal community in amended soil, leading to a PE
[41,45] through successional changes in microbial community structure, with a gradual
increase in the fungal:bacterial biomass ratio [46]. However, while the relative importance of
microbial diversity was high in the control soil (44%), it tended to be lower in amended soil
(4%) and for the PE (9%). Thus, while microbial diversity indexes can explain basal respiration,
they are less able to explain respiration occurring from soil amended with an organic substrate
or the PE, suggesting that both activities may depend more on microbial composition than on
taxonomic richness and evenness [9,41,47]. When diversity indexes are replaced by abun-
dances of bacterial and fungal phyla, and the same selection procedure is applied, model quality
(according to Bayesian Information Criterion (BIC)) increases for the amended soil mineralisa-
tion and PE models but decreases for the other two (S3 Table). In the PE model, 24% of the var-
iability was explained by phyla abundances, compared to only 9% when microbial diversity
indexes are used. This highlights that processes related to PE may be driven more by microbial
composition than diversity indexes.

For control soil mineralisation, bacterial evenness was the microbial diversity index selected.
As stated by Hooper et al. [10], a relationship between microbial diversity and soil processes
can be explained by i) an increased likelihood that key species will be present when richness
increases or ii) by an increase in positive interactions (complementarity or facilitation) when
diversity increases that increases rates of ecosystem processes. While indexes that include rich-
ness (richness, H’ and 1/D) can encompass both hypotheses, evenness considers only the rela-
tive abundance of each microbial group, regardless of the number of groups, and can capture
only the second hypothesis. This suggests that greater equity in the abundance of microbial
groups would increase these positive interactions. However, since all bacterial diversity indexes

the 95% confidence interval of the estimated relationships. Dots (cropland) and triangles (grassland) represent partial residuals, i.e. residuals of the
models when all selected soil properties are accounted for except for the one considered.

doi:10.1371/journal.pone.0161251.g004
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are strongly correlated with each other (S1 Fig), it is difficult to ensure that one index selected
would have the capacity to explain variability in C dynamics better than the others.

Overall, we showed that microbial diversity indexes can be relevant covariates to include in
SOM dynamics models, but that distinctions exist between bacteria and fungi and between dif-
ferent C-substrate pools. Systematically using C-labelled residues and distinguishing between
bacterial and fungal diversity in future studies may represent a promising approach to (i)
understand the complex relationship between microbial diversity and C mineralisation and (ii)
define a suitable strategy for integrating microbial-diversity parameters in SOMmodelling.
Most current models include at least two compartments to model C dynamics of residues and
SOM differently, which improves the prediction of overall C dynamics [4]. Due to differences
in physiology, bacterial and fungal communities may influence C dynamics differently,
whether individually [16] or in interaction [17,48].

Implications for integrating microbial diversity in SOM dynamics models
Perveen et al. [14] developed a promising SOM dynamics model that represents two functional
groups of microorganisms to account for interactions between residue and soil mineralisation
(i.e. the PE). One major limitation of this kind of model is the difficulty in identifying groups
given the current level of knowledge about the influence of microbial composition on soil pro-
cesses. Hence, this model remains theoretical until knowledge improves. Since microbial diver-
sity indexes appear to explain soil decomposition/mineralisation well, but composition appears
to explain PE better, i) in models integrating processes involved in the PE, microbial composi-
tion likely better represents the influence of microbial communities, while ii) in models focus-
ing only on decomposition/mineralisation processes, microbial diversity indexes may
represent well the influence of microbial diversity on C dynamics.

Observing relationships between microbial diversity indexes can help to understand the
influence of microbial diversity on C dynamics. Interestingly, the relationship between bacte-
rial diversity and control soil mineralisation seemed to depend on land-use history. These rela-
tionships for both cropland and grassland were polynomial curves that overlapped little.
Grassland soils seemed to be associated with high mineralisation rates and low bacterial even-
ness, while the opposite was observed for cropland soils. Consequently, land-use history and
bacterial evenness appear to have confounding effects. This highlights one limitation of the
method: when there is a strong relationship between covariates, it is difficult to know which
one influences the other. In this case, it is more likely that land-use management has changed
soil properties, such as bacterial diversity or SOC content, with consequences on C dynamics.
Thus, we assume that a negative relationship exists between bacterial diversity and basal soil
mineralisation. This is consistent with the negative relationship between fungal richness and
amended-soil mineralisation. Such negative relationships were unexpected, as previous studies
demonstrated positive relationships [6,7,49]. Nevertheless, the negative relationship does not
necessarily contradict these studies, which focused on total flux. Respiration can decrease due
to a decrease in the decomposition rate of the substrate or an increase in the substrate-assimila-
tion yield of microorganisms. Hypotheses exist in the literature about the influence of micro-
bial diversity on C assimilation yield [18]. C assimilation yield represents how microorganisms
control the fate of soil C, i.e. the C is either used for bacterial growth and production of micro-
bial products, such as exoenzymes or polysaccharides, or it is mineralised [50]. As patterns of
allocation and production vary among microorganisms, the positive relationship between C-
assimilation yield and microbial diversity may be due to the presence of species that efficiently
assimilate the C to produce microbial products in species-rich communities. Beyond the indi-
vidual level, this relationship may also result from an increase in positive interactions between

Microbial Diversity and Soil Carbon Dynamic

PLOS ONE | DOI:10.1371/journal.pone.0161251 August 23, 2016 14 / 20



microorganisms that leads to higher C assimilation yield overall: niche partitioning [10], com-
plementarity between enzyme producers and “cheaters” i.e. microorganisms that benefit from
decomposition products [51], leading to syntrophic relationships [52]. Predictions of SOM
dynamics models have been highly sensitive to the C assimilation yield parameter [18]. The
hypothesis of increased C assimilation yield with increased microbial diversity is of great inter-
est, as it may help to increase model accuracy by calculating assimilation as a function of soil
microbial diversity. Moreover, better knowledge of this relationship could help to understand
soil’s response to climate warming, as it depends on C assimilation yield [53].

Strengths and limitations of the method
As we raised hypotheses from relationships generated by the method, studying relationships
between well-known abiotic soil properties and C dynamics was an appropriate way to investi-
gate the method’s ability to build consistent relationships. First, the properties selected were
consistent with those the literature. Overall, SOC explained 13% of C mineralisation in
amended soil. It is well established that the amount of SOC drives the amount of soil C which
is mineralised [43,54]. SOC content positively affected mineralisation, and the difference
between this relationship in croplands and grasslands likely resulted from the difference in the
dispersion of SOC content. In addition to the quantity of C substrates, the quality of SOM, esti-
mated by the C:N ratio, appeared as an important factor controlling control soil C mineralisa-
tion [43]. The negative relationship may be related to stoichiometric needs of microorganisms
for nutrients and limits to nutrient availability. Selection of soil pH for amended soil minerali-
sation and PE confirmed its importance for predicting C mineralisation. Soil pH is a well-
known factor influencing C dynamics through its impact on the biomass [55], composition
[56,57], structure and activity [58,59] of soil microbial communities. In other respects, the
influence of pH on N dynamics [60,61] and other soil chemical properties is also well estab-
lished [55,59,62]. Overall, these results demonstrate that the method enabled selecting relation-
ships between mineralisation and certain soil properties already known to influence SOM
dynamics. This is a good indicator that the method is able to select drivers of mineralisation
and build consistent relationships.

We were unable to interpret some irregular relationships, however, such as the opposite
relationships between texture and PE in croplands and grasslands. This difference is likely due
to overfitting of data, to which GAM is sensitive, rather than to true biophysical relationships.
In a dataset in which little is controlled, confounding among covariates is likely. For example,
in the control-soil mineralisation model, one could argue that confounding occurs with SOC
content because it is negatively correlated with bacterial evenness (S1 Fig). Forcing the model
to include SOC content produced a model similar to the one for amended-soil mineralisation,
but with much lower quality (BIC = -78 instead of -235, results not shown). Following these
observations and comments by Burnham and Anderson [63], there are three major limitations
of the approach used:

1. Results could be in a local minimum: the selection procedure would take too much time to
test all possible models and cannot prevent models from falling into local minima. In prac-
tice, the model obtained cannot be improved but is not the best of all possible models.

2. There is no such thing as a "best model": the selection procedure improves models by opti-
mising a criterion (in this study, the MSEP) at each step. In practice, it is likely that several
models have similar criterion values and that the model selected is not significantly better
than others. Consequently, models with similar quality may exist.
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3. As stated, since relationships were constructed statistically, biophysical interpretations of
them may not exist.

Consequently, despite the strengths of the method, the relationships it identified should be
considered with caution. Future studies should confirm or disconfirm these relationships and
raised hypotheses should be tested in more experimental studies.

Conclusion
By using an innovative statistical data-mining approach on a dataset combining a broad sample
of studied soils with high variability in soil properties and an incubation experiment monitor-
ing C dynamics according to C source, we aimed to i) investigate whether microbial diversity
indexes could help explain variability in C dynamics, ii) construct quantitative relationships
between these indexes and variables describing C dynamics and iii) assess implications of these
relationships for integrating microbial diversity in SOM dynamics models.

Despite some limitations of the approach, by monitoring SOM and residue mineralisation
independently, we demonstrated that microbial diversity indexes could constitute good covari-
ates to integrate in SOM dynamics models, depending on the C source and the processes con-
sidered. Specifically, microbial diversity indexes can help explain soil decomposition/
mineralisation, while the PE seemed to be associated much more with microbial composition.
Thus, we suggest two complementary approaches for future research. First, continue ongoing
investigation of relationships between microbial composition, functional traits and soil C
dynamics. More detailed knowledge should help to better represent microbial diversity and its
role in mechanistic SOM dynamics models, especially those including the PE. Second, we
argue that including microbial diversity indexes in mechanistic models could be as pertinent as
including microbial composition. Quantitative relationships provided by our approach can
help discover ways to do the latter. We suggest further investigation of the relationship between
microbial diversity indexes and C-assimilation yield. One possibility is that the C-assimilation
yield parameter could be modulated as a function of microbial diversity indexes in models.

Supporting Information
S1 Fig. Correlation matrix between soil properties. Upper part of the matrix: Pearson corre-
lation coefficients. Size of figures is proportional to the absolute value of the coefficient. Lower
part of the matrix: scatter plots between soil properties. Solid red lines represent smoothed esti-
mates of the relationship between soil properties.
(TIFF)

S1 Table. Information about soil sample locations. AMT, Average Monthly Temperature;
AMP, Average Monthly Precipitation; AMETP, Average Monthly Evapotranspiration. a Coor-
dinates follow the Lambert-93 projection.
(XLSX)

S2 Table. Minimal dataset of response variables and covariates used in the study. AMT,
Average Monthly Temperature; AMP, Average Monthly Precipitation; AMETP, Average
Monthly Evapotranspiration; SOC, Soil Organic Carbon; C/N, soil Carbon/Nitrogen ratio; H',
Shannon index; J', Evenness; 1/D, inverse Simpson index; Rs, Respiration rate during control
(Rs,control) and amended (Rs,amended) soils mineralisation; Rr, Respiration rate during residue
mineralisation. Coordinates (longitude and latitude) follow the Lambert-93 projection.
(XLSX)
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S3 Table. Comparison of quality between microbial diversity index-based models and
phyla-based models. nVar, Total number of selected covariates; df, degrees of freedom; BIC,
Bayesian Information Criterion; nDiv, Number of selected microbial diversity covariates
(indexes or phyla abundance); %Div, Total percentage of variance explained by all selected
microbial diversity covariates. a Models selected with microbial diversity indexes as potential
microbial diversity covariates. b Models selected with phyla abundance as potential microbial
diversity covariates. c Differences between BICs of phyla abundance-based models and micro-
bial diversity index-based models. A positive value means a model based on phyla was better,
while a negative value means a model based on diversity indexes was better.
(XLSX)
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