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Abstract. We propose a tableau-based decision procedure for the full
Alternating-time Temporal Logic ATL

∗. We extend our procedure for
ATL

+ in order to deal with nesting of temporal operators. As a side
effect, we obtain a new and conceptually simple tableau method for
CTL

∗. The worst case complexity of our procedure is 3EXPTIME, which
is suboptimal compared to the 2EXPTIME complexity of the prob-
lem. However our method is human-readable and easily implementable.
A web application and binaries for our procedure are available at http://
atila.ibisc.univ-evry.fr/tableau ATL star/.

Keywords: Alternating-time temporal logic · ATL
∗ · Automated theo-

rem prover · Satisfiability · Tableaux

1 Introduction

The logic ATL∗ is the full version of the Alternating-time Temporal Logic intro-
duced in [1] in order to describe open systems, that is systems that can interact
with their environment. Thus ATL and ATL∗ are the multi-agent versions of the
branching-time temporal logics CTL and CTL∗. Indeed, in ATL and ATL∗ the
environment is modelled by an extra agent e interfering with the system com-
ponents (the remaining agents) who need to succeed their task no matter how
e responds to their actions. ATL∗ is an important extension of ATL and ATL+

(an intermediate logic between ATL and ATL∗) since it allows one to express
useful properties such as fairness constraints. Such properties can be expressed
only if nesting of temporal operators is possible, which is not the case in ATL

and ATL+. It is worth noting that ATL+ only permits Boolean combination of
unnested temporal operators.

The problem studied in this paper is about deciding the satisfiability of ATL∗

formulae. Models for ATL∗ formulae are directed graphs called concurrent game
structures where transitions between two states depend on the chosen action
of each agent. In general, there exists two ways for deciding the satisfiability:
using automata, as done in [8] or using tableaux; as we do here. In this paper,

All proofs of lemmas, propositions and theorems, as well as complete examples can
be found in the version with appendices at https://www.ibisc.univ-evry.fr/∼adavid/
fichiers/cade15 tableaux atl star long.pdf.
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we propose the first tableau-based decision procedure for ATL∗, as well as the
first implementation of a decision procedure for ATL∗, which is also the first
implementation of a tableau-based decision procedure for ATL+. We extend our
procedure for ATL+ [2] following the natural basic idea: separate present and
future. However, this extension is not trivial since the separation into present
and future is more subtle than for ATL+ and needs to keep track of path formulae
so as to be able to check eventualities. We think that our tableau-based decision
procedure for ATL∗ is easy to understand and therefore also provides a new
tableau-based decision procedure for CTL∗ which is conceptually simple. We
prove that our procedure runs in at most 3EXPTIME, which is suboptimal
(the optimal worst case complexity has been proved to be 2EXPTIME in [8]).
However, we do not know of any specific cases where our procedure runs in
3EXPTIME, which leaves the possibility that it is optimal, after all.

This paper is organized as follows: Sect. 2 gives the syntax and semantics for
ATL∗. The general structure of the tableau-based decision procedure for ATL∗

that we propose can be found in Sect. 3 and details of the procedure in Sects. 4,
5 and 6. Theorems about soundness, completeness and complexity are given in
Sect. 7 with their sketch of proof. The Sect. 8 is about the implementation of our
procedure. The paper ends with some concluding remarks indicating also some
possible directions of future research.

2 Syntax and Semantics of ATL
∗

ATL∗ can be seen as an extension of the computational tree logic (CTL∗) [5]
where the path quantifiers E – there exists a path – and A – for all paths –
are replaced by 〈〈A〉〉 and [[A]] where A is a coalition of agents. Intuitively 〈〈A〉〉Φ
means “There exists a strategy for the coalition A such that, no matter which
strategy the remaining agents follow, Φ holds”. On the other hand, [[A]]Φ means
“For all strategies of the coalition A, there exists a strategy of the remaining
agents such that Φ holds”. Also, whereas transition systems or Kripke structures
are used in order to evaluate CTL∗ formulae, concurrent game models (CGM),
whose definition is given in the Sect. 2.2 are used to evaluate ATL* formulae.

2.1 Syntax of ATL
∗

Before giving the syntax of ATL∗, we recall that, as for CTL∗ or LTL, ©, � and
U mean “Next”, “Always” and “Until” respectively. In this paper, we give the
syntax in negation normal form over a fixed set P of atomic propositions and
primitive temporal operators © “Next”, � “Always” and U “Until”. The syntax
of ATL∗ in negation normal form is defined as follows:

State formulae:ϕ := l | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | 〈〈A〉〉Φ | [[A]]Φ (1)

Path formulae:Φ := ϕ | ©Φ | �Φ | (ΦUΦ) | (Φ ∨ Φ) | (Φ ∧ Φ) (2)

where l ∈ P ∪ {¬p | p ∈ P} is a literal, A is a fixed finite set of agents and
A ⊆ A is a coalition. Note that ⊤ := p ∨ ¬p, ⊥ := ¬⊤, ¬〈〈A〉〉Φ := [[A]]¬Φ.
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The temporal operator “Sometimes” ♦ can be defined as ♦ϕ := ⊤ Uϕ and the
temporal operator “Release” as ψ Rϕ := �ϕ ∨ ϕU(ϕ ∧ ψ). When unnecessary,
parentheses can be omitted.

In this paper, we use ϕ, ψ, η to denote arbitrary state formulae and Φ, Ψ

to denote path formulae. By an ATL∗ formula we will mean by default a state
formula of ATL∗.

2.2 Concurrent Game Models

As for ATL or ATL+, ATL∗ formulae are evaluated over concurrent game mod-
els. Concurrent games models are transition systems where each transition to a
unique successor state results from the combination of actions chosen by all the
agents (components and/or environment) of the system.

Notation: Given a set X, P(X) denotes the power set of X.

Definition 1 (Concurrent game model and structure). A concurrent
game model (in short CGM) is a tuple M = (A, S, {Acta}a∈A, {acta}a∈A, out, P, L)
where

– A = {1, . . . , k} is a finite, non-empty set of players (agents),
– S is a non-empty set of states,
– for each agent a ∈ A, Acta is a non-empty set of actions.

For any coalition A ⊆ A we denote ActA :=
∏

a∈A Acta and use σA to denote
a tuple from ActA. In particular, ActA is the set of all possible action vectors
in M.

– for each agent a ∈ A, acta : S → P(Acta) \ {∅} defines for each state s the
actions available to a at s,

– out is a transition function assigning to every state s ∈ S and every action
vector σA = {σ1, . . . , σk} ∈ ActA a state out(s, σA) ∈ S that results from s if
every agent a ∈ A plays action σa, where σa ∈ acta(s) for every a ∈ A.

– P is a non-empty set of atomic propositions.
– L : S → P(P) is a labelling function.

The sub-tuple S = (A, S, {Acta}a∈A, {acta}a∈A, out) is called a concurrent
game structure (CGS).

2.3 Semantics of ATL
∗

In order to give the semantics of ATL∗, we use the following notions. Although
they are the same as those in [2], we recall them here to make the paper self-
contained.

Computations. A play, or computation, is an infinite sequence s0s1s2 · · · ∈ S
ω

of states such that for each i ≥ 0 there exists an action vector σA = 〈σ1, . . . , σk〉
such that out(si, σA) = si+1. A history is a finite prefix of a play. We denote
by PlaysM and HistM respectively the set of plays and set of histories in M.
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For a state s ∈ S, we use PlaysM(s) and HistM(s) as the set of plays and set of
histories with initial state s. Given a sequence of states λ, we denote by λ0 its
initial state, by λi its (i + 1)th state, by λ≤i the prefix λ0 . . . λi of λ and by λ≥i

the suffix λiλi+1 . . . of λ. When λ = λ0 . . . λℓ is finite, we say that it has length
ℓ and write |λ| = ℓ. Also, we set last(λ) = λℓ.

Strategies. A strategy for an agent a in M is a mapping Fa : HistM → Acta
such that for all histories h ∈ HistM, we have Fa(h) ∈ acta(last(h)). This kind of
strategies is also known as “perfect recall” strategies. We denote by StratM(a)
the set of strategies of agent a. A collective strategy of a coalition A ⊆ A is a
tuple (Fa)a∈A of strategies, one for each agent in A. We denote by StratM(A) the
set of collective strategies of coalition A. A play λ ∈ PlaysM is consistent with
a collective strategy FA ∈ StratM(A) if for every i ≥ 0 there exists an action
vector σA = 〈σ1, . . . , σk〉 such that out(λi, σA) = λi+1 and σa = Fa(λ≤i) for all
a ∈ A. The set of plays with initial state s that are consistent with FA is denoted
PlaysM(s, FA). For any coalition A ⊆ A and a given state s ∈ S in a given CGM
M, an A -co-action at s in M is a mapping ActcA : ActA → ActA\A that assigns
to every collective action of A at the state s a collective action at s for the
complementary coalition A \ A. Likewise, an A -co-strategy in M is a mapping
F c
A : StratM(A) × HistM → ActA\A that assigns to every collective strategy of A

and every history h a collective action at last(h) for A \ A, and PlaysM(s, F c
A ) is

the set of plays with initial state s that are consistent with F c
A .

Semantics. The semantics of ATL∗ is the same as the one of CTL∗ [5] (modulo
CGM as intended interpretations) with the exception of the two following items:

– M, s |= 〈〈A〉〉Φ iff there exists an A-strategy FA such that, for all computations
λ ∈ PlaysM(s, FA), M, λ |= Φ

– M, s |= [[A]]Φ iff there exists an A-co-strategy F c
A such that, for all computa-

tions λ ∈ PlaysM(s, F c
A ), M, λ |= Φ

Valid, satisfiable and equivalent formulae in ATL∗ are defined as usual.

3 Tableau-Based Decision Procedure for ATL
∗

In this section, we give the general description of our tableau-based decision pro-
cedure for ATL∗ formulae. The different steps of the procedure are summarized
in this section and Fig. 1 and then detailed in the next three sections.

From an initial formula η, the tableau-based decision procedure for ATL∗

that we propose attempts to build step-by-step a directed graph from which it
is possible to extract a CGM for η. This attempt will lead to a failure if η is not
satisfiable.

Nodes of that graph are labelled by sets of state formulae and are partitioned
into two categories: prestates and states.
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Fig. 1. Overview of the tableau-based decision procedure for ATL
∗

A prestate can be seen as a node where the information contained in its
formulae is “implicit”. When we decompose all the formulae of a prestate and
saturate the prestate, we obtain one or several states as successor nodes. States
have the particularity of containing formulae of the form 〈〈A〉〉©ϕ or [[A]]©ϕ

from which it is possible to compute the next steps of the tableau creation. All
prestates have states as successors and directed edges between them are of the
form =⇒; on the other hand, all states have prestates as successors and directed
edges between them are of the form

σA−→ where σA is an action vector.
The procedure is in two phases: the construction phase and the elimination

phase. First, we create an initial node, that is a prestate containing the initial
formula η, and we construct the graph by expanding prestates into states via
a rule called (SR) and by computing prestates from states with a rule called
(Next). The rule (SR) decomposes each ATL∗ formula of a prestate, and then
saturates the prestate into new states. Explanation of rules (SR) and (Next)
can be found in Sects. 4 and 5, respectively.

The procedure avoids creation of duplicated nodes (a form of loop check),
which ensures termination of the procedure. The construction phase ends when
no new states can be added to the graph. The graph obtained at the end of the
construction phase is called the initial tableau for η, also noted T η

0 .
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The second phase of the procedure eliminates via the rule (ER1) all nodes
with missing successors, that is prestates with no more successors at all or states
with at least one missing action vector on its outcome edges. Also, by means of
a rule called (ER2) it eliminates all states with “unrealized eventualities”, that
is states that cannot ensure that all the objectives it contains will be eventually
fulfilled. The graph obtained at the end of the elimination phase of the procedure
is called the final tableau for η, also noted T η. Explanation of rules (ER1) and
(ER2) can be found in Sect. 6.

Our tableau-based decision procedure for ATL∗ deals with what [6] calls
“tight satisfiability”: the set A of agents involved in the tableau (and the CGMs
it tries to build) is the set of agents present in the input formula.

4 Construction Phase: Decomposition and Saturation

Decomposition of ATL∗ Formulae All ATL∗ formulae can be partitioned
into four categories: primitive formulae, α-formulae, β-formulae and γ-formulae.
Primitive formulae correspond to the “simplest formulae” in the sense that they
cannot be decomposed. These formulae are ⊤,⊥, the literals and all ATL∗ suc-
cessor formulae, of the form 〈〈A〉〉©ψ or [[A]]©ψ where ψ is called the successor
component of 〈〈A〉〉©ψ or [[A]]©ψ respectively. Every non-primitive formula must
be decomposed into primitive formulae. α-formulae are of the form ϕ ∧ ψ where
ϕ and ψ are α-components while β-formulae are of the form ϕ ∨ ψ where ϕ and
ψ are β-components. Their decomposition is classical. Other formulae, that is
of the form 〈〈A〉〉Φ or [[A]]Φ, where Φ �= ©ψ, are γ-formulae. This notion firstly
introduced in [2] reveals quite useful also in the more expressive context of ATL∗.
Decomposition of these formulae is trickier than for α- and β-formulae. Indeed,
we will need to extract all possibilities of truth encapsulated in γ-formula ξ,
which concretely aims at defining one or several conjunctions of primitive for-
mulae such that their disjunction is equivalent to the γ-formulae ξ (see lemma 1).

Decomposition of γ-Formulae. This subsection contains the heart of the
decision procedure for ATL∗, indeed the main difference with our decision pro-
cedure for ATL+ lies in the treatment of γ-formulae. The first difficulty is that
quantifiers 〈〈A〉〉 or [[A]] cannot distribute over Boolean connectors as seen in [2].
An additional difficulty specific to ATL∗ is the fact that it is now necessary to also
deal with nesting of temporal operators, resulting in a second level of recurrence
when the temporal operators � and U are encountered in the decomposition
function described below.

In temporal logics, e.g. LTL, the operator U is considered as an eventuality
operator, that is an operator that promises to verify a given formula at some
instant/state. When we write λ |= ϕ1 Uϕ2, where ϕ1 and ϕ2 are state formulae,
we mean that there is a state λi of the computation λ where ϕ2 holds and ϕ1

holds for all the states of λ preceding λi. So, once the property ϕ2 is verified,
we do not need to take care of ϕ1, ϕ2 and ϕ1 Uϕ2 any more. We say that
ϕ1 Uϕ2 is realized. However, if ϕ1 and ϕ2 are path formulae, e.g. �Φ1 and �Φ2

respectively, state λi is such that from it Φ2 must hold forever – we say that �Φ2
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is “initiated” at λi, in the sense that we start to make �Φ2 true at λi –, and
for every computation λ≥j , where j < i, �Φ1 must hold. So Φ1 has to be true
forever, that is even after �Φ2 had been initiated. This explains the fact that at
a possible state s the path formula ϕ1 Uϕ2 may become ϕ1 Uϕ2 ∧ ϕ1 when ϕ1 is
a path formula and we postpone ϕ2. Note that ϕ1 is then also initiated at s. We
now face the problem of memorizing the fact that a path formula Φ is initiated
since path formulae cannot be stored directly in a state. That is why, during
the decomposition of γ-formulae, we add a new set of path formulae linked to a
γ-component and the current state.

The definition and general treatment of eventualities in our procedure are
given in Sect. 6.

In order to decompose γ-formulae ϕ = 〈〈A〉〉Φ or ϕ = [[A]]Φ, we analyse the
path formula Φ in terms of present (current state) and future (next states). This
analysis is done by a γ-decomposition function dec : ATL∗

p → P(ATL∗
s × ATL∗

p ×
P(ATL∗

p)) where ATL∗
p is the set of ATL∗ path formulae and ATL∗

s is the set of
ATL∗ state formulae. Intuitively, the function dec assigns to the path formula Φ,
a set of triples 〈ψ, Ψ, S〉 where ψ is a state formula true at the current state, Ψ

is a path formula expressing what must be true at next states and S is the set
of path formulae initiated at the current state during the γ-decomposition This
set S will be used during the elimination phase to determine if eventualities are
realized or not, see Sect. 6.

We first define two operators ⊗ and ⊕ between two sets S1 and S2 of triples.

⋆ S1 ⊗S2 := {〈ψi

.
∧ ψj , Ψi

.
∧ Ψj , Si ∪Sj〉 | 〈ψi, Ψi, Si〉 ∈ S1, 〈ψj , Ψj , Sj〉 ∈ S2}

⋆ S1 ⊕S2 := {〈ψi

.
∧ ψj , Ψi

.
∨ Ψj , Si ∪Sj〉 | 〈ψi, Ψi, Si〉 ∈ S1, 〈ψj , Ψj , Sj〉 ∈ S2,

Ψi �= ⊤, Ψj �= ⊤}

The function dec is defined by induction on the structure of path formula Φ

as follows:

⋆ dec(ϕ) = {〈ϕ,⊤, ∅〉} for any ATL∗ state formula ϕ

⋆ dec(©Φ1) = {〈⊤, Φ1, ∅〉} for any path formula Φ1

⋆ dec(�Φ1) = {〈⊤,�Φ1, {Φ1}〉} ⊗ dec(Φ1)
⋆ dec(Φ1 UΦ2) = ({〈⊤, Φ1 UΦ2, {Φ1}〉} ⊗ dec(Φ1)) ∪ ({〈⊤,⊤, {Φ2}〉} ⊗ dec(Φ2))
⋆ dec(Φ1 ∧ Φ2) = dec(Φ1) ⊗ dec(Φ2)
⋆ dec(Φ1 ∨ Φ2) = dec(Φ1) ∪ dec(Φ2) ∪ (dec(Φ1) ⊕ dec(Φ2))

Note that the definition of the function dec is based on the fixed-point equiv-
alences of LTL [4]: �Ψ ≡ Ψ ∧ ©�Ψ and ΦUΨ ≡ Ψ ∨ (Φ ∧ ©(ΦUΨ)).

The operators
.
∧ and

.
∨ correspond respectively to the operators ∧ and ∨

where the associativity, commutativity, idempotence and identity element prop-
erties are embedded in the syntax. The aim of both

.
∧ and

.
∨ is to automatically

transform resultant formulae in conjunctive normal form without redundancy,
and therefore ensures the termination of our tableau-based decision procedure.
For instance, when applying the function dec on �♦Φ∧♦Φ we may obtain a path
formula �♦Φ ∧ ♦Φ ∧ ♦Φ and applying again the function dec on the so-obtained
path formula will return �♦Φ∧♦Φ∧♦Φ∧♦Φ, and so on forever. Also when the
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formula is complicated with ∧ and ∨ embedded in temporal operators, we may
not be able to define which part of a path formula is identical to another one. We
avoid these unwanted behaviours with our use of

.
∧ and

.
∨ and the transformation

of any new path formula in conjunctive normal form without redundancies.
Now, let ζ = 〈〈A〉〉Φ or ζ = [[A]]Φ be a γ-formula to be decomposed. Each triple

〈ψ, Ψ, S〉 ∈ dec(Φ) is then converted to a γ-component γc(ψ, Ψ, S) as follows:

γc(ψ, Ψ, S) = ψ if Ψ = ⊤ (3)

γc(ψ, Ψ, S) = ψ ∧ 〈〈A〉〉©〈〈A〉〉Ψ if ζ is of the form 〈〈A〉〉Φ, (4)

γc(ψ, Ψ, S) = ψ ∧ [[A]]©[[A]]Ψ if ζ is of the form [[A]]Φ (5)

and a γ-set γs(ψ, Ψ, S) = S.
The following key lemma claims that every γ-formula is equivalent to the

disjunction of its γ-components.

Lemma 1. For any ATL∗ γ-formula ζ = 〈〈A〉〉Φ or ζ = [[A]]Φ

1. Φ ≡
∨

{ψ ∧ ©Ψ | 〈ψ, Ψ, S〉 ∈ dec(Φ)}
2. 〈〈A〉〉Φ ≡

∨

{〈〈A〉〉(ψ ∧ ©Ψ) | 〈ψ, Ψ, S〉 ∈ dec(Φ)}, and
[[A]]Φ ≡

∨

{[[A]](ψ ∧ ©Ψ) | 〈ψ, Ψ, S〉 ∈ dec(Φ)}
3. 〈〈A〉〉Φ ≡

∨

{γc(ψ, Ψ, S) | 〈ψ, Ψ, S〉 ∈ dec(Φ)}

Example 1. (Decomposition of θ = 〈〈1〉〉((�♦q∨♦r)∧(♦q∨♦r))). First, we apply
the decomposition function to the path formula Φ = (�♦q ∨♦r)∧ (♦q ∨♦r), see
Fig. 2. We recall that ♦ϕ ≡ ⊤ Uϕ. It is worth noting that p and r can be replaced
by any state formulae without affecting the basic structure of the computation
of the function dec.

Then, for instance, from the triple 〈r,�♦q ∧♦q, {r,♦q}〉 of dec(Φ), we obtain
the γ-component γc(r,�♦q∧♦q, {r,♦q}) = r∧〈〈1〉〉©〈〈1〉〉(�♦q∧♦q) and the γ-set
γs(r,�♦q ∧♦q, {r,♦q}) = {r,♦q}; from the triple 〈⊤,�♦q ∧♦q, {♦q}〉 we obtain
γc(⊤,�♦q∧♦q, {♦q}) = 〈〈1〉〉©〈〈1〉〉(�♦q∧♦q) and γs(⊤,�♦q∧♦q, {♦q}) = {♦q}.

Closure. The closure cl(ϕ) of an ATL∗ state formula ϕ is the least set of ATL∗

formulae such that ϕ,⊤, ⊥ ∈ cl(ϕ), and cl(ϕ) is closed under taking successor,
α-, β- and γ-components of ϕ. For any set of state formulae Γ we define

cl(Γ ) =
⋃

{cl(ψ) | ψ ∈ Γ} (6)

We denote by |ψ| the length of ψ and by ||Γ || the cardinality of Γ .

Lemma 2. For any ATL∗ state formula ϕ, ||cl(ϕ)|| < 222|ϕ|

.

Sketch of proof. The double exponent, in the size of the ϕ, of the closure comes
from the fact that, during decomposition of γ-formulae, path formulae are put
in disjunctive normal form. We recall that this form is necessary to ensure the
termination of our procedure.
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Fig. 2. Function dec applied on the path formula 〈〈1〉〉((�♦q ∨ ♦r) ∧ (♦q ∨ ♦r))

Full expansions of sets of ATL∗ formulae. Once we are able to decom-
pose into components every non-primitive ATL∗ state formulae, it is possible to
obtain full expansions of a given set of ATL∗ state formulae using the following
definition:

Definition 2. Let Γ , Δ be sets of ATL∗ state formulae and Γ ⊆ Δ ⊆ cl(Γ ).

1. Δ is patently inconsistent if it contains ⊥ or a pair of formulae ϕ and ¬ϕ.
2. Δ is a full expansion of Γ if it is not patently inconsistent and satisfies the

following closure conditions:
– if ϕ ∧ ψ ∈ Δ then ϕ ∈ Δ and ψ ∈ Δ;
– if ϕ ∨ ψ ∈ Δ then ϕ ∈ Δ or ψ ∈ Δ;
– if ϕ ∈ Δ is a γ-formula, then at least one γ-component of ϕ is in Δ

and exactly one of these γ-components, say γc(ψ, Ψ, S), in Δ, denoted
γl(ϕ, Δ), is designated as the γ-component in Δ linked to the γ-formula
ϕ, as explained below. We also denote by γsl(ϕ, Δ) the set of path formulae
γs(ψ, Ψ, S), which is linked to the γ-component γl(ϕ, Δ)

The set of all full expansions of Γ is denoted by FE(Γ ).

Proposition 1. For any finite set of ATL∗ state formulae Γ :
∧

Γ ≡
∨

{

∧

Δ | Δ ∈ FE(Γ )
}

.

The proof easily follows from Lemma 1.
The rule (SR) adds to the tableau the set of full expansions of a prestate Γ

as successor states of Γ .
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Rule (SR). Given a prestate Γ , do the following:

1. For each full expansion Δ of Γ add to the pretableau a state with label Δ.
2. For each of the added states Δ, if Δ does not contain any formula of the form

〈〈A〉〉©ϕ or [[A]]©ϕ, add the formula 〈〈A〉〉©⊤ to it;
3. For each state Δ obtained at steps 1 and 2, link Γ to Δ via a =⇒ edge;
4. If, however, the pretableau already contains a state Δ′ with label Δ, do not

create another copy of it but only link Γ to Δ′ via a =⇒ edge.

5 Construction Phase: Dynamic Analysis of Successor

Formulae

We recall that the considered agents are those explicitly mentioned in the initial
formula η. The rule (Next) creates successor prestates to a given state, say
Δ, so that the satisfiability of Δ is equivalent to the satisfiability of all the
prestates. In our tableau construction procedure, choosing one of the successor
formulae contained in Δ is considered as a possible action for every agent. Then
each possible action vector is given a set of formulae corresponding to the choice
collectively made by every agent. More details about the rationale behind the
rule (Next) can be found in [3,6]. Moreover, it is worthwhile noticing that the
rule (Next) is done in such a way so that any created prestate contains at most
one formula of the form [[A′]]©ψ, where A′ �= A.

Rule (Next). Given a state Δ, do the following, where σ is a shorthand for σA:

1. List all primitive successor formulae of Δ in such a way that all successor
formulae of the form 〈〈A〉〉Φ precede all formulae of the form [[A′]]Φ where
A′ �= A, which themselves precede all formulae of the form [[A]]Φ; let the
result be the list

L = 〈〈A0〉〉©ϕ0, . . . , 〈〈Am−1〉〉©ϕm−1,

[[A′
0]]©ψ0, . . . , [[A

′
l−1]]©ψl−1, [[A]]©μ0, . . . , [[A]]©μn−1

Let rΔ = max{m + l, 1}; we denote by D(Δ) the set {0, . . . , rΔ − 1}|A|.
Then, for every σ ∈ D(Δ), denote N(σ) := {i | σi � m}, where σi is the ith
component of the tuple σ, and let co(σ) := [

∑

i∈N(σ)(σi − m)] mod l.

2. For each σ ∈ D(Δ) create a prestate:

Γσ = {ϕp | 〈〈Ap〉〉©ϕp ∈ Δ and σa = p for all a ∈ Ap}

∪ {ψq | [[A′
q]]©ψq ∈ Δ, co(σ) = q and A − A′

q ⊆ N(σ)}

∪ {μr | [[A]]©μr ∈ Δ}

If Γσ is empty, add ⊤ to it. Then connect Δ to Γσ with
σ

−→.
If, however, Γσ = Γ for some prestate Γ that has already been added to the
initial tableau, only connect Δ to Γ with

σ
−→.
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Example 2. We suppose a state containing the following successor formulae, that
we arrange in the following way, where the first line of numbers corresponds to
positions among negative successor formulae, and the second line corresponds to
positions among successor formulae, with A �= A.

L =
0

〈〈1〉〉©〈〈1〉〉(�♦q ∧ ♦q),

0
1

[[1]]©[[1]]�¬q,

1
2

[[2]]©[[2]]�♦s, [[1, 2]]©¬q

The application of the rule (Next) on L gives the following results:

σ N(σ) co(σ) Γ (σ) σ N(σ) co(σ) Γ (σ)
0, 0 ∅ 0 〈〈1〉〉(�♦q ∧ ♦q),¬q 1, 2 {1, 2} 1 [[1]]�¬q, ¬q

0, 1 {2} 0 〈〈1〉〉(�♦q ∧ ♦q), [[2]]�♦s,¬q 2, 0 {1} 1 [[1]]�¬q, ¬q

0, 2 {2} 1 〈〈1〉〉(�♦q ∧ ♦q),¬q 2, 1 {1, 2} 1 [[1]]�¬q, ¬q

1, 0 {1} 0 ¬q 2, 2 {1, 2} 0 [[2]]�♦s,¬q

1, 1 {1, 2} 0 [[2]]�♦s,¬q

6 Elimination Phase

The elimination phase also works step-by-step. In order to go through one step
to another we apply by turns two elimination rules, called (ER1) and (ER2),
until no more nodes can be eliminated. The rule (ER1) detects and deletes nodes
with missing successor, while the rule (ER2) detects and delete states that do
not realize all their eventualities. At each step, we obtain a new intermediate
tableau, denoted by T η

n . We denote by Sη
n the set of nodes (states and prestates)

of the intermediate tableau T η
n .

At the end of the elimination phase, we obtain the final tableau for η, denoted
by T η. It is declared open if the initial node belongs to Sη, otherwise closed.
The procedure for deciding satisfiability of η returns “No” if T η is closed, “Yes”
otherwise.

Remark 1. Contrary to the tableau-based decision procedure for ATL+, we do
not eliminate all the prestates at the beginning of the elimination phase. We
eliminate them with the rule (ER1) only if necessary. This does not have any
effect on the result of the procedure, nor any relevant modification in the sound-
ness and completeness proofs, but it makes implementation quicker and easier.

Rule (ER1). Let Ξ ∈ Sη
n be a node (prestate or state).

– In the case where Ξ is a prestate: if all nodes Δ with Ξ =⇒ Δ have been
eliminated at earlier stages, then obtain T η

n+1 by eliminating Ξ from T η
n .

– In the case where Ξ is a state: if, for some σ ∈ D(Ξ), the node Γ with

Ξ
σ

−→ Γ has been eliminated at earlier stage, then obtain T η
n+1 by eliminating

Ξ from T η
n .

In order to define the rule (ER2), we first need to define what is an eventu-
ality in the context of ATL∗ and then define how to check whether eventualities
are realized or not.
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Eventualities. In our context, we consider all γ-formulae as potential eventu-
alities. We recall that a γ-formula is of the form 〈〈A〉〉Φ or [[A]]Φ where Φ �= ©ϕ.
When constructing a tableau step-by-step as we do in our procedure, it is pos-
sible to postpone forever promises encapsulated in operators such as U as far
as we keep promising to satisfy them. We consider that a promise, which is a
path formula, is satisfied (or realized) once it is initiated at the current state,
which corresponds to an engagement to keep it true if necessary, for any com-
putation starting at that state. So we want to know at a given state and for a
given formula whether all promises (or eventualities) are realized. This is the
role of the function Realized: ATL∗

p × P(ATL∗
s ) × P(ATL∗

p) → B, where B is the
set {true, false}. The first argument of the function Realized is the path formula
to study, the second argument is a set of state formulae Θ, and the third argu-
ment is a set of path formulae on which one is “engaged”. This third argument
is exactly what is added with respect to ATL+ treatment. For our purpose, to
know whether a potential eventuality is realized, we use the set Θ to represent
the state containing the γ-formula and the set S = γsl(Φ, Θ) obtained during
the decomposition of Φ and the full expansion of Θ. This last set S is computed
in Sect. 4 and corresponds to the set of path formulae initiated in the current
state Θ. The definition of Realized is given by recursion on the structure of Φ as
follows:

– Realized(ϕ, Θ, S) = true iff ϕ ∈ Θ
– Realized(Φ1 ∧ Φ2, Θ, S) = Realized(Φ1, Θ, S) ∧ Realized(Φ2, Θ, S)
– Realized(Φ1 ∨ Φ2, Θ, S) = Realized(Φ1, Θ, S) ∨ Realized(Φ2, Θ, S)
– Realized(©Φ1, Θ, S) = true
– Realized(�Φ1, Θ, S) = true iff Φ1 ∈ Θ ∪ S
– Realized(Φ2 UΦ1, Θ, S) = true iff Φ1 ∈ Θ ∪ S

Remark 2. In the two last items, we use the set Θ ∪ S to handle the particular
case where Φ1 is a state formula that is already in the set Θ because of the
behaviour of another coalition of agents.

We will see with Definition 4 that if the function Realized declares that an
eventuality is not immediately realized at a given state, then we check in the
corresponding successor states whether it is realized or not. But, because of
the way γ-formulae are decomposed, an eventuality may change its form from
one state to another. Therefore, we define the notion of Descendant potential
eventuality in order to define a parent/child link between potential eventualities
and keep track of not yet realized eventualities, and finally check whether the
potential eventualities are realized at a given moment.

Definition 3. (Descendant potential eventualities). Let Δ be a state and
let ξ ∈ Δ be a potential eventuality of the form 〈〈A〉〉Φ or [[A]]Φ. Suppose the γ-
component γl(ξ, Δ) in Δ linked to ξ is, respectively, of the form ψ∧〈〈A〉〉©〈〈A〉〉Ψ
or ψ ∧ [[A]]©[[A]]Ψ . Then the successor potential eventuality of ξ w.r.t. γl(ξ, Δ)
is the γ-formula 〈〈A〉〉Ψ (resp. [[A]]Ψ) and it will be denoted by ξ1

Δ. The notion of
descendant potential eventuality of ξ of degree d, for d > 1, is defined inductively
as follows:
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– any successor eventuality of ξ (w.r.t. some γ-component of ξ) is a descendant
eventuality of ξ of degree 1;

– any successor eventuality of a descendant eventuality ξn of ξ of degree n is a
descendant eventuality of ξ of degree n + 1.

We will also consider ξ to be a descendant eventuality of itself of degree 0.

Realization of Potential Eventualities First, we give some notation:
Notation: Let L = 〈〈A0〉〉©ϕ0, . . . , 〈〈Am−1〉〉©ϕm−1, [[A

′
0]]©ψ0, . . . , [[A

′
l−1]]©

ψl−1, [[A]]©μ0, . . . , [[A]]©μn−1 be the list of all primitive successor formulae of
Δ ∈ S

η
0 , induced as part of application of (Next).

Succ(Δ, 〈〈Ap〉〉©ϕp) := {Γ | Δ
σ

−→ Γ, σa = p for every a ∈ Ap}

Succ(Δ, [[A′
q]]©ψq) := {Γ | Δ

σ
−→ Γ, co(σ) = q and A − A′

q ⊆ N(σ)}

Succ(Δ, [[A]]©μr) := {Γ | Δ
σ

−→ Γ}

Definition 4. (Realization of potential eventualities) Let Δ ∈ Sη
n be

a state and ξ ∈ Δ be a potential eventuality of the form 〈〈A〉〉Φ or [[A]]Φ. Let
S = γsl(ξ, Δ). Then:

1. If Realized(Φ, Δ, S) = true then ξ is realized at Δ in T η
n .

2. Else, let ξ1
Δ be the successor potential eventuality of ξ w.r.t. γl(ξ, Δ). If for

every Γ ∈ Succ(Δ, 〈〈A〉〉©ξ1
Δ) (resp. Γ ∈ Succ(Δ, [[A]]©ξ1

Δ)), there exists
Δ′ ∈ T η

n with Γ =⇒ Δ′ and ξ1
Δ is realized at Δ′ in T η

n , then ξ is realized at
Δ in T η

n .

Example 3. Let Δ = {〈〈1〉〉((�♦q ∨ ♦r) ∧ (♦q ∨ ♦r)), [[1]]�¬q, [[2]]�♦s, [[1, 2]]©
¬q,¬q, 〈〈1〉〉©〈〈1〉〉(�♦q ∧ ♦q), [[1]]©[[1]]�¬q, s, [[2]]©[[2]]�♦s} be a state.
If we consider the potential eventuality ξ = 〈〈1〉〉((�♦q ∨ ♦r) ∧ (♦q ∨ ♦r)) ∈ Δ,
Φ = (�♦q ∨ ♦r) ∧ (♦q ∨ ♦r) and S = γsl(ξ, Δ) = {♦q}, then we obtain the
following result:

Realized(Φ, Δ, S) = Realized(�♦q ∨ ♦r, Δ, S) ∧ Realized(♦q ∨ ♦r, Δ, S)

= Realized(�♦q, Δ, S) ∨ Realized(♦r, Δ, S) ∧

Realized(♦q, Δ, S) ∨ Realized(♦r, Δ, S)

= (true ∨ false) ∧ (false ∨ false) = false

The call of the function Realized on (Φ, Δ, S) returns false, which means that
the potential eventuality ξ is not immediately realized. Therefore, we must check
in the future if ξ can be realized or not. Concretely, we must check that the
descendant potential eventuality ξ1 = 〈〈1〉〉(�♦q ∧ ♦q) is realized at the next
states corresponding to the collective choices of all agents to satisfy the successor
formula 〈〈1〉〉©ξ1, that is states resulting from the transitions (0, 0), (0, 1) and
(0, 2), as seen in Example 2.

Rule (ER2). If Δ ∈ Sη
n is a state and contains a potential eventuality that is

not realized at Δ ∈ T η
n , then obtain T η

n+1 by removing Δ from Sη
n.
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7 Results and Sketches of Proofs

Theorem 1. The tableau-based procedure for ATL∗ is sound with respect to
unsatisfiability, that is if a formula is satisfiable then its final tableau is open.

To prove soundness, we first prove that from any satisfiable prestate we
obtain at least one satisfiable state, and we prove that from any satisfiable state
we obtain only satisfiable prestates. Second, we prove that no satisfiable prestate
or state can be eliminated via rule (ER1) or (ER2), and in particular, if the
initial prestate is satisfiable, it cannot be removed, which means that the tableau
is open.

Theorem 2. The tableau-based procedure for ATL∗ is complete with respect to
unsatisfiability, that is if a tableau for an input formula is open then this formula
is satisfiable.

To prove completeness, we construct step-by-step a special structure called
Hintikka structure from the open tableau and then we prove that a CGM satis-
fying the initial formula can be obtained from that Hintikka structure.

Theorem 3. The tableau-based procedure for ATL∗ runs in at most
3EXPTIME.

We first argue that the number of formulae in the closure of the initial formula
η is at most double exponential in the size of η (see Lemma 2). Then we have
that the number of states is at most exponential in the size of the closure of η.
Therefore the procedure runs in at most 3EXPTIME.

8 Implementation of the Procedure

We propose a prototype implementing our tableau-based decision procedure for
ATL∗, available on the following web site: http://atila.ibisc.univ-evry.fr/tableau
ATL star/.
This prototype aims at giving a user-friendly tool to the reader interested in
checking satisfiability of ATL* formulae. This is why we provide our prototype
as a web application directly ready to be used. The application allows one to
enter a formula, or to select one from a predefined list of formulae, and then
launch the computation of the corresponding tableau. It returns some statistics
about the number of prestates and states generated as well as the initial and
final tableaux for the input formula, therefore also an answer on its satisfiability.
Explanation on how to use the application is given on the web site.

Our prototype is developed in Ocaml for the computation, and in PHP and
JavaScript for the web interface. Binaries of the application can be found on the
same web page.

As the main difference between ATL and ATL∗ comes from path formulae, we
mainly focus our test on that point and use the list of tests proposed by Reynolds
for CTL∗ in [7]. This allows us to check that our application gives the same results
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in term of satisfiability and that our running times for these examples are satis-
factory. Moreover, other tests using formulae with non trivial coalitions have been
done. Nevertheless a serious benchmark has still to be done, which is a non trivial
work, left for the future. Also, we plan to compare theoretically and experimen-
tally our approach with the automata-decision based procedure of [8].

9 Conclusion

In this paper, we propose the first sound, complete and terminating tableau-
based decision procedure for ATL∗: it is easy to understand and conceptually
simple. We also provide the first implementation to decide the satisfiability of
ATL∗ formulae, among which ATL+ formulae. In future works, it would be worth-
while to implement the automata-based decision procedure proposed in [8] and
be able to make some practical comparisons. Another perspective is to implement
model synthesis with a minimal number of states for satisfiable ATL∗ formulae.
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