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Abstract

Compensated algorithms consist in computing the rounding error of individual operations
and then adding them later on to the computed result. This makes it possible to increase the
accuracy of the computed result efficiently. Computing the rounding error of an individual
operation is possible through the use of a so-called error-free transformation. In this article,
we show that it is possible to validate the result of compensated algorithms using stochastic
arithmetic. We study compensated algorithms for summation, dot product and polynomial
evaluation. We prove that the use of the random rounding mode inherent to stochastic arithmetic
does not change the accuracy of compensated methods. This is due to the fact that error-free
transformations are no more exact but still sufficiently accurate to improve the numerical quality
of results.

Keywords: CADNA, compensated algorithms, Discrete Stochastic Arithmetic, error-free trans-
formations, floating-point arithmetic, numerical validation, rounding errors.

1 Introduction

Computing power rapidly increases and Exascale computing (1018 floating-point operations per
second) should be reached in a few years. Such a computing power also means a lot of rounding
errors. Indeed, nearly all floating-point operations imply a small rounding which can accumulate
along the computation and finally an incorrect result may be produced. As a consequence, it is
fondamental to be able to give some information about the numerical quality of the computed
results. By numerical quality, we mean here the number of significant digits of the computed result
that are not affected by rounding errors.
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A well-known solution to assert the numerical quality is to use the numerical library called
CADNA [13] that implements Discrete Stochastic Arithmetic (DSA) [25] and makes it possible to
provide a confidence interval of the computed result.

Nevertheless if the accuracy of the computed result is not sufficient, it is necessary to increase
the precision of the computation. One possible technique is the use of compensated algorithms
(see [2]). These algorithms are based on error-free transformations (EFTs) that make it possible to
compute exactly the rounding errors of some elementary operations like addition and multiplication.
We now assume a floating-point arithmetic adhering to the IEEE754-2008 Standard [12]. In that
case, when using rounding to nearest, the rounding error of an addition is a floating-point number
that can be computed exactly via an EFT. But EFTs are no longer valid when used with directed
rounding (rounding to plus or minus infinity). Indeed, if we use directed rounding, the error of
a floating-point addition is not necessarily a floating-point number. However, directed rounding
is required in DSA. As a consequence, it is not clear whether we can use stochastic arithmetic to
validate some numerical codes that heavily rely on the use of error-free transformations.

In this article, we show that we can use stochastic arithmetic to validate compensated sum-
mation, dot product and Horner scheme algorithms. Concerning compensated summation, part of
this work has been done in [8]. For completeness, we recall some results obtained in Sect. 4.

In Sect. 2, we give some definitions and notations used in the sequel. In Sect. 3, we present the
principles of DSA. We show in Sect. 4 that we can still use stochastic arithmetic with compensated
summation. Section 5 is devoted to the validation of compensated dot product, while Sect. 6
concerns the validation of the compensated Horner scheme. Section 7 presents the validation of
summation in K-fold precision, the validation of dot product in K-fold precision being done in
Sect. 8. Finally, Sect. 9 is devoted to numerical experiments.

2 Definitions and notations

In this paper, we assume to work with a binary floating-point arithmetic adhering to IEEE 754
floating-point standard [12] and we suppose that no overflow occurs. The set of floating-point
numbers is denoted by F, the relative rounding error by u. For IEEE 754 double precision, we have
u = 2−53 and for single precision u = 2−24.

We denote by fl*(·) the result of a floating-point computation, where all operations inside
parentheses are done in floating-point working precision with a directed rounding (that is to say
toward −∞ or +∞). Floating-point operations in IEEE 754 satisfy [11]
∃ ε1 ∈ R, ε2 ∈ R such that

fl*(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2) for ◦ = {+,−} and |εν | ≤ 2u. (2.1)

As a consequence,

|a ◦ b− fl*(a ◦ b)| ≤ 2u|a ◦ b| and |a ◦ b− fl*(a ◦ b)| ≤ 2u| fl*(a ◦ b)| for ◦ = {+,−}. (2.2)

We use standard notations for error estimations. The quantities γn are defined as usual [11] by

γn(u) :=
nu

1− nu
for n ∈ N,

where implicitly assumed that nu < 1.
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To keep track of the (1 + ε) factors in our error analysis, we use the relative error counters
introduced by Stewart [22]. For a positive integer n, 〈n〉 denotes the following product

〈n〉(u) =
n∏
i=1

(1 + εi)
ρi with ρi = ±1 and |εi| ≤ u (i = 1, . . . , n).

The relative error counters verify 〈j〉(u)〈k〉(u) = 〈j〉(u)/〈k〉(u) = 〈j + k〉(u). When 〈n〉 denotes
any error counter, then there exists a quantity θn such that

〈n〉(u) = 1 + θn(u) and |θn(u)| ≤ γn(u).

Remark 1. We give the following relations about γn, that will be frequently used in the sequel of
the paper. For any positive integer n,

nu ≤ γn(u), γn(u) ≤ γn+1(u), (1 + u)γn(u) ≤ γn+1(u), 2nu(1 + γ2n−2(u)) ≤ γ2n(u).

3 Principles of Discrete Stochastic Arithmetic (DSA)

This section briefly recalls the principles of Discrete Stochastic Arithmetic. Further details are given
for instance in [25]. Based on the CESTAC method [24], Discrete Stochastic Arithmetic enables
one to estimate in a computed result which digits are affected by rounding errors. It requires a
random rounding mode that consists in rounding any result upwards or downwards with the same
probability.

To use the CESTAC method in a code that computes a result R, one executes N times this
code with the random rounding mode. Therefore N different results Ri are obtained. The value
of the computed result R is chosen to be the mean value of {Ri} and, if no overflow occurs, the
number of exact significant digits in R can be estimated as

CR = log10

(√
N
∣∣R∣∣

στβ

)
where σ is the standard deviation of {Ri} and τβ is the value of Student’s distribution for N − 1
degrees of freedom and a confidence level 1 − β. In practice β = 0.05 and N = 3. Indeed, it has
been shown [1, 3] that N = 3 is in some reasonable sense the optimal value. The estimation with
N = 3 is more reliable than with N = 2 and increasing the size of the sample does not improve the
quality of the estimation.

The CESTAC method relies on a first order model of rounding errors which becomes invalid if
both operands in a multiplication or the divisor in a division are not significant [1]. Therefore the
CESTAC method requires to control all multiplications and divisions during the execution. This
so-called self-validation has led to the concept of computational zero [23], defined below, and also
to the synchronous implementation of the method: each arithmetic operation is performed N times
before the next one is executed.

Definition 3.1. A result R = {Ri} computed using the CESTAC method is a computational zero,
denoted by @.0, if ∀i, Ri = 0 or CR ≤ 0.

A computational zero is either zero or a result that has no more correct digits because of
rounding errors. From the concept of computational zero, discrete stochastic relations [4] have
been defined as follows.
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Definition 3.2. Let X = {Xi} and Y = {Yi} be two results computed with the CESTAC method,

1. X = Y if and only if X−Y = @.0,

2. X > Y if and only if X > Y and X−Y 6= @.0,

3. X ≥ Y if and only if X ≥ Y or X−Y = @.0.

Discrete Stochastic Arithmetic (DSA) is the combination of the CESTAC method, the concept
of computational zero, and the discrete stochastic relations [25].

The CADNA1 (Control of Accuracy and Debugging for Numerical Applications) library [13] is
an implementation of DSA devoted to programs written in C/C++ and Fortran. CADNA pro-
vides, with the probability 1 − β = 95%, the number of exact significant digits of any computed
result. The CADNA library allows to use new numerical types: the stochastic types. Each stochas-
tic variable contains N = 3 values of the corresponding floating-point type, one for each sample
Ri. When a stochastic variable is printed, only its exact significant digits appear. Arithmetic
operators, comparison operators, all the mathematical functions have been overloaded to return
a stochastic type when called with stochastic arguments. Therefore the use of CADNA in a pro-
gram requires only a few modifications: essentially changes in the declarations of variables and in
input/output statements. During the execution, CADNA can detect numerical instabilities, which
are usually due to the presence of numerical noise. When numerical instabilities are detected,
dedicated CADNA counters are incremented. At the end of the run, the value of these counters
together with appropriate warning messages are printed on standard output.

In the next sections, we aim at analysing the effects of the random rounding mode required by
DSA on compensated algorithms a priori intended to be used with rounding to nearest. Therefore
we will present the impact of a directed rounding mode on the accuracy of results provided by
compensated algorithms.

4 Accurate summation

This section presents the accuracy obtained with the classic summation algorithm and with various
compensated summation algorithms, using either rounding to nearest or directed rounding.

4.1 Classic summation

The classic algorithm for computing summation is the recursive Algorithm 1.

function res = Sum(p)

1: s1 ← p1
2: for i = 2 to n do
3: si ← si−1 + pi
4: end for
5: res← sn

Algorithm 1: Summation of n floating-point numbers p = {pi}

The error generated by Algorithm 1 is recalled in Proposition 4.1.

1URL address: http://cadna.lip6.fr
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Proposition 4.1 ([11]). Let us suppose Algorithm 1 is applied to floating-point numbers pi ∈ F,
1 ≤ i ≤ n. Let s :=

∑
pi and S :=

∑
|pi|.

With rounding to nearest, if nu < 1, then

|res− s| ≤ γn−1(u)S. (4.3)

With directed rounding, if nu < 1
2 , then

|res− s| ≤ γn−1(2u)S. (4.4)

In Corollary 4.2 Equations 4.3 and 4.4 are rewritten in terms of the condition number on
∑
pi:

cond
(∑

pi

)
=

S

|s|
.

Corollary 4.2. With rounding to nearest, if nu < 1, the result res of Algorithm 1 satisfies

|res− s|
|s|

≤ γn−1(u) cond
(∑

pi

)
.

With directed rounding, if nu < 1
2 , the result res of Algorithm 1 satisfies

|res− s|
|s|

≤ γn−1(2u) cond
(∑

pi

)
.

Because γn−1(u) ≈ (n−1)u, the bound for the relative error is essentially nu times the condition
number. This accuracy is sometimes not sufficient in practice. Indeed, when the condition number
is large (greater than 1/u) then the recursive algorithm does not even return one correct digit.
Algorithms to evaluate more accurately the sum of floating-point numbers are presented in the
sequel of this section.

4.2 Compensated summation with rounding to nearest

Error-free transformations exist for the sum of two floating-point numbers with rounding to nearest:
TwoSum [16] which requires 6 floating-point operations and FastTwoSum [5], given as Algorithm 2,
which requires a test and 3 floating-point operations. These algorithms compute both the floating-
point sum c of two numbers a and b and the associated rounding error d such that c+d = a+b. An-
other algorithm, proposed by Priest in [21, p.14-15] and given later as Algorithm 4 (PriestTwoSum),
although more costly, computes with any rounding mode an error-free transformation for the sum
of two floating-point numbers.

A compensated algorithm to evaluate accurately the sum of n floating-point numbers is pre-
sented as Algorithm 3 (FastCompSum) [19]. This sum is corrected thanks to an error-free trans-
formation used for each individual summation. Although FastTwoSum is called in Algorithm 3,
with rounding to nearest the same result can be obtained using another error-free transformation
(TwoSum or PriestTwoSum).

The error on the result res of Algorithm 3 obtained with rounding to nearest is analysed in [20].
A bound for the absolute error is recalled in Proposition 4.3 and a bound for the relative error in
Corollary 4.4.
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function [c, d] = FastTwoSum(a, b)

1: if |b| > |a| then
2: exchange a and b
3: end if
4: c← a+ b
5: z ← c− a
6: d← b− z

Algorithm 2: Error-free transformation for the sum of two floating-point numbers with rounding
to nearest

function res = FastCompSum(p)

1: π1 ← p1
2: σ1 ← 0
3: for i = 2 to n do
4: [πi, qi]← FastTwoSum(πi−1, pi)
5: σi ← σi−1 + qi
6: end for
7: res← πn + σn

Algorithm 3: Compensated summation of n floating-point numbers p = {pi} using FastTwoSum

Proposition 4.3 ([20]). Let us suppose Algorithm 3 (FastCompSum) is applied, with rounding to
nearest, to floating-point numbers pi ∈ F, 1 ≤ i ≤ n. Let s :=

∑
pi and S :=

∑
|pi|. If nu < 1,

then, also in the presence of underflow,

|res− s| ≤ u|s|+ γ2n−1(u)S.

Corollary 4.4 ([20]). With rounding to nearest, if nu < 1, then, also in the presence of underflow,
the result res of Algorithm 3 (FastCompSum) satisfies

|res− s|
|s|

≤ u + γ2n−1(u) cond
(∑

pi

)
.

From Corollary 4.4, because γn−1(u) ≈ (n− 1)u, the bound for the relative error on the result
is essentially (nu)2 times the condition number plus the rounding u due to the working precision.
The second term on the right hand side reflects that the computation is carried out as in twice the
working precision (u2). The first term represents the rounding back in the working precision.

4.3 Compensated summation with directed rounding

We recall here the impact of a directed rounding mode on Algorithm 3 (FastCompSum). With
directed rounding, Algorithm 2 (FastTwoSum) is not an error-free transformation. A bound on the
difference between the floating-point number d computed by Algorithm 2 and the error e due to
the floating-point addition is recalled in Proposition 4.5.

Proposition 4.5 ([8]). Let c and d be the floating-point addition of a and b and the correction
both computed by Algorithm 2 (FastTwoSum) using directed rounding. Let e be the error on c:
a+ b = c+ e. Then

|e− d| ≤ 2u|e|.
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Equation 4.5 in Lemma 4.6, established in [8], is recalled for later use.

Lemma 4.6 ([8]). Let us suppose Algorithm 3 (FastCompSum) is applied, with directed rounding,
to floating-point numbers pi ∈ F, 1 ≤ i ≤ n. For i = 2, ..., n, let ei be the error on the floating-point
addition of πi−1 and pi: πi + ei = πi−1 + pi. If nu < 1

2 , then

n∑
i=2

|ei| ≤ γn−1(2u)

n∑
i=1

|pi|. (4.5)

A bound for the absolute error on the result of Algorithm 3 (FastCompSum) obtained with
directed rounding is recalled in Proposition 4.7.

Proposition 4.7 ([8]). Let us suppose Algorithm 3 (FastCompSum) is applied, with directed round-
ing, to floating-point numbers pi ∈ F, 1 ≤ i ≤ n. Let s :=

∑
pi and S :=

∑
|pi|. If nu < 1

2 , then,
also in the presence of underflow,

|res− s| ≤ 2u|s|+ 2(1 + 2u)γ2n(2u)S.

From Proposition 4.7, a bound for the relative error on the result of Algorithm 3 (FastCompSum)
obtained with directed rounding is deduced in Corollary 4.8.

Corollary 4.8. With directed rounding, if nu < 1
2 , then, also in the presence of underflow, the

result res of Algorithm 3 (FastCompSum) satisfies

|res− s|
|s|

≤ 2u + 2(1 + 2u)γ2n(2u) cond
(∑

pi

)
.

From Corollary 4.8, because γn(2u) ≈ 2nu, the relative error bound is essentially (nu)2 times
the condition number plus the inevitable rounding 2u due to the working precision.

The impact of a directed rounding mode on the compensated summation based on the PriestTwoSum
algorithm is analysed here. The error bounds obtained will be used in Sect. 7. The PriestTwoSum

algorithm [21, p.14-15] is recalled as Algorithm 4.

function [c, d] = PriestTwoSum(a, b)

1: if |b| > |a| then
2: exchange a and b
3: end if
4: c← a+ b
5: e← c− a
6: g ← c− e
7: h← g − a
8: f ← b− h
9: d← f − e

10: if d+ e 6= f then
11: c← a
12: d← b
13: end if

Algorithm 4: Error-free transformation for the sum of two floating-point numbers with any
rounding mode
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A compensated summation algorithm based on PriestTwoSum is given as Algorithm 5.

function res = PriestCompSum(p)

1: π1 ← p1
2: σ1 ← 0
3: for i = 2 to n do
4: [πi, qi]← PriestTwoSum(πi−1, pi)
5: σi ← σi−1 + qi
6: end for
7: res← πn + σn

Algorithm 5: Compensated summation of n floating-point numbers p = {pi} using
PriestTwoSum

Lemma 4.9 is given for later use in Sect. 7.

Lemma 4.9. Let us suppose Algorithm 5 (PriestCompSum) is applied, with directed rounding, to
floating-point numbers pi ∈ F, 1 ≤ i ≤ n. Let s :=

∑
pi and S :=

∑
|pi|. If nu < 1

2 , then

n∑
i=2

|qi|+ |πn| ≤ |s|+ 2γn−1(2u)S. (4.6)

Proof. As
n∑
i=2

|qi|+ |πn| =
n∑
i=2

|qi|+ |s−
n∑
i=2

qi|,

we have
n∑
i=2

|qi|+ |πn| ≤ |s|+ 2

n∑
i=2

|qi|. (4.7)

From Lemma 4.6, we deduce that

n∑
i=2

|qi| ≤ γn−1(2u)

n∑
i=1

|pi| = γn−1(2u)S. (4.8)

Finally Equation 4.6 is obtained from Equations 4.7 and 4.8.

A bound for the absolute error on the result of Algorithm 5 (PriestCompSum) obtained with
directed rounding is given in Proposition 4.10.

Proposition 4.10. Let us suppose Algorithm PriestCompSum is applied, with directed rounding,
to floating-point numbers pi ∈ F, 1 ≤ i ≤ n. Let s :=

∑
pi and S :=

∑
|pi|. If nu < 1

2 , then, also
in the presence of underflow,

|res− s| ≤ 2u|s|+ γ2n−1(2u)S. (4.9)

The proof is similar to the one given in [20] for compensated summation with rounding to
nearest.
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Proof. Because σn = fl*(
∑n

i=2 qi), we have

|σn −
n∑
i=2

qi| ≤ γn−2(2u)
n∑
i=2

|qi|.

Therefore, from Equation 4.8, we deduce that

|σn −
n∑
i=2

qi| ≤ γn−2(2u)γn−1(2u)S.

As Algorithm 5 is executed with directed rounding, it yields

res = fl*(πn + σn) = (1 + ε)(πn + σn) with |ε| ≤ 2u,

|res− s| = | fl*(πn + σn)− s|,

|res− s| = |(1 + ε)(πn + σn − s) + εs|,

|res− s| = |(1 + ε)(πn +
n∑
i=2

qi − s) + (1 + ε)(σn −
n∑
i=2

qi) + εs|.

Since

s =
n∑
i=1

pi = πn +
n∑
i=2

qi, (4.10)

then

|res− s| ≤ (1 + 2u)|σn −
n∑
i=2

qi|+ 2u|s|,

|res− s| ≤ (1 + 2u)γn−2(2u)γn−1(2u)S + 2u|s|. (4.11)

We have
(1 + 2u)γn−1(2u) < γn(2u). (4.12)

Indeed, it is clear that

γn(2u)− (1 + 2u)γn−1(2u) = 2u

(
1 +

2nu

(1− 2(n− 1)u) (1− 2nu)

)
,

and then
γn(2u)− (1 + 2u)γn−1(2u) > 0.

Finally Equation 4.9 can be deduced from Equations 4.11 and 4.12.

From Proposition 4.10, a bound for the relative error on the result of Algorithm 5 (PriestCompSum)
obtained with directed rounding is deduced in Corollary 4.11.
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Corollary 4.11. With directed rounding, if nu < 1
2 , then, also in the presence of underflow, the

result res of Algorithm 5 (PriestCompSum) satisfies

|res− s|
|s|

≤ 2u + γ2n−1(2u) cond
(∑

pi

)
.

Like with Algorithm 3 (FastCompSum), we deduce from Corollary 4.11 that the relative error
bound on the result of Algorithm 5 (PriestCompSum) computed with directed rounding is essentially
(nu)2 times the condition number plus the rounding 2u due to the working precision.

5 Accurate dot product

In this section, we present the accuracy obtained with the classic dot product algorithm. We also
present an algorithm that enables one to compute a dot product as in twice the working precision
with rounding to nearest [20]. We recall the error on its result computed with rounding to nearest.
Then we analyse the impact of a directed rounding mode on this algorithm. In this section, we
assume that no underflow occurs.

5.1 Classic dot product

The classic algorithm for computing a dot product is Algorithm 6.

function res = Dot(x, y)

1: s1 ← x1y1
2: for i = 2 : n do
3: si ← xi · yi + si−1
4: end for
5: res← sn

Algorithm 6: Classic dot product of x = {xi} and y = {yi}, 1 ≤ i ≤ n

The following proposition sums up the properties of this algorithm.

Proposition 5.1. Let floating point numbers xi, yi ∈ F, 1 ≤ i ≤ n, be given and denote by res ∈ F
the result computed by Algorithm 6 (Dot). With rounding to nearest, if nu < 1, we have

|res− xT y| ≤ γn(u)|xT ||y|, (5.13)

and with directed rounding, if nu < 1
2 , we have

|res− xT y| ≤ γn(2u)|xT ||y|. (5.14)

Proof. The proof can be found in Higham [11, p.63].

We can rewrite the previous inequalities in terms of the condition number of the dot product
defined by

cond(xT y) = 2
|x|T |y|
|xT y|

.
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Corollary 5.2. With rounding to nearest, if nu < 1, the result res of Algorithm 6 satisfies

|res− xT y|
|xT y|

≤ 1

2
γn(u) cond(xT y).

With directed rounding, if nu < 1
2 , the result res of Algorithm 6 satisfies

|res− xT y|
|xT y|

≤ 1

2
γn(2u) cond(xT y).

5.2 Compensated dot product with rounding to nearest

A compensated dot product algorithm is presented in [20]. This algorithm, intended to be used with
rounding to nearest, is based on two error-free transformations: TwoSum [16] and TwoProd [5] that
compute respectively the sum and the product of two floating-point numbers. The TwoProd algo-
rithm requires 17 floating-point operations. However another error-free transformation, TwoProdFMA
presented as Algorithm 7, exists for the product and costs only 2 floating-point operations ([18,
p. 152]).

function [x, y] = TwoProdFMA(a, b)

1: x← a× b
2: y ← FMA(a, b,−x)

Algorithm 7: Error-free transformation for the product of two floating-point numbers using
an FMA

The TwoProdFMA algorithm is based on the Fused-Multiply-and-Add (FMA) operator that enables
a floating-point multiplication followed by an addition to be performed as a single floating-point
operation. For a, b, c ∈ F, FMA(a, b, c) is an approximation of a× b+ c ∈ R that satisfies:

FMA(a, b, c) = (a× b+ c)(1 + ε1) = (a× b+ c)/(1 + ε2)

where |εν | ≤ u with rounding to nearest and |εν | ≤ 2u with directed rounding. The FMA operation
is supported by numerous processors such as AMD or Intel processors starting with respectively the
Bulldozer or the Haswell architecture and by the Intel Xeon Phi coprocessor. It is also supported
by AMD and NVidia GPUs (Graphics Processing Units) since 2010.

With any rounding mode, the TwoProdFMA algorithm computes both the floating-point product x
of two numbers a and b and the associated rounding error y, provided that no underflow occurs.
If this property holds, the floating-point numbers x and y computed by the TwoProdFMA algorithm
satisfy: x+ y = a× b.

The CompDot algorithm, presented as Algorithm 8, is a compensated dot product algorithm
based on FastTwoSum (Algorithm 2) and TwoProdFMA. As a remark, with rounding to nearest, the
result of the CompDot algorithm is identical if other error-free transformations are used for the sum
or the product.
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function res=CompDot(x, y)

1: [p, s]← TwoProdFMA(x1, y1)
2: for i = 2 to n do
3: [h, r]← TwoProdFMA(xi, yi)
4: [p, q]← FastTwoSum(p, h)
5: s← s+ (q + r)
6: end for
7: res← p+ s

Algorithm 8: Compensated dot product of x = {xi} and y = {yi}, 1 ≤ i ≤ n

The error on the result res of Algorithm 8 obtained with rounding to nearest is analysed in [20].
A bound for the absolute error is recalled in Proposition 5.3.

Proposition 5.3 ([20]). Let floating-point numbers xi, yi ∈ F, 1 ≤ i ≤ n, be given and denote by
res ∈ F the result computed by Algorithm 8 (CompDot) with rounding to nearest. If nu < 1, then,

|res− xT y| ≤ u|xT y|+ γ2n(u)|xT ||y|. (5.15)

In Corollary 5.4, Equation 5.15 is rewritten in terms of the condition number for the dot product.

Corollary 5.4 ([20]). With rounding to nearest, if nu < 1, then, the result res of Algorithm 8
(CompDot) satisfies

|res− xT y|
|xT y|

≤ u +
1

2
γ2n(u) cond

(
xT y

)
.

As a consequence, we conclude that the result is as accurate as if computed in twice the working
precision and then rounded to the current working precision. This is the same phenomenon as for
the compensated summation algorithm.

5.3 Compensated dot product with directed rounding

We present here the impact of a directed rounding mode on Algorithm 8 (CompDot). For the error
analysis we rewrite this algorithm into the following equivalent one.

function res=CompDot(x, y)

1: [p1, s1]← TwoProdFMA(x1, y1)
2: for i = 2 to n do
3: [hi, ri]← TwoProdFMA(xi, yi)
4: [pi, qi]← FastTwoSum(pi−1, hi)
5: si ← si−1 + (qi + ri)
6: end for
7: res← pn + sn

Algorithm 9: Equivalent formulation of Algorithm 8

A bound for the absolute error on the result res of Algorithm 8 is given in Proposition 5.5.

Proposition 5.5. Let floating-point numbers xi, yi ∈ F, 1 ≤ i ≤ n, be given and denote by res ∈ F
the result computed by Algorithm 8 (CompDot) with directed rounding. If (n+ 1)u < 1

2 , then,

|res− xT y| ≤ 2u|xT y|+ 2γ2n+1(2u)|xT ||y|.

12



Proof. Thanks to the TwoProdFMA algorithm, we have

p1 + s1 = x1y1, (5.16)

and for i ≥ 2,
hi + ri = xiyi. (5.17)

From Proposition 4.5, it follows that

pi + ei = pi−1 + hi with |qi − ei| ≤ 2u|ei|. (5.18)

Therefore from Equation 5.17, we deduce that

ei + ri = (pi−1 + hi − pi) + (xiyi − hi) = xiyi + pi−1 − pi.

Then from Equation 5.16, we derive

s1 +
n∑
i=2

(ei + ri) = (x1y1 − p1) +

(
n∑
i=2

xiyi + p1 − pn

)
= xT y − pn. (5.19)

Because the TwoProdFMA algorithm is executed with a directed rounding mode, for i ≥ 2, then

|ri| ≤ 2u|xiyi|.

Therefore, we have
n∑
i=2

|ri| ≤ 2u
n∑
i=2

|xiyi|,

and

|s1|+
n∑
i=2

|ri| ≤ 2u|xT ||y|. (5.20)

From Lemma 4.6, we deduce

n∑
i=2

|ei| ≤ γn−1(2u)

(
|p1|+

n∑
i=2

|hi|

)
.

As a consequence, we have

n∑
i=2

|ei| ≤ γn−1(2u)

(
n∑
i=1

|fl*(xiyi)|

)
,

and
n∑
i=2

|ei| ≤ (1 + 2u)γn−1(2u)|xT ||y|. (5.21)

From Equations 4.12 and 5.21, we derive

n∑
i=2

|ei| ≤ γn(2u)|xT ||y|. (5.22)

13



From Equation 5.18, we conclude that

n∑
i=2

|qi − ei| ≤ 2u

n∑
i=2

|ei|. (5.23)

Therefore from Equation 5.22, we deduce

n∑
i=2

|qi − ei| ≤ 2uγn(2u)|xT ||y|. (5.24)

We have
n∑
i=2

|qi| ≤
n∑
i=2

|ei|+
n∑
i=2

|qi − ei| .

Therefore, Equation 5.23 yields

n∑
i=2

|qi| ≤ (1 + 2u)
n∑
i=2

|ei| .

From Equations 4.12 and 5.22, it yields

n∑
i=2

|qi| ≤ γn+1(2u)|xT ||y|. (5.25)

For later use, we evaluate an upper bound on the following expression

|s1 +
n∑
i=2

(qi + ri)− sn| =

∣∣∣∣∣s1 +
n∑
i=2

(qi + ri)− fl*

(
s1 +

n∑
i=2

(qi + ri)

)∣∣∣∣∣ .
From Proposition 4.1, it follows that

|s1 +
n∑
i=2

(qi + ri)− sn| ≤ γn−1(2u)

(
|s1|+

n∑
i=2

|fl* (qi + ri)|

)
. (5.26)

Furthermore, because a directed rounding mode is used, we have

n∑
i=2

|fl* (qi + ri)| ≤ (1 + 2u)

n∑
i=2

|qi + ri| .

Therefore from Equation 5.26, we deduce that

|s1 +

n∑
i=2

(qi + ri)− sn| ≤ (1 + 2u)γn−1(2u)

(
|s1|+

n∑
i=2

|qi + ri|

)
,

and, from Equation 4.12,

|s1 +

n∑
i=2

(qi + ri)− sn| ≤ γn(2u)

(
|s1|+

n∑
i=2

|qi + ri|

)
.
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From Equations 5.20 and 5.25, it follows that

|s1 +
n∑
i=2

(qi + ri)− sn| ≤ γn(2u) (2u + γn+1(2u)) |xT ||y|. (5.27)

We deduce from Equation 5.19 that

|
(
xT y − pn

)
− sn| =

∣∣∣∣∣s1 +
n∑
i=2

(ei + ri)− sn

∣∣∣∣∣ .
As a consequence, it yields

|xT y − pn − sn| =

∣∣∣∣∣s1 +

n∑
i=2

(qi + ri)− sn +

n∑
i=2

(ei − qi)

∣∣∣∣∣ ,
and

|xT y − pn − sn| ≤

∣∣∣∣∣s1 +
n∑
i=2

(qi + ri)− sn

∣∣∣∣∣+
n∑
i=2

|ei − qi| .

Therefore from Equations 5.24 and 5.27, we deduce that

|xT y − pn − sn| ≤ γn(2u) (4u + γn+1(2u)) |xT ||y|. (5.28)

Let us show that γn+1(2u) ≥ 4u. It is easy to show that

γn+1(2u)− 4u =
2(n+ 1)u

1− 2(n+ 1)u
− 4u,

and

γn+1(2u)− 4u =
2u

1− 2(n+ 1)u
(n− 1 + 4(n+ 1)u) .

Because (n+ 1)u < 1
2 , it follows that γn+1(2u)− 4u ≥ 0.

Therefore from Equation 5.28, we can deduce that

|xT y − pn − sn| ≤ 2γn(2u)γn+1(2u)|xT ||y|. (5.29)

Because Algorithm 9 is executed with a directed rounding mode, it follows that

|res− xT y| = |(1 + ε)(pn + sn)− xT y| with |ε| ≤ 2u.

Therefore, we have

|res− xT y| = |εxT y + (1 + ε)(pn + sn − xT y)|,

and
|res− xT y| ≤ 2u|xT y|+ (1 + 2u)|pn + sn − xT y|.

Then from Equation 5.29, it follows that

|res− xT y| ≤ 2u|xT y|+ 2(1 + 2u)γn(2u)γn+1(2u)|xT ||y|.

Finally from Equation 4.12, we conclude that

|res− xT y| ≤ 2u|xT y|+ 2γ2n+1(2u)|xT ||y|.
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From Proposition 5.5, a bound for the relative error on the result of Algorithm 8 (CompDot)
obtained with directed rounding is deduced in Corollary 5.6.

Corollary 5.6. With directed rounding, if (n + 1)u < 1
2 , then, the result res of Algorithm 8

(CompDot) satisfies
|res− xT y|
|xT y|

≤ 2u + γ2n+1(2u) cond
(
xT y

)
.

From Corollary 5.6, the relative error bound on the result of Algorithm 8 (CompDot) computed
with directed rounding is essentially (nu)2 times the condition number plus the rounding 2u due to
the working precision. Like with rounding to nearest, the result obtained with directed rounding is
as accurate as if computed in twice the working precision and then rounded to the current working
precision.

6 Accurate Horner scheme

In this section, we present the accuracy obtained with the classic Horner scheme for polynomial
evaluation. We recall a compensated Horner scheme algorithm and the error on its result com-
puted with rounding to nearest. Then we analyse the impact of a directed rounding mode on this
algorithm. In this section, we assume that no underflow occurs.

6.1 Classic Horner scheme

The classical method for evaluating a polynomial

p(x) =
n∑
i=0

aix
i

is the Horner scheme which consists of Algorithm 10.

function res = Horner(p, x)

1: sn ← an
2: for i = n− 1 downto 0 do
3: si ← si+1 · x+ ai
4: end for
5: res← s0

Algorithm 10: Polynomial evaluation with Horner’s scheme

Whatever the rounding mode, a forward error bound on the result of Algorithm 10 is (see [11,
p. 95]):

|p(x)− res| ≤ γ2n(2u)

n∑
i=0

|ai||x|i = γ2n(2u)p̃(|x|)

where p̃(x) =
∑n

i=0 |ai|xi. It is very interesting to express and interpret this result in terms of the
condition number of the polynomial evaluation defined by

cond(p, x) =

∑n
i=0 |ai||x|i

|p(x)|
=
p̃(|x|)
|p(x)|

. (6.30)
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Thus we have
|p(x)− res|
|p(x)|

≤ γ2n(2u) cond(p, x).

If an FMA instruction is available, then the statement si ← si+1 · x + ai in Algorithm 10 can
be rewritten as si ← FMA(si+1, x, ai) which slightly improves the error bound. Using an FMA this
way, the computed result now satisfies

|p(x)− res| ≤ γn(2u)p̃(|x|).

6.2 A compensated Horner scheme with rounding to nearest

We now want to accurately compute a polynomial at a given point. The Horner scheme algo-
rithm can be modified to compute the rounding error at each elementary operation using error-free
transformations. We present as Algorithm 11 a compensated algorithm for the Horner scheme.
One can find a more detailed description of the compensated Horner scheme algorithm in [9, 10].
Algorithm 11 is based on the TwoProdFMA and FastTwoSum algorithms. However, with rounding to
nearest, its result is identical if other error-free transformations, such as TwoProd or TwoSum, are
used.

function res = CompHorner(p, x)

1: sn ← an
2: rn ← 0
3: for i = n− 1 down to 0 do
4: [pi, πi]← TwoProdFMA(si+1, x)
5: [si, σi]← FastTwoSum(pi, ai)
6: ri ← ri+1 · x+ (πi + σi)
7: end for
8: res← s0 + r0

Algorithm 11: Polynomial evaluation with a compensated Horner scheme

If we denote by pπ and pσ the two following polynomials

pπ(x) =
n−1∑
i=0

πix
i, pσ(x) =

n−1∑
i=0

σix
i,

then one can show, thanks to error-free transformations, that

p(x) = s0 + pπ(x) + pσ(x).

If one looks closely at the previous algorithm, it is then clear that s0 = Horner(p, x). As a
consequence, we can derive a new error-free transformation for the polynomial evaluation

p(x) = Horner(p, x) + pπ(x) + pσ(x).

The compensated Horner scheme first computes pπ(x) + pσ(x) which corresponds to the rounding
errors and then adds the value obtained to the result of the classic Horner scheme Horner(p, x). We
will show that the result computed by Algorithm 11 admits a significantly better error bound than
that computed with the classical Horner scheme. We argue that Algorithm 11 provides a result as
if it was computed using twice the working precision. This is summed up in the following theorem.
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Theorem 6.1. Consider a polynomial p of degree n with floating-point coefficients, and a floating-
point value x. With rounding to nearest, the forward error in the compensated Horner algorithm is
such that

|CompHorner(p, x)− p(x)| ≤ u|p(x)|+ γ22n(u)p̃(x). (6.31)

It is interesting to interpret the previous theorem in terms of the condition number of the
evaluation of p at x. Combining the error bound (6.31) with the condition number (6.30) for
polynomial evaluation gives

|CompHorner(p, x)− p(x)|
|p(x)|

≤ u + γ22n(u) cond(p, x). (6.32)

In other words, the bound for the relative error of the computed result is essentially γ22n(u) times
the condition number of the polynomial evaluation, plus the unavoidable term u for rounding the
result to the working precision. In particular, if cond(p, x) < γ−12n (u), then the relative accuracy of
the result is bounded by a constant of the order of u. This means that the compensated Horner
algorithm computes an evaluation accurate to the last few bits as long as the condition number
is smaller than γ−12n (u) ≈ (2nu)−1. Besides that, (6.32) tells us that the computed result is as
accurate as if computed by the classic Horner algorithm with twice the working precision, and then
rounded to the working precision.

6.3 A compensated Horner scheme with directed rounding

We now present the impact of a directed rounding mode on Algorithm 11 (CompHorner).
Let τi be the rounding error in the floating-point addition of pi and ai (τi is not necessarily a

floating-point number):
si + τi = pi + ai.

It follows that si+1 · x = pi + πi and pi + ai = si + τi with |τi − σi| ≤ 2uτi. As a consequence, we
have

si = si+1 · x− πi − τi for i = 0, . . . , n− 1.

By induction, we deduce that
p(x) = s0 + pπ(x) + pτ (x),

with

s0 = fl*(p(x)), pπ(x) =

n−1∑
i=0

πix
i, and pτ (x) =

n−1∑
i=0

τix
i. (6.33)

We recall that

pσ(x) =

n−1∑
i=0

σix
i. (6.34)

In the sequel, we will denote e(x) := pπ(x) + pσ(x). In this case, we have p(x) = fl(p(x)) +
e(x) + (pτ − pσ)(x) and res = fl(p(x) + e(x)).

Lemma 6.2. Let p(x) =
∑n

i=0 aix
i a polynomial with ai ∈ F, 0 ≤ i ≤ n and x ∈ F. Let pπ and pσ

be defined by (6.33) and (6.34). Then, we have

p̃π(|x|) + p̃σ(|x|) ≤ γ2n+1(2u)p̃(|x|),

with p̃(x) =
∑n

i=0 |ai|xi.
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Proof. Using (2.1), we have, for i = 1, . . . , n,

|pn−i| = |fl*(sn−i+1 · x)| ≤ (1 + 2u)|sn−i+1||x|

and
|sn−i| = |fl*(pn−i + an−i)| ≤ (1 + 2u)(|pn−i|+ |an−i|).

Let us show by induction on i = 1, . . . , n that

|pn−i| ≤ (1 + γ2i−1(2u))
i∑

j=1

|an−i+j ||xj | (6.35)

and

|sn−i| ≤ (1 + γ2i(2u))

i∑
j=0

|an−i+j ||xj |. (6.36)

For i = 1, as sn = an, we have

|pn−1| ≤ (1 + 2u)|an||x| ≤ (1 + γ1(2u))|an||x|

and so (6.35) is true. In the same way, as

|sn−1| ≤ (1 + 2u) ((1 + γ1(2u))|an||x|+ |an−1|) ≤ (1 + γ2(2u)) (|an||x|+ |an−1|)

then (6.36) is also true. Let us assume that (6.35) and (6.36) are true for an integer i, 1 ≤ i < n.
Then we have

|pn−(i+1)| ≤ (1 + 2u)|sn−i||x|.

By hypothesis, we deduce that

|pn−(i+1)| ≤ (1 + 2u)(1 + γ2i(2u))
i∑

j=0

|an−i+j ||xj+1|

≤ (1 + γ2(i+1)−1(2u))
i+1∑
j=1

|an−(i+1)+j ||xj |.

Hence, it follows that

|sn−(i+1)| ≤ (1 + 2u)(|pn−(i+1)|+ |an−(i+1)|)

≤ (1 + 2u)(1 + γ2(i+1)−1(2u))

 i+1∑
j=1

|an−(i+1)+j ||xj |+ |an−(i+1)|


≤ (1 + γ2(i+1)(2u))

i+1∑
j=0

|an−(i+1)+j ||xj |.

Relations (6.35) and (6.36) are then true by induction. As a consequence, for i = 1, . . . , n, we have

|pn−i||xn−i| ≤ (1 + γ2i−1(2u))p̃(x)

19



and
|sn−i||xn−i| ≤ (1 + γ2i(2u))p̃(x).

Following (2.2), we have |πi| ≤ 2u|pi|, |τi| ≤ 2u|si| and |σi| ≤ (1 + 2u)|τi| for i = 0, . . . , n − 1.
Hence,

(p̃π + p̃σ)(|x|) =
n−1∑
i=0

(|πi|+ |σi|)|xi| ≤ 2u(1 + 2u)
n∑
i=1

(|pn−i|+ |sn−i|)|xn−i|,

and so

(p̃π + p̃σ)(|x|) ≤ 2u(1 + 2u)
n∑
i=1

(2 + γ2i−1(2u) + γ2i(2u)) p̃(|x|) ≤ 4nu(1 + 2u) (1 + γ2n(2u)) p̃(|x|).

As 4nu(1 + γ2n(2u)) = γ2n(2u), we deduce that (p̃π + p̃σ)(|x|) ≤ γ2n+1(2u)p̃(|x|).

Lemma 6.3. Let p(x) =
∑n

i=0 aix
i be a polynomial with ai ∈ F, 0 ≤ i ≤ n, q(x) =

∑n
i=0 bix

i

a polynomial with bi ∈ F, 0 ≤ i ≤ n and x ∈ F. Then the floating-point evaluation of r(x) =
p(x) + q(x) via the following algorithm

1: rn ← fl*(an + bn)
2: for i = n− 1 down to 0 do
3: ri ← fl*(ri+1 · x+ (ai + bi))
4: end for
5: res← r0

satisfies
|res− r(x)| ≤ γ2n+1(2u)r̃(|x|).

Proof. Considering the previous algorithm, we have rn = fl*(an + bn) = (an + bn)〈1〉(2u) and for
i = n− 1 down to 0,

ri = fl*(ri+1 · x+ (ai + bi)) = ri+1x〈2〉(2u) + (ai + bi)〈2〉(2u).

As a consequence, we can show by induction that

r0 = (an + bn)xn〈2n+ 1〉(2u) +
n−1∑
i=0

(ai + bi)x
i〈2(i+ 1)〉(2u).

Moreover with quantities θ2n+1(2u), θ2n(2u), . . . , θ1(2u), satisfying |θi(2u)| ≤ γi(2u), we have

r0 = (an + bn)xn(1 + θ2n+1)(2u) +

n−1∑
i=0

(ai + bi)x
i(1 + θ2(i+1)(2u)).

As r0 = fl*(p(x) + q(x)), we finally get∣∣∣∣∣res−
n∑
i=0

(ai + bi)x
i

∣∣∣∣∣ ≤ γ2n+1(2u)

n∑
i=0

|ai + bi||xi| ≤ γ2n+1(2u)(p̃+ q̃)(|x|),

which concludes the proof.
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Theorem 6.4. Consider a polynomial p of degree n with floating-point coefficients, and a floating-
point value x. With directed rounding, the forward error in the compensated Horner algorithm is
such that

|CompHorner(p, x)− p(x)| ≤ 2u|p(x)|+ 2γ2n+1(2u)2p̃(x).

Proof. By considering Algorithm 11, we have p(x) = s0 + e(x) + (pτ − pσ)(x). We can deduce that

|res− p(x)| = |(1 + ε)(s0 + fl*(e(x)))− p(x)|
= |(1 + ε)(s0 + fl*(e(x))− p(x) + (pτ − pσ)(x)) + εp(x) + (1 + ε)(pσ − pτ )(x)|
= |(1 + ε)(s0 + e(x) + (pτ − pσ)(x)− p(x)) + (1 + ε)(fl*(e(x))− e(x))+

εp(x) + (1 + ε)(pτ − pσ)(x)|
≤ 2u|p(x)|+ (1 + 2u)| fl*(e(x))− e(x)|+ (1 + 2u)|(pτ − pσ)(x)|.

By applying Lemma 6.3, we obtain

| fl*(e(x))− e(x)| ≤ γ2n−1(2u)ẽ(|x|) ≤ γ2n−1(2u)(p̃π(|x|) + p̃σ(|x|)).

Moreover from Lemma 6.2, we get

p̃π(|x|) + p̃σ(|x|) ≤ γ2n+1(2u)p̃(|x|).

Since |τi − σi| ≤ 2uτi, we have

|(pτ − pσ)(x)| ≤ 2u
n−1∑
i=0

|τi||x|i ≤ 2up̃τ (|x|).

Moreover, as |τi| ≤ 2u|si|, we have p̃τ (|x|) ≤ 2nuγ2n(2u)p̃(|x|). As a consequence, we deduce

|res− p(x)| ≤ 2u|p(x)|+ (1 + 2u)γ2n−1(2u)γ2n+1(2u)p̃(|x|) + 2nu(1 + 2u)γ2n(2u)p̃(|x|).

As (1 + 2u)γ2n−1(2u) ≤ γ2n(2u) and 2nu ≤ γ2n+1(2u), we obtain

|res− p(x)| ≤ 2u|p(x)|+ 2γ2n+1(2u)2p̃(|x|),

which concludes the proof.

7 Summation as in K-fold precision

According to Sect. 4, Algorithms 3 (FastCompSum) and 5 (PriestCompSum) compute the sum of
n floating-point numbers as in twice the working precision, even with directed rounding. In this
section, we present the SumK algorithm [20] that computes this sum as in K-fold precision. We
recall the error bound on its result obtained with rounding to nearest. Then we analyse the impact
of directed rounding on this algorithm.
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7.1 Summation as in K-fold precision with rounding to nearest

The SumK algorithm, introduced in [20] and presented as Algorithm 12, enables the summation of
a vector of floating-point numbers as in K-fold precision. In [20] the SumK algorithm is based on
the TwoSum algorithm [16]. However the same result res can be obtained using rounding to nearest
with any error-free transformation that computes the sum of two floating-point numbers. The SumK
algorithm is presented here with Algorithm 4 (PriestTwoSum) that, although more costly, is an
error-free transformation with any rounding mode. As a remark if K = 2, Algorithm 12 is identical
with Algorithm 5 (PriestCompSum).

function res = SumK(p,K)

1: for k = 1 to K − 1 do
2: for i = 2 to n do
3: [pi, pi−1]← PriestTwoSum(pi, pi−1)
4: end for
5: end for
6: res←

∑n
i=1 pi

Algorithm 12: Summation of n floating-point numbers p = {pi} in K-fold working precision,
K ≥ 3

The error on the result res of Algorithm 12 obtained with rounding to nearest is analysed in
[20]. A bound for the absolute error is recalled in Proposition 7.1 and a bound for the relative error
in Corollary 7.2.

Proposition 7.1 ([20]). Let floating-point numbers pi ∈ F, 1 ≤ i ≤ n, be given and assume
4nu ≤ 1. Then, also in the presence of underflow, the result res of Algorithm 12 (SumK) obtained
with rounding to nearest satisfies for K ≥ 3

|res− s| ≤
(
u + 3γ2n−1(u)

)
|s|+ γK2n−2(u)S

where s :=
∑
pi and S :=

∑
|pi|.

Corollary 7.2 ([20]). Assume 4nu ≤ 1. The result res of Algorithm 12 (SumK) obtained with
rounding to nearest, also in the presence of underflow, satisfies

|res− s|
|s|

≤ u + 3γ2n−1(u) + γK2n−2(u) cond
(∑

pi

)
.

From Corollary 7.2, because γn(u) ≈ nu, the bound for the relative error on the result obtained
with rounding to nearest is essentially the relative rounding error u plus a term that reflects that
the computation is carried out as in K-fold precision ((αu)K times the condition number for a
moderate factor α).

7.2 Summation as in K-fold precision with directed rounding

We analyse here the impact of a directed rounding mode on Algorithm 12 (SumK). The steps of the
error analysis are similar to those presented in [20] for rounding to nearest. We denote the input

vector p by p(0), and the vector after finishing loop k by p(k). We also set S(k) :=
∑n

i=1 |p
(k)
i | for

0 ≤ k ≤ K − 1.
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Lemma 7.3. With the above notations, the intermediate results of Algorithm 12 (SumK) satisfy:

s :=

n∑
i=1

p
(0)
i =

n∑
i=1

p
(k)
i for 1 ≤ k ≤ K − 1, (7.37)

|res− s| ≤ 2u|s|+ γ2n−1(2u)S(K−2), (7.38)

S(k) ≤ 3|s|+ γk2n−2(2u)S(0) provided 8(n− 1)u ≤ 1 and 1 ≤ k ≤ K − 1. (7.39)

Proof. Equation 7.37 follows by successive applications of Equation 4.10.

Equation 7.38 can be deduced using s =
∑n

i=1 p
(K−2)
i and applying Proposition 4.10.

Let us now prove Equation 7.39. From Lemma 4.9, we obtain

n∑
i=1

|p(1)i | ≤ |s|+ 2γn−1(2u)S(0). (7.40)

By applying successively Equation 7.40 and using Equation 7.37 we obtain

S(2) ≤ |s|+ 2γn−1(2u)
(
|s|+ 2γn−1(2u)S(0)

)
,

and

S(k) ≤ |s|+
∞∑
i=0

(2γn−1(2u))i + (2γn−1(2u))kS(0) for 1 ≤ k ≤ K − 1.

We have
∞∑
i=0

(2γn−1(2u))i =
1− 2(n− 1)u

1− 6(n− 1)u
.

If 8(n− 1)u ≤ 1, then we get 1− 2(n− 1)u ≤ 3(1− 6(n− 1)u) and

1− 2(n− 1)u

1− 6(n− 1)u
≤ 3.

Therefore, we have
S(k) ≤ 3|s|+ (2γn−1(2u))kS(0).

Because 2γm(2u) ≤ γ2m(2u), we can conclude that

S(k) ≤ 3|s|+ (γ2n−2(2u))kS(0).

A bound for the absolute error on the result of Algorithm 12 (SumK) obtained with directed
rounding is given in Proposition 7.4.

Proposition 7.4. Let floating-point numbers pi ∈ F, 1 ≤ i ≤ n, be given and assume 8nu ≤ 1.
Then, also in the presence of underflow, the result res of Algorithm 12 (SumK) obtained with directed
rounding satisfies for K ≥ 3

|res− s| ≤
(
2u + 3γ2n−1(2u)

)
|s|+ γK2n−2(2u)S

where s :=
∑
pi and S :=

∑
|pi|.
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Proof. Proposition 7.4 can be proved by inserting Equation 7.39 of Lemma 7.3 into Equation 7.38.

From Proposition 7.4, a bound for the relative error on the result of Algorithm 12 (SumK)
obtained with directed rounding is deduced in Corollary 7.5.

Corollary 7.5. Assume 8nu ≤ 1. The result res of Algorithm 12 (SumK) obtained with directed
rounding, also in the presence of underflow, satisfies

|res− s|
|s|

≤ 2u + 3γ2n−1(2u) + γK2n−2(2u) cond
(∑

pi

)
. (7.41)

From Corollary 7.5, because γn(2u) ≈ 2nu, the bound for the relative error on the result res

obtained with directed rounding is essentially the relative rounding error 2u plus (αu)K times the
condition number for a moderate factor α. Like with rounding to nearest, the last term on the
right hand side of Equation 7.41 reflects that the computation is carried out as in K-fold precision.

8 Dot product as in K-fold precision

According to Sect. 5, Algorithm 8 (CompDot) computes a dot product as in twice the working
precision, even with directed rounding. In this section, we present the DotK algorithm [20] that
computes a dot product as in K-fold precision. We recall the error bound on its result obtained
with rounding to nearest. Then we analyse the impact of directed rounding on this algorithm. Like
in Sect. 5, we assume in this section that no underflow occurs.

8.1 Dot product as in K-fold precision with rounding to nearest

The DotK algorithm, introduced in [20] and presented as Algorithm 13, enables one to compute a
dot product as in K-fold precision. In [20] the DotK algorithm is based on TwoProd [5] and TwoSum

[16] that are error-free transformations with rounding to nearest. The DotK algorithm is presented
here with TwoProdFMA and PriestTwoSum that are error-free transformations with any rounding
mode. As a remark if K = 2, Algorithm 13 is identical with Algorithm 8 (CompDot).

function res = DotK(x, y,K)

1: [p, r1]← TwoProdFMA(x1, y1)
2: for i = 2 to n do
3: [h, ri]← TwoProdFMA(xi, yi)
4: [p, rn+i−1]← PriestTwoSum(p, h)
5: end for
6: r2n ← p
7: res← SumK(r,K − 1)

Algorithm 13: Dot product algorithm in K-fold working precision, K ≥ 3

The error on the result res of Algorithm 13 obtained with rounding to nearest is analysed
in [20]. A bound for the absolute error is recalled in Proposition 8.1 and a bound for the relative
error in Corollary 8.2.
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Proposition 8.1 ([20]). Let floating-point numbers xi, yi ∈ F, 1 ≤ i ≤ n, be given and assume
8nu ≤ 1. Denote by res ∈ F the result computed by Algorithm 13 (DotK) with rounding to nearest.
Then

|res− xT y| ≤
(
u + 2γ24n−2(u)

)
|xT y|+ γK4n−2(u)|xT ||y|.

Corollary 8.2 ([20]). Assume 8nu ≤ 1. The result res of Algorithm 13 (DotK) obtained with
rounding to nearest satisfies∣∣∣∣res− xT yxT y

∣∣∣∣ ≤ u + 2γ24n−2(u) +
1

2
γK4n−2(u) cond

(
xT y

)
.

From Corollary 8.2, the bound for the relative error on the result is essentially the relative
rounding error u plus a term that reflects that the computation is carried out as in K-fold precision
(α(K)uK times the condition number for a moderate factor α(K)).

8.2 Dot product as in K-fold precision with directed rounding

We present here the impact of a directed rounding mode on Algorithm 13 (DotK). For the analysis
we rewrite Algorithm 13 into the following equivalent one.

function res = DotK(x, y,K)

1: [p1, r1]← TwoProdFMA(x1, y1)
2: for i = 2 to n do
3: [hi, ri]← TwoProdFMA(xi, yi)
4: [pi, rn+i−1]← PriestTwoSum(pi−1, hi)
5: end for
6: r2n ← pn
7: res← SumK(r,K − 1)

Algorithm 14: Equivalent formulation of Algorithm 13

A bound for the absolute error on the result of Algorithm DotK obtained with directed rounding
is given in Proposition 8.3.

Proposition 8.3. Let floating-point numbers xi, yi ∈ F, 1 ≤ i ≤ n, be given and denote by res ∈ F
the result computed by Algorithm 13 (DotK) with directed rounding. If 16nu ≤ 1, then

|res− xT y| ≤
(
2u + 2γ24n−2(2u)

)
|xT y|+ γK4n−2(2u)|xT ||y|

Proof. Because TwoProdFMA and PriestTwoSum are error-free transformations even with directed
rounding, we have

s :=

2n∑
i=1

ri = xT y. (8.42)

Indeed, it is clear that
r1 = x1y1 − p1,

and for i ≥ 2,

ri + rn+i−1 = (xiyi − hi) + (pi−1 + hi − pi),
= xiyi + pi−1 − pi.
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Therefore, because r2n = pn, we have

2n−1∑
i=1

ri = (x1y1 − p1) +

(
n∑
i=2

xiyi + p1 − r2n

)
,

= xT y − r2n. (8.43)

Therefore we can deduce Equation 8.42.
Applying Proposition 7.4 requires to estimate S :=

∑2n
i=1 |ri|. Because Algorithm 13 is executed

with directed rounding, we have
|r1| ≤ 2u|x1y1|, (8.44)

and
n∑
i=2

|ri| ≤ 2u
n∑
i=2

|xiyi|. (8.45)

From Lemma 4.6 applied to Algorithm PriestTwoSum, we deduce

n∑
i=2

|rn+i−1| ≤ γn−1(2u)

(
|p1|+

n∑
i=2

|hi|

)
,

= γn−1(2u)
n∑
i=1

|fl∗(xiyi)|,

≤ (1 + 2u)γn−1(2u)|xT ||y|. (8.46)

From Equations 8.44, 8.45 and 8.46, we obtain

2n−1∑
i=1

|ri| ≤ 2u|xT ||y|+ (1 + 2u)γn−1(2u)|xT ||y|,

≤ 2nu

1− 2(n− 1)u
|xT ||y|. (8.47)

From Equation 8.43, we deduce that

|r2n| = |xT y −
2n−1∑
i=1

ri|,

≤ |xT y|+
2n−1∑
i=1

|ri|.

Therefore, we have
2n∑
i=1

|ri| ≤ |xT y|+ 2

2n−1∑
i=1

|ri|. (8.48)

From Equation 8.47, we obtain

2
2n−1∑
i=1

|ri| ≤
(2n)(2u)

1− (n− 1)(2u)
|xT ||y|,

≤ (2n)(2u)

1− 2n(2u)
|xT ||y|,

≤ γ2n(2u)|xT ||y|. (8.49)
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From Equations 8.48 and 8.49, we have

2n∑
i=1

|ri| ≤ |xT y|+ γ2n(2u)|xT ||y|.

From Proposition 7.4, using 2γm(2u) ≤ γ2m(2u) and noting that the vector r is of length 2n
yields

|res− xT y| ≤
(
2u + 3γ22n−1(2u)

)
|xT y|+ γK−14n−2(2u)

(
|xT y|+ γ2n(2u)|xT ||y|

)
,

≤
(

2u + 3γ22n−1(2u) + γK−14n−2(2u)
)
|xT y|+ γ2n(2u)γK−14n−2(2u)|xT ||y|,

≤
(

2u +
3

4
γ24n−2(2u) + γK−14n−2(2u)

)
|xT y|+ γK4n−2(2u)|xT ||y|.

If 8(2n− 1)u ≤ 1, then we can conclude that γ4n−2(2u) ≤ 1 and

|res− xT y| ≤
(
2u + 2γ24n−2(2u)

)
|xT y|+ γK4n−2(2u)|xT ||y|.

From Proposition 8.3, a bound for the relative error on the result of Algorithm DotK obtained
with directed rounding is deduced in Corollary 8.4.

Corollary 8.4. Assume 16nu ≤ 1. The result res of Algorithm 13 (DotK) obtained with directed
rounding satisfies ∣∣∣∣res− xT yxT y

∣∣∣∣ ≤ 2u + 2γ24n−2(2u) +
1

2
γK4n−2(2u) cond(xT y).

From Corollary 8.4, the bound for the relative error on the result obtained with directed round-
ing is essentially the relative rounding error 2u plus a term that reflects that the computation is
carried out as inK-fold precision (α(K)uK times the condition number for a moderate factor α(K)).

9 Numerical results

In the numerical experiments presented here, compensated algorithms previously described are
executed with the CADNA library. Results are computed in double precision, i.e. using the
binary64 format of the IEEE standard [12]: each stochastic variable contains three binary64 floating-
point values. Figures 1 to 5 present the number of exact significant digits estimated by CADNA
in the results obtained using classic algorithms and associated compensated versions. One can
observe in Fig. 1 to 5 that, if the condition number increases, the number of exact significant digits
decreases and with classic algorithms, results have no more correct digits for condition numbers
greater than 1016.

From Fig. 1 to 3, as long as the condition number is less than 1016, the compensated algorithms
produce results with the maximal accuracy (15 exact significant digits in double precision). For
condition numbers greater than 1016, the accuracy decreases and there are no more correct digits
for condition numbers greater than 1032. The results provided by CADNA are consistent with the
properties of compensated algorithms given in Sect. 4 to 6 for directed rounding: with the current
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precision, the FastCompSum, CompDot, and CompHorner algorithms compute results that could have
been obtained with twice the working precision.
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Figure 1: Accuracy estimated by CADNA using the Sum and the FastCompSum algorithms with 200
randomly generated floating-point numbers.
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Figure 2: Accuracy estimated by CADNA using the Dot and the CompDot algorithms to compute
the dot product of arrays of 100 randomly generated elements.
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Figure 3: Accuracy estimated by CADNA using the Horner and the CompHorner algorithms to
compute (x− 1)n for x close to 1 and for various values of n.

Figures 4 and 5 present the accuracy estimated by CADNA of the results computed using
the SumK and DotK algorithms described in Sect. 7 and 8. As a remark, although the results
obtained with SumK and DotK for K = 2 are reported in Fig. 4 and 5, for performance reasons
algorithms FastCompSum and CompDot should be preferably used for a computation as with twice
the working precision. It can be observed in Fig. 4 and 5 that, if the condition number is less than
about 1016(K−1), algorithms SumK and DotK produce results with the maximum possible accuracy
in double precision. Then, the accuracy decreases if the condition number increases from about
1016(K−1) to 1016K . For condition numbers greater than about 1016K , results computed by SumK and
DotK have no more correct digits. Figures 4 and 5 are consistent with the properties of algorithms
SumK and DotK given in Sect. 7 and 8 for directed rounding: results are computed as in K-fold
precision.
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Figure 4: Accuracy estimated by CADNA using the Sum and the SumK algorithms with 200 randomly
generated floating-point numbers.
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Figure 5: Accuracy estimated by CADNA using the Dot and the DotK algorithms to compute the
dot product of arrays of 100 randomly generated elements.

CADNA can detect numerical instabilities that occur during the execution. As already men-
tioned in Sect. 3, the use of DSA requires self-validation, i.e. the control of multiplications and
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divisions duing the execution. Indeed if each operand of a multiplication or a divisor has no more
correct digits, the estimation of accuracy by DSA may be invalid. The algorithms presented in this
article require no division. No multiplication is performed in summation algorithms. Concerning
dot product algorithms, the operands of multiplications are elements of the initial arrays. For the
evaluation of a polynomial p(x), the value x is always one of the operands of the multiplications
performed. Because these initial data are supposed to be significant (not numerical noise), no
unstable multiplication can be generated. All algorithms presented in this article may generate
cancellations, i.e. sudden losses of accuracy due to subtractions of very close values. The number
of cancellations detected depends on the condition number, the size of the data arrays for the sum
and the dot product, and the degree of the polynomial for Horner scheme. Because cancellations
are not related to the self-validation of DSA, they cannot invalid the estimation of accuracy by
CADNA.

Tables 1 to 3 present execution times measured in double precision with and without CADNA
on an Intel Core i5-4690 CPU (Haswell) at 3.5 GHz using g++ version 5.3.1. As a remark, this
architecture supports the FMA operation. The codes have been run using CADNA with three kinds
of instability detection:

• no detection of instabilities,

• self-validation,

• the detection of all kinds of instabilities;

With the algorithms considered in this article, the execution times measured with self-validation
are very close to those obtained if instability detection is deactivated. With summation algorithms,
these times are necessarily the same. Therefore the execution times reported in Tables 1 to 3 have
been measured with self-validation or with the detection of all kinds of instabilities.

From Tables 1 to 3, the cost of compensated algorithms that compute results as with twice
the working precision (FastCompSum, CompDot, CompHorner) over the classic algorithms is about 2
without CADNA and about 3 with CADNA. The heavier cost of compensated algorithms with
CADNA is mainly explained by the increase of data movements that are more costly with stochastic
variables. The executions times of PriestCompSum and SumK for K = 2 are mentioned in Table 1.
However, for performance reasons, FastCompSum that is based on FastTwoSum should be preferably
used to compute summations as with twice the working precision. Indeed PriestCompSum is based
on PriestTwoSum that requires more floating-point operations and an extra branching statement
compared to FastTwoSum. SumK for K = 2 is more costly than PriestCompSum because it requires
to fetch the errors from an array. Indeed at the end of the computation SumK sums up the errors
stored in an array, while PriestCompSum adds each error as soon as it is available. Similarly the
execution times of DotK for K = 2 are reported in Table 2, although CompDot should be preferable
used to compute dot products as with twice the working precision. Indeed PriestTwoSum that is
called in DotK is more costly than FastTwoSum called in CompDot. Furthermore DotK for K = 2
sums up the errors fetched from an array at the end of the computation, while CompDot adds the
errors as soon as they are computed. One can observe in Table 1 that the cost of SumK over the
classic summation regularly increases with K, whatever the instability detection level with CADNA
and also without CADNA. A similar remark can be formulated from Table 2 about the cost of DotK
over the classic dot product. In all the algorithms mentioned in Tables 1 to 3, the cost of CADNA
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in terms of execution time varies from 5 to 17 if self-validation is activated. This overhead is higher
if any instability is detected mainly because of the heavy cost of cancellation detection.

algorithm execution execution time (s) ratio

Sum without CADNA 8.45E–02 1
CADNA, self-validation 5.49E–01 6.5
CADNA, all instabilities 1.62E+00 19.1

FastCompSum without CADNA 1.61E–01 1
CADNA, self-validation 1.76E+00 10.9
CADNA, all instabilities 4.54E+00 28.1

PriestCompSum without CADNA 3.79E–01 1
CADNA, self-validation 3.65E+00 9.6
CADNA, all instabilities 5.87E+00 15.5

SumK, K = 2 without CADNA 7.61E–01 1
CADNA, self-validation 5.12E+00 6.7
CADNA, all instabilities 7.54E+00 9.9

SumK, K = 3 without CADNA 1.13E+00 1
CADNA, self-validation 8.44E+00 7.5
CADNA, all instabilities 1.12E+01 9.9

SumK, K = 4 without CADNA 1.51E+00 1
CADNA, self-validation 1.19E+01 7.9
CADNA, all instabilities 1.49E+01 9.9

SumK, K = 5 without CADNA 1.87E+00 1
CADNA, self-validation 1.52E+01 8.1
CADNA, all instabilities 1.86E+01 9.8

SumK, K = 6 without CADNA 2.27E+00 1
CADNA, self-validation 1.86E+01 8.2
CADNA, all instabilities 2.24E+01 9.8

SumK, K = 7 without CADNA 2.64E+00 1
CADNA, self-validation 2.20E+01 8.3
CADNA, all instabilities 2.61E+01 9.9

Table 1: Execution times with and without CADNA for the sum of 108 floating-point numbers.
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algorithm execution execution time (s) ratio

Dot without CADNA 2.52E–02 1
CADNA, self-validation 2.14E–01 8.5
CADNA, all instabilities 5.40E–01 21.4

CompDot without CADNA 5.63E–02 1
CADNA, self-validation 7.66E–01 13.6
CADNA, all instabilities 1.68E+00 29.9

DotK, K = 2 without CADNA 2.86E–01 1
CADNA, self-validation 1.46E+00 5.1
CADNA, all instabilities 2.30E+00 8.0

DotK, K = 3 without CADNA 4.68E–01 1
CADNA, self-validation 3.31E+00 7.1
CADNA, all instabilities 4.78E+00 10.2

DotK, K = 4 without CADNA 6.53E–01 1
CADNA, self-validation 4.94E+00 7.6
CADNA, all instabilities 6.84E+00 10.5

DotK, K = 5 without CADNA 8.36E–01 1
CADNA, self-validation 6.57E+00 7.8
CADNA, all instabilities 8.94E+00 10.7

DotK, K = 6 without CADNA 1.02E+00 1
CADNA, self-validation 8.19E+00 8.0
CADNA, all instabilities 1.07E+01 10.5

DotK, K = 7 without CADNA 1.21E+00 1
CADNA, self-validation 9.83E+00 8.2
CADNA, all instabilities 1.26E+01 10.5

Table 2: Execution times with and without CADNA for the dot product of arrays of 2.5 107

elements.

algorithm execution execution time (s) ratio

Horner without CADNA 4.20E–02 1
CADNA, self-validation 4.51E–01 10.6
CADNA, all instabilities 1.38E+00 32.4

CompHorner without CADNA 9.64E–02 1
CADNA, self-validation 1.61E+00 16.7
CADNA, all instabilities 3.71E+00 38.7

Table 3: Execution times with and without CADNA for the evaluation of polynomials of de-
gree 5 107.
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10 Conclusion

We have shown that it is possible to validate some compensated algorithms using stochastic arith-
metic. We studied compensated summation, dot product and polynomial evaluation. For that,
we described the behavior of error-free transformations for addition and multiplication when a
random rounding mode is used. We were also able to validate K-fold compensated algorithms for
summation and dot-product by using a special error-free transformation from Priest [21].

As a future work, we plan to show that it may be possible to validate other compensated
algorithms with stochastic arithmetic. We intend to study compensated floating-point product
and exponentiation [7], compensated Newton’s scheme [6, 15], and the compensated evaluation of
elementary symmetric functions [14]. Moreover, a more challenging problem will be to validate the
compensated algorithm for solving triangular systems [17].
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[2] J.-M. Chesneaux, S. Graillat, and F. Jézéquel. Encyclopedia of Computer Science and Engi-
neering, volume 4, chapter Rounding Errors, pages 2480–2494. Wiley, 2009.

[3] J.-M. Chesneaux and J. Vignes. Sur la robustesse de la méthode CESTAC. Comptes Rendus
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