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Abstract

In this paper, we consider a high-dimensional non-parametric regression model with fixed design and i.i.d. random
errors. We propose an estimator by exponential weighted aggregation (EWA) with a group-analysis sparsity promoting
prior on the weights. We prove that our estimator satisfies a sharp group-analysis sparse oracle inequality with a
small remainder term ensuring its good theoretical performances. We also propose a forward-backward proximal
Langevin Monte-Carlo algorithm to sample from the target distribution (which is not smooth nor log-concave) and
derive its convergence guarantees. In turn, this allows us to implement our estimator and validate it on some numerical
experiments.
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1. Introduction

1.1. Problem statement
Let us briefly present our statistical context. Assume that the given data (xi,Yi), i = 1, . . . , n, is generated according

to the non-parametric regression model

Yi = f (xi) + ξi, i ∈ {1, . . . , n}, (1.1)

where x1, . . . , xn are deterministic in an arbitrary setX, f : X → R is the unknown regression function and (ξ1, . . . , ξn)
are random errors. (1.1) is equivalently written in vector form Y = f + ξ. Assume that there exists a dictionary
H =

{
f j : X → R, j ∈ {1, . . . , p}

}
such that f is well approximated by a linear combination of elements in H , i.e.,

there exists θ̃ = (̃θ1, . . . , θ̃p)> ∈ Rp such that f̃θ =
∑p

j=1θ̃ j f j is a suitable approximation of f . The f j’s are known and
may be either fixed atoms in a basis or pre-estimators. In the context of high dimension, the cardinality ofH is much
larger than the sample size (i.e., p � n). Thus, in such a setting, the classical least-squares to estimate θ̃ is obviously
not applicable.

The idea of aggregating elements in a dictionary has been introduced in machine learning to combine different
techniques (see [39, 56]) with some procedures such as bagging [7], boosting [31, 54] and random forests [1, 4–
6, 8, 32]. In the recent years, there has been a flurry of research on the use of the concept of sparsity in various areas
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including statistics and machine learning in high dimension. The idea is that even if the cardinality ofH is very large,
the number of effective elements in the dictionary is much smaller than the sample size. Namely, the number of non-
zero components of θ̃ is assumed to be much smaller than n. This makes it possible to build an estimate f̃θ with good
provable performance guarantees under appropriate conditions on the dictionary and noise.

1.2. Overview of previous work
1.2.1. Oracle inequalities

This type of guarantees dates back, for instance, to the work [25–27] on orthogonal wavelet thresholding estimators.
Oracle inequalities (according to the terminology introduced in, e.g., [26]), which are at the heart of our work, quantify
the quality of an estimator compared to the best possible one among a collection of estimators. Formally, let g : X → R,
and denote ∥∥∥g

∥∥∥
n =

√
1
n
∑n

j=1g2(x j).

The performance of an estimator f̂ is measured by its averaged squared error, i.e.,

R( f̂ ) =
∥∥∥ f̂ − f

∥∥∥2
n.

We aim to find an estimator f̂ that mimics as much as possible the performance of the best model of aggregation in a
given class Θ (in the probabilistic sense). This idea is expressed in the following type of inequalities:

E
{∥∥∥ f̂ − f

∥∥∥2
n

}
≤ C inf

θ∈Θ

[∥∥∥ fθ − f
∥∥∥2

n + ∆n,p(θ)
]
, (1.2)

where C ≥ 1 and the remainder term ∆n,p(θ) depends on the performance of the estimator, the complexity of θ, the
dimension p and the sample size n. Such type of inequality is called balanced oracle inequality. Inequalities of type
(1.2) are well adapted under the sparsity scenario. Namely, the complexity of θ in the remaining term is characterized
by the sparsity parameters (like the number of its non-zero components), in which case these inequalities are called
sparse oracle inequalities (SOI).

An estimator with good oracle properties would correspond to C is close to 1 (ideally, C = 1, in which case the
inequality is said “sharp”), ∆n,p(θ) is small even if n � p and decreases rapidly to 0 as n → +∞. Besides, the choice
of Θ is crucial: on the one hand, a non suitable choice can lead a large bias term in (1.2). On the other hand, if Θ is
too complex, the remainder term becomes large. Then, a suitable choice for Θ must achieve a good bias-complexity
trade-off.

In the literature, there are mainly two approaches to provide aggregated estimators in high dimension under the
sparsity assumption: Penalization and Exponential Weighted Aggregation (EWA). Given Y = y, The penalization
approach considers the minimization problem

min
θ∈Θ

∥∥∥y − fθ
∥∥∥2

n + pen(θ),

where pen : Rp → R+ is a sparsity promoting penalty function, see, e.g., [9]. Our work focuses on EWA approach
that we briefly describe now.

1.2.2. Exponential Weighted Aggregation (EWA)
Let (Λ,A) be a space equipped with a σ-algebra and

FΛ = { fλ : X → R : λ ∈ Λ}

be a given collection (FΛ is called dictionary of aggregation) where λ → fλ(x) is measurable ∀x ∈ X. The functions
fλ may be deterministic or random. The aggregators depend on the nature of fλ if the latter is random. Otherwise, the
aggregators are defined via the probability measure

µn(dλ) =

exp
(
−n

∥∥∥Y − fλ
∥∥∥2

n/β
)
π(dλ)∫

Λ
exp

(
−n

∥∥∥Y − fω
∥∥∥2

n/β
)
π(dω)

, (1.3)
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where β > 0 called temperature parameter and π called prior which is a probability measure on Λ. Then, we define
the EWA aggregate by

f̂n(x) =

∫
Λ

fλ(x)µn(dλ). (1.4)

This idea was initially proposed in [35, 39, 56] with a uniform prior on a finite set Λ. Observe that (1.4) can be
interpreted as the Bayesian posterior conditional mean in the regression model but only when the noise is Gaussian
noise N(0, σ2In) and provided that β = 2σ2 and the prior density is π.

In the literature, the works in [18, 19, 21, 23] consider deterministic dictionaries. These papers proposed several
PAC-Bayesian1 type of oracle inequalities under different assumptions. Especially, the assumptions in [23] depend
only on the noise and turns out to be fulfilled for a large class of noise. This serves to construct, for a suitable prior
and dictionary, a SOI with a remainder term of order O(‖θ‖0 ln(p)/n), which scales linearly with the sparsity level and
increases in p only logarithmically.

The random dictionary case are tackled in [45]. The initial idea is to obtain two independent samples from the
initial sample by randomization or sample splitting (see [37, 49, 58]). The first sample is used to construct the pre-
estimators, and the aggregation is performed on the second sample conditionally on the first one. However this idea
does not work when the observations are not i.i.d. Several authors have proposed exponentially aggregating linear
pre-estimators without splitting, and with discrete priors on the weights. Typical cases of linear pre-estimators are
orthogonal projectors on all possible linear subspaces that are in the model set (e.g., in the sparsity context, linear
subspaces spanned by the standard basis restricted to supports of increasing size). This was introduced in [38]. More
recent work such as [20] generalizes the idea where the pre-estimators are affine and the priors are continuous.

A shortcoming of EWA is its suboptimality in deviation. In particular, the work in [16, Section 2] has shown that
the EWA leads a suboptimal remainder term for oracle inequalities in probability.

1.2.3. Generalization of sparsity assumption
Analysis sparsity Let q ≥ p and D> ∈ Rq×p be a linear analysis operator. The analysis sparsity assumption means
that

∥∥∥D>θ̃
∥∥∥

0 � n. A typical example is total variation [53] where the operator D> corresponds to “finite differences”
(i.e., (D>θ)1 = θ1, (D>θ) j = θ j − θ j−1, ∀ j ≥ 2). Another example is the fused Lasso [55] where D> is a positive
combination of the identity and finite differences.

Group sparsity Group sparsity corresponds to saying that the aggregator θ is block sparse, see Section 4.1 for formal
details. Group sparsity is at the heart of the group Lasso and related methods [34, 36, 42, 43, 48, 59]. In the EWA
context, the group sparsity prior is considered in [50] as an application of the aggregation of orthogonal projectors.

1.3. Contributions
Our main contributions are summarized as follows:

• We propose an EWA estimator, with a deterministic dictionary, under a group-analysis sparsity prior (see Sec-
tion 1.2.3). More precisely, we assume that D is a frame, and thus is not necessarily invertible unlike previous
work. In a finite space, that equivalents to the fact that DD> is invertible. In addition, our prior class (see
(4.2)) is much more general than previously proposed ones [23] which recovered as very special cases. It also
allows more flexibility to enhance the performance of EWA. This prior class is parameterized through a function
g : R+ → R+ that satisfies mild conditions (see Assumptions (G.1)-(G.4)).

• We establish a group-analysis SOI where the remainder term depends on the number of active groups in D>θ
and on the function g (see Theorem 5.1)

• For an appropriate choice of g which is well-adapted to the group-analysis sparsity scenario, we exhibit a group-
analysis SOI where, as expected, the remainder term scales as O

(∥∥∥D>θ
∥∥∥

0,G ln(L)/n
)
, where

∥∥∥D>θ
∥∥∥

0,G is the
number of active groups in D>θ, and L is the total number of groups (see Corollary 5.2). This rate coincides
with the classical one O(‖θ‖0 ln(p)/n) under the sparsity scenario, i.e., D = Ip and L = p.

1PAC stands for Probably Approximately Correct. A PAC-bound is probably correct as it not a deterministic guarantee allowing a small proba-
bility that the estimator does not behave well. It is also approximately correct as it is tolerant to an inexact performance of the estimator.
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• We also propose a forward-backward proximal Langevin Monte-Carlo (LMC) algorithm to sample from the
target distribution (6.3) (which is not smooth nor log-concave), and establish several of its properties in a general
setting. In turn, this allows us to efficiently implement our EWA estimator with the proposed prior. We validate
this algorithm on some numerical examples.

1.4. Paper organization
Necessary notations and some preliminaries are first introduced in Section 2. Section 3 reminds the PAC-Bayesian

type oracle inequalities proposed in [23] which are a classical starting point in literature for EWA in the deterministic
case. In Section 4, we describe our EWA procedure after specifying the aggregation dictionary and our prior family.
In Section 5, we establish our main results, namely group-analysis SOI. Section 6 is devoted to the forward-backward
proximal LMC algorithm that implements EWA, and the numerical experiments on several numerical settings are
described in Section 7. The proofs of all results are collected in Section 9.

2. Notations and Preliminaries

Before proceeding, let us introduce some notations and definitions.

Vectors and matrices For a d-dimensional Euclidean space Rd, we endow it with its usual inner product 〈·, ·〉 and
associated norm ‖·‖2. Id is the identity matrix on Rd. For q > 0 and x ∈ Rd, we also define ‖x‖q =

(∑d
j=1

∣∣∣x j

∣∣∣q)1/q
with

the usual adaptation ‖x‖∞ = max j∈{1,...,d}
∣∣∣x j

∣∣∣. It is the `q norm for q ≥ 1, and quasi-norm for q ∈]0, 1[. ‖x‖0 is the
`0 pseudo-norm which counts the number of non-zero elements in x. Let M ∈ Rd×d symmetric positive definite, we
denote 〈·, ·〉M = 〈·, M·〉 and ‖·‖M its associated norm. Of course,

∥∥∥ · ∥∥∥M and
∥∥∥ · ∥∥∥2 are equivalent.

For a matrix M ∈ Rd×r, we set σ(M) = (σ1(M), . . . , σr(M))> ∈ Rr be the vector of singular values of M in non-
increasing order. Note that, when M is symmetric semi-definite positive, σ(M) is also the ordered vector or positive
eigenvalues of M. We denote

∣∣∣∣∣∣∣∣∣M∣∣∣∣∣∣∣∣∣ the spectral norm of M.
For I ⊂ {1, . . . , d}, x ∈ Rd and M ∈ Rd×d, xI is the subvector whose entries are those of x restricted to the indices in
I, and MI the submatrix whose rows and columns are those of M indexed by I.
Let us denote vec : Rd×d → Rd2 the vectorization operator of a matrix. For any matrix M, M> denotes its transpose.
For any square matrix M, det(M) is its determinant.

Definition 2.1 (Frame). A matrix M ∈ Rd×r is a frame if there exist two constants ν and κ with ν ≥ κ > 0, called frame
bounds, such that the generalized Parseval relation is satisfied, i.e., κ ‖x‖22 ≤

∥∥∥M>x
∥∥∥2

2 ≤ ν ‖x‖
2
2, ∀x ∈ Rd.

By the Courant-Fischer theorem, Definition 2.1 is equivalent to the fact that κ (resp. ν) is a lower (resp. up-
per) bound of the eigenvalues of MM>. Moreover, since κ > 0, we have that MM> is bijective and M> is injec-
tive. The frame is said tight when κ = ν. Typical examples of (tight) frames that have been used in statistics are
translation invariant wavelets [15], ridgelets [11] and curvelets [10] (example of groups and what they represent for
wavelets/ridgelets/curvelets in applications are discussed in [14]). Let M̃ ∈ Rd×r be the canonical dual frame associated
to M, i.e., M̃ = (MM>)−1 M. We know that

M̃M> = Id (2.1)

and
1
κ
≥ σ1

(
M̃
>

M̃
)
≥ . . . ≥ σd

(
M̃
>

M̃
)
≥

1
ν
. (2.2)

Note that we focus on the canonical dual frame for the sake of simplicity. In fact, our exposition in the rest of the paper
remains unchanged if any other dual frame is used instead of the canonical one.
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Functions For a function f : Rd → R, we define f = ( f (x1), . . . , f (xd))> its d-sample vector form,
∥∥∥ f

∥∥∥
d =(

1
d
∑d

j=1 f 2(x j)
)1/2

and
∥∥∥ f

∥∥∥
∞

= supx∈Rd

∣∣∣ f (x)
∣∣∣.

For a function f : Rd → R ∪ {+∞}, its effective domain is dom( f ) =
{
x ∈ Rd : f (x) < +∞

}
and f is proper if

f (x) > −∞ for all x and dom( f ) , ∅ as is the case when it is finite-valued. A function f : Rd → R ∪ {−∞,+∞} is
lower semi continuous (lsc) at x0 if lim infx→x0 f (x) ≥ f (x0). For a differentiable function f , ∇ f is its (Euclidean)
gradient.

For a set Ω, IΩ is its characteristic function, i.e., 1 if the argument is in Ω and 0 otherwise. Define sgn : R 7→ {−1, 1}
be the sign function, i.e., sgn(x) = 1 when x ≥ 0, and sgn(x) = −1 otherwise. Let x ∈ R, define bxc be the stands of
integer part of x. Recall the Gamma function Γ :]0,+∞]→]0,+∞], Γ : t 7→

∫ ∞
0 xt−1 exp (−x)dx.

Definition 2.2 (Proximal mapping and Moreau envelope). Let M ∈ Rd×d be symmetric positive definite. For a proper
lsc function f and γ > 0, the proximal mapping and Moreau envelope in the metric M are defined respectively by

proxM
γ f (x) def

= Argmin
w∈Rd

1
2γ

∥∥∥w − x
∥∥∥2

M + f (w)

M,γ f (x) def
= inf

w∈Rd

1
2γ

∥∥∥w − x
∥∥∥2

M + f (w)

proxM
γ f here is a set-valued operator since the minimizer, if it exists, is not necessarily unique. When M = Id, we

simply write proxγ f and γ f .

Useful integration formulas The following lemmas contain useful formula used throughout the paper.

Lemma 2.1 ([33, 3.251.11]). Let p, γ, ν, η > 0. If γ/ν < η + 1 we have∫ ∞

0

xγ−1

(p + xν)η+1 dx =
1

νpη+1−γ/ν

Γ(γ/ν)Γ(1 + η − γ/ν)
Γ(1 + η)

,

otherwise this integral is not definite.

Lemma 2.2 (Cartesian to spherical coordinates [30]). Let d ≥ 1 and a mapping h : R+ → R such that u→ h(‖u‖2) is
measurable in Rd. We then have ∫

Rd
h(‖u‖2)du = Cd

∫ ∞

0
xd−1h(x)dx,

where Cd = 2πd/2/Γ(d/2) is the surface area of the d-dimensional Euclidean ball of radius 1.

The following lemma provides an efficient change of variables formula, which will be a key tool in the proof of our
general group-analysis SOI (see Theorem 5.1).

Lemma 2.3. Let Θ ⊆ Rd be a measurable set. For any M ∈ Rr×d corresponding to the analysis operator of a frame
of Rd, let u : Rr → R such that the mapping x 7→ u(Mx) is measurable on Θ. We have∫

Θ

u(Mx)dx =
1√

det(MM>)

∫
MΘ

u(v)dv (2.3)

provided either u is non-negative valued or the integral on the left converges.

Though quite natural, proving Lemma 2.3 rigorously requires nontrivial arguments from geometric measure theory;
see Section 9.1.
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3. PAC-Bayesian type oracle inequalities

This section recalls a PAC-Bayesian type oracle inequality which holds for the EWA procedure of type (1.3)-(1.4)
with any deterministic aggregation dictionary, any prior and a large class of noises. Such type of oracle inequalities
was introduced in [23] for i.i.d. noise. In the present paper, we adapt it to the non i.i.d. case. Indeed, let us start with
the two following assumptions.

(P.1) The noise vector ξ = (ξ1, . . . , ξn)> has zero mean.

(P.2) For any γ > 0 small enough, there exist a probability space and two random variables ξ′ and ζ defined on this
probability space satisfying the three following points:

(a) ξ′ has the same distribution as ξ.
(b) ξ′ + ζ has the same distribution as (1 + γ)ξ′ and the conditional expectation satisfies E

{
ζ |ξ′

}
= 0.

(c) There exist t0 ∈]0,∞] and a bounded Borel function v : Rp → R+ such that

lim sup
γ→0

sup
(t,a)∈Rp×Rp

(‖t‖2,a)∈[0,t0]×supp(ξ′)

lnE
{
exp

(
t>ζ

)
|ξ′ = a

}
‖t‖22 γv(a)

≤ 1.

where supp(ξ′) is the support of the distribution of ξ′.

Assumption (P.2) is based on [23, Assumption N], and can be shown to be fulfilled for a large class of noise.

Proposition 3.1. Assume that ξ has zero mean. Assumption (P.2) is fulfilled with t0 = ∞ when

• ξ is a Gaussian random vector with covariance matrix Σ, with t0 = ∞ and v(a) ≡
∣∣∣∣∣∣∣∣∣Σ∣∣∣∣∣∣∣∣∣;

• ξ is a Laplace random vector with covariance Σ, with t0 <
√

2/
∣∣∣∣∣∣∣∣∣Σ∣∣∣∣∣∣∣∣∣ and v(a) ≡

∣∣∣∣∣∣∣∣∣Σ∣∣∣∣∣∣∣∣∣/(1 − t2
0

∣∣∣∣∣∣∣∣∣Σ∣∣∣∣∣∣∣∣∣2/2);
• ξ is a bounded symmetric random vector, i.e., Pr {|ξi| ≤ Bi} for some B ∈ Rn, with t0 = ∞ and v(a) = ‖a‖2 ≤ ‖B‖2.

Besides, let H ∈]0,+∞] such that
sup

(λ,λ′)∈Λ2

∥∥∥ f λ − f λ′
∥∥∥

2 ≤ H. (3.1)

Note that (3.1) is always satisfied since H is allowed to be infinite. However, for the sake of sharpness in our theoretical
results, we wish to choose H as small as possible. We are now ready to state the PAC-Bayesian type oracle inequalities.

Theorem 3.1. Let Assumptions (P.1) and (P.2) be satisfied with some function v and let (3.1) holds. Then for any prior
π, any probability measure p on Λ and any β ≥ max(4

∥∥∥v
∥∥∥
∞
, 2H/t0) or β ≥ 4

∥∥∥v
∥∥∥
∞

when H = ∞, t0 = ∞, we have

E
{∥∥∥ f̂n − f

∥∥∥2
n

}
≤

∫
Λ

∥∥∥ f − fλ
∥∥∥2

n p(dλ) +
βKL(p, π)

n
, (3.2)

where f̂n is the aggregate defined in (1.4) and KL(p, π) =
∫

Λ
ln (p(dλ)/π(dλ))p(dλ) is the Kullback-Leibler divergence.

The proof of Theorem 3.1 is a mild adaptation of the original one in [23, Section 2], where we used directly
Assumption (P.2)-3 in the vector ζ instead of splitting it into ζi,i∈{1,...,n} (that are no longer i.i.d.).
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Related work The work of [19] proposed three types of oracle inequalities which are similar to (3.2) under different
assumptions. The first type (see [19, Theorem 1]) holds under a restrictive condition on the noise. The second (see
[19, Theorem 2]) involves conditions depending on the noise and also on the dictionary. The last (see [19, Theorem 4])
works for all symmetric noises without conditions on the dictionary. However, an additional term appears in the
remainder term which has a low rate for some types of noise. Therefore, Theorem 3.1 (with Assumption (P.2)) is a
good trade-off between these types of oracle inequalities.

Moreover, there exist some related forms of (3.2) in different frameworks. For example, when ξi ∼ N(0, σ2
i ),

i = 1, . . . , n, the following aggregate was proposed in [20]:

f̂ =

∫
Λ

f̂λp(dλ), p(dλ) =
exp

(
− n
β
r̂λ

)
π(dλ)∫

Λ
exp

(
− n
β
r̂ω

)
π(dω)

,

where f̂λ, λ ∈ Λ are affine estimators satisfying some conditions imposed in [20, Theorem 1] which yield the definition
of r̂λ, λ ∈ Λ. This aggregate satisfies oracle inequalities defined therein which are the counterparts of (3.2) for the
aggregation of estimators. In addition, in the case of random design (i.e., x1, . . . , xn are random and i.i.d.), the works in
[22] constructed a mirror averaging aggregate to obtain a generalized type of oracle inequalities where the performance
is measured by any loss instead of the averaged square loss.

4. EWA estimator

4.1. Group-analysis sparsity
We now describe formally what is intended by group-analysis sparsity, which measures group sparsity of the image

of a vector with an analysis linear sparsifying transform. Let q ≥ p. We partition the index set {1, . . . , q} into L non-
overlapping groups/blocks of indices {G`}1≤`≤L such that

G =

L⋃
`=1

G` = {1, . . . , q} and G` ∩ Gk = ∅, ∀l , k.

For the sake of simplicity, and without loss of generality, the groups are assumed to have the same size CardG` = G ≥ 1
and the total number of blocks L is supposed to be an integer. A vector v ∈ Rq can be divided into L vectors vG` ∈ RG

which are the restrictions of v to the coordinates indexed by G`. We define∥∥∥v
∥∥∥

s,G =
(∑L

`=1

∥∥∥vG`
∥∥∥s

2

)1/s
, s > 0,

which is a norm for s ≥ 1, with
∥∥∥v

∥∥∥
∞,G

= max`∈{1,...,L}
∥∥∥vG`

∥∥∥
2. It is a quasi-norm for s ∈]0, 1[.

∥∥∥v
∥∥∥

0,G counts the number
of active (i.e., non-zero) groups in v. With these notations, the group-analysis sparsity assumption is formalized as
follows.

(H.1) Let D ∈ Rp×q, there exists θ̃ ∈ Rp such that f̃θ = f and
∥∥∥D>θ̃

∥∥∥
0,G � n.

In plain words, Assumption (H.1) says that the number of active groups of D>θ̃ is much smaller than the sample
size. Note that this is a strict notion of group-analysis sparsity, and a weaker one could be also considered where most(
D>θ̃

)
G`

are nearly zero. We also impose the following assumption on D.

(H.2) D is a frame with frame bounds ν ≥ κ > 0.

Let us now introduce some applications in literature in which our sparsity context is mentioned.

Example 4.1 (2-D piecewise constant image). Let θ0 ∈ R
√

p×
√

p be a 2-D piecewise constant image. In this framework,
a popular analysis operator is the isotropic total variation called DTV (see [53]). Namely, let Dc : R

√
p×
√

p → R
√

p×
√

p

and Dr : R
√

p×
√

p → R
√

p×
√

p the finite difference operators along, respectively, the columns and rows of an image,
with Neumann boundary conditions. We define DTV as

DTV : θ ∈ R
√

p×
√

p 7→ vec
(
(vec(Dr(θ)), vec(Dc(θ)))>

)>
∈ R2p.

7



By vectorizing θ̃ in Assumption (H.1), D> can be considered as the matrix version of the linear operator DTV, called
DTV. Here, DTV = [D>r D>c ]> where Dr ∈ Rp×p (resp. Dc ∈ Rp×p) is the matrix counterpart of Dr (resp. Dc). With
Neumann boundary conditions, Dr and Dc are bijective implying injectivity of DTV. Thus, D is a frame in view of
Courant-Fisher theorem.
The isotropic total variation prior on θ promotes sparsity of vec

(∥∥∥[DTV(θ0)]i, j

∥∥∥
2

)
1≤i, j≤

√
p
. By defining the set of groups

by G =
⋃

(i, j)∈{1,...,sp0 }
2 {(i, j, 1), (i, j, 2)}, one immediately realizes that measuring sparsity of the above vectorized form

is equivalent to group sparsity of DTV(θ0) with groups of size 2 along the third dimension.

Example 4.2 (Signal with overlapping groups). Consider θ0 ∈ Rp generated from L groups which overlap. The
analysis operator acts as a group extractor (see [13, 47]). In this framework, DD> = diag(B>1 B1, . . . , B>L BL) where
B` ∈ Rq`×p, for ` ∈ {1, . . . , L}, is a countable collection of localization operators, and then q =

∑L
`=1q`. Since the

localization operators are injective, DD> is bijective. Thus D is a frame in view of Courant-Fisher theorem.

To design an aggregation by exponential weighting, two ingredients are essential: the aggregation dictionary and
the prior which promotes group-analysis sparsity. We specify them below.

4.2. Choice of dictionary
Let X ∈ Rn×p where Xi, j = f j(xi), where we recall that f j ∈ H is a known function (atom) in the deterministic

dictionaryH .

(H.3) X is normalized such that all the diagonal entries of X>X/n are 1.

Now, let us introduce our dictionary of aggregation:

FΘ =
{
fθ = L

(∑p
j=1θ j f j

)
: θ ∈ Θ =

{
θ ∈ Rp :

∥∥∥D>θ
∥∥∥a

a,G ≤ R
}}
, (4.1)

where a ∈]0, 1], R ∈]0,+∞] and L : R→ R is twice continuously differentiable and known function that depends on
the regression problem: e.g., L (x) = ex for the exponential regression, L (x) = ex/(ex + 1) for the logistic regression
and L (x) = x for the linear regression. This dictionary of aggregation is similar to the one proposed in [21–23].
However, the set of indices is modified to adapt to the group-analysis sparsity and the exponent a is varied in ]0, 1]
instead of a fixed a = 1. The bound H in (3.1) for FΘ in (4.1) is established in the following result.

Proposition 4.1. Let FΘ = { fθ : θ ∈ Θ} defined in (4.1) with some R > 0, a ∈]0, 1] and L : R→ R twice continuously
differentiable. Let Assumption (H.2) holds for some κ > 0. We get that

sup
(θ,θ′)∈Θ2

∥∥∥ f θ − f θ′
∥∥∥

2 ≤ 2 max
x∈B

∥∥∥L (x)
∥∥∥

2,

where B =
{
x ∈ Rn : ‖x‖2 ≤

∣∣∣∣∣∣∣∣∣X∣∣∣∣∣∣∣∣∣R1/aκ−1/2} andL : x ∈ Rn → (L (x1), . . . ,L (xn)).

From Proposition 4.1, one can choose H = 2 maxx∈B
∥∥∥L (x)

∥∥∥
2.

Remark 4.1. By choosing H = 2 maxx∈B
∥∥∥L (x)

∥∥∥
2, H depends on X and then on n under Assumption (H.3). So

β ≥ max(4 ‖v‖∞ , 2H/t0) also depends on n. In this case, ξ must satisfy Assumption (P.2) with t0 = ∞. In view of
Proposition 3.1, we can consider ξ as a Gaussian or a bounded symmetric noise.

4.3. Choice of prior
4.3.1. Main assumptions

Recall that the goal is to find a prior leading an oracle inequality with a small remainder term while promoting
group-analysis sparsity. In order to promote sparsity, it is well-known that the prior is usually expected to be symmetric
and sharply peaked around its mode (the origin) while having tails heavier than merely exponential [44]. This is the
rationale behind our general prior which takes the form

π(dθ) =
1

Cα,g,R

∏L
`=1 exp

(
−αa

∥∥∥[D>θ]G`
∥∥∥a

2

)
g
(∥∥∥[D>θ]G`

∥∥∥
2

)
IΘ(θ)dθ, (4.2)

where α > 0 and g satisfies the following requirements:
8



(G.1) Boundedness: g : R+ → R+ is a bounded function such that g . 0, and θ 7→ g
(∥∥∥[D>θ]G`

∥∥∥
2

)
is measurable on

Rp, ∀` ∈ {1, . . . , L}.

(G.2) Integrability:
∫
Rp

∏L
`=1g

(∥∥∥[D>u]G`
∥∥∥

2

)
du < ∞.

(G.3) Moment condition:
∫
Rp

∥∥∥[D>u]G`
∥∥∥2

2
∏L

k=1g
(∥∥∥[D>u]Gk

∥∥∥
2

)
du < ∞, ∀` ∈ {1, . . . , L}.

(G.4) Growth condition: there exist λ ≥ 0 and h : R+ → R+ such that g(‖t − t∗‖2)/g(‖t‖2) ≤ h(‖t∗‖2)λ, ∀(t, t∗) ∈
RG × RG .

The exponential part can be viewed as a generalized Gaussian on the group analysis coefficients with shape pa-
rameter a and scale parameter α−1. The choice of a ∈]0, 1] favors sparsity. The choice of α will be made clear when
discussing the remainder terms in our group-analysis SOI (see for instance Remark 5.1). The role of the function g
is (at least) twofold. The first is precisely to capture heavier tails than exponential. Second, it allows more flexibil-
ity to adjust to the group sparsity scenario and optimize the performance of EWA (see remarks hereafter for further
discussion and examples).

4.3.2. Discussion of the assumptions
Assumption (G.4) controls the growth of the function g. The growth function h will impact the remainder term in

the main group-analysis SOI stated in Theorem 5.1, and more precisely the term ΩD
µn,n,L,λ

(θ) therein.
Assumptions (G.1)-(G.3) play a prominent role in controlling the key constant K D

a,g > 0 that is involved in the
construction of our general group-analysis SOI in Theorem 5.1. The following remark formalizes the existence of this
constant and relates it to the integrability and moment conditions on g.

Remark 4.2. Let G ≥ 1 and D ∈ Rp×q satisfying Assumption (H.2). For any function g satisfying Assumptions (G.1)-
(G.3), and any a ∈]0, 1], there exists K D

a,g ∈]0,∞[ such that, ∀` ∈ {1, . . . , L},∫
Rp

∥∥∥[D>u]G`
∥∥∥2a

2
∏L

k=1g
(∥∥∥[D>u]Gk

∥∥∥
2

)
du∫

Rp
∏L

k=1g
(∥∥∥[D>v]Gk

∥∥∥
2

)
dv

≤ K D
a,g. (4.3)

Proof. From Assumption (G.3) and the fact that g . 0, one can show that (4.3) holds for a = 1. Moreover, since g . 0
and g satisfies Assumption (G.2), it holds that

u 7→
∏L
`=1g

(∥∥∥[D>u]G`
∥∥∥

2

)
du∫

Rp
∏L

k=1g
(∥∥∥[D>v]Gk

∥∥∥
2

)
dv

is a probability measure. Therefore, (4.3) holds for any a in ]0, 1] by Hölder’s inequality.

It is then legitimate to wonder whether there exists a simpler condition on g which implies Assumptions (G.2)
and (G.3). The answer is affirmative as we now state.

Lemma 4.1. Let G ≥ 1 and D ∈ Rp×q satisfying Assumption (H.2). Suppose that g satisfies Assumption (G.1) and∫ ∞

0
zG+1g(z)dz < ∞. (4.4)

Then Assumptions (G.2) and (G.3) are in force.

When the operator D is invertible, K D
a,g takes an even simpler and explicit form, and moreover, (4.4) is necessary

for g to obey Assumption (G.3). This is the subject of Remark 4.3 and Remark 4.4.

Remark 4.3. Let G ≥ 1 and D ∈ Rp×p be invertible. For any function g satisfying Assumptions (G.1)-(G.3), and for
any a ∈]0, 1], one can choose K D

a,g in (4.3) as

K D
a,g =

∫ ∞
0 xG−1+2ag(x)dx∫ ∞

0 zG−1g(z)dz
. (4.5)
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Proof. The proof follows by combining Lemmas 2.3 and 2.2, i.e.,∫
Rp

∥∥∥[D>u]G`
∥∥∥2a

2
∏L

k=1g
(∥∥∥[D>u]Gk

∥∥∥
2

)
du∫

Rp
∏L

k=1g
(∥∥∥[D>v]Gk

∥∥∥
2

)
dv

=

∫
RG ‖u‖2a

2 g(‖u‖2)du
(∫

RG g(‖v‖2)dv
)L−1(∫

RG g(‖w‖2)dw
)L

=

∫
RG ‖u‖2a

2 g(‖u‖2)du∫
RG g(‖v‖2)dv

=

∫ ∞
0 xG−1+2ag(x)dx∫ ∞

0 zG−1g(z)dz
.

Remark 4.4. When D is invertible, if g does not satisfy (4.4) then g cannot fulfill Assumption (G.3). Consequently,
Assumption (G.3) and condition (4.4) are equivalent in the invertible case.

Proof. By Lemmas 2.3 and 2.2, we get∫
Rp

∥∥∥[D>u]G`
∥∥∥2

2

∏L
k=1g(

∥∥∥[D>u]Gk

∥∥∥
2)du =

CL
G

∫ ∞
0 zG+1g(z)dz√
det(DD>)

(∫ ∞

0
wG−1g(w)dw

)L−1

.

4.3.3. Examples of g
Let us now discuss some choices of g.

Example 4.3. Consider g : R+ → R+ defined by

g(x) =
1

(τ2 + x2)2 , τ > 0.

This choice of g yields a prior that specializes to the one in [23] for the individual sparsity scenario, i.e., with D = Ip,
G = 1 and a = 1.

Example 4.4. Consider g : R+ → R+ defined by

g(x) =
1

(τb + xb)c ,

where τ > 0, b ∈]0, 1] and c > (2 + G)/b. The choice of c guarantees the validity of Assumptions (G.2) and (G.3).
Thanks to the parameters b and c, this choice of g offers more flexibility than the one in the previous example. This
allows for example to optimize the performance of EWA by tuning these parameters for the particular dataset at hand.

5. Group-analysis sparse oracle inequality

Once a suitable dictionary and prior are chosen according to the above, the EWA is performed via (1.3)-(1.4). Our
goal now is to provide a theoretical guarantee for the aggregates by constructing a group-analysis SOI. First of all,
based on PAC-Bayesian type oracle inequalities in Section 3, we establish our first main result: a group-analysis SOI
for the dictionary (4.1) and the prior (4.2) with a function g obeying Assumptions (G.1)-(G.4).
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Theorem 5.1 (General group-analysis sparse oracle inequality). Let G ≥ 1, X satisfying Assumption (H.3), and D
satisfying Assumption (H.2) with κ > 0. Let Assumptions (P.1) and (P.2) be satisfied with some function v, (3.1)
holds and β ≥ max (4 ‖v‖∞ , 2H/t0). For some a ∈]0, 1], take the dictionary (4.1) and the prior (4.2) with g satisfying
Assumptions (G.1)-(G.4). Let K D

a,g, as defined in (4.3), and assume that R > 3
√

K D
a,gL. Then the following group-

analysis SOI holds,

E
{∥∥∥ f̂n − f

∥∥∥2
n

}
≤ inf

ΘD
µn ,L,R

(∥∥∥ fθ − f
∥∥∥2

n + ΦD
µn,n,L(θ) + ΩD

µn,n,L,λ(θ)
)

+ ΨD
µn,L,p, (5.1)

with 

ΘD
µn,L,R

=
{
θ ∈ Rp :

∥∥∥D>θ
∥∥∥a

a,G ≤ R − 3
√

K D
a,gL

}
ΦD
µn,n,L

(θ) =
β

n

(
1 + 3

√
K D

a,gLαa + αa
∥∥∥D>θ

∥∥∥a
a,G

)
ΩD
µn,n,L,λ

(θ) =
λβ

n
∑L
`=1 ln h

(∥∥∥[D>θ
]
G`

∥∥∥
2

)
ΨD
µn,L,p

= 2κ−1K D
1,g exp

(
3
√

K D
a,gLαa

)
pC f ,L ,

and C f ,L =
∥∥∥L ′

∥∥∥2
∞

+
∥∥∥L ′′

∥∥∥
∞

(∥∥∥L ∥∥∥
∞

+
∥∥∥ f

∥∥∥
∞

)
.

Before proceeding, we pause to make a few important remarks.

Remark 5.1. The group-analysis SOI (5.1) is sharp. It depends on several parameters as discussed below.

(i) The parameter R appears in the dictionary. Namely, the EWA estimator f̂n mimics the best aggregate fθ for all
possible weights belonging to

{
θ ∈ Rp :

∥∥∥D>θ
∥∥∥a

a,G ≤ R − 3
√

K D
a,gL

}
. Then R must be sufficiently large to cover

the “good” model f̃θ in Assumption (H.1). Moreover, since R > 3
√

K D
a,gL, R ∼

√
K D

a,gL is the smallest choice

we can make to reduce the rate of ΦD
µn,n,L

(θ) as
∥∥∥D>θ

∥∥∥a
a,G ≤ R.

(ii) The parameter α is used to cancel the effect of L
√

K D
a,g in the remainder terms. By choosing α ≤ (3K

√
K D

a,g)−1/a,

ΦD
µn,n,L

(θ) ≤ βn−1(1 + 3
√

K D
a,gα

a + αaR) ∼ n−1 and ΨD
µn,L,p

≤
2eC f ,L

κ
K D

1,g p.

(iii) The parameter K D
a,g and the function h depend on the choice of g. They respectively control the rate of ΨD

µn,L,p

and ΩD
µn,n,L,λ

(θ).

In what follows, let us state the consequences of Theorem 5.1 with the choices of g in Example 4.3 and 4.4.
Especially, we will discuss the rate of ΩD

µn,n,L,λ
(θ) and ΨD

µn,L,p
.

We first consider the prior (4.2) in Example 4.3, under the individual sparsity scenario (D = Ip, G = 1) and the
choice a = 1 (i.e., Θ =

{
θ ∈ Rp :

∥∥∥θ∥∥∥1 ≤ R
}
). This is the setting considered in [23]. We obtain the following SOI as a

corollary of our main result.

Corollary 5.1. Let X satisfying Assumption (H.3), D = Ip and fix G = 1. Suppose that Assumptions (P.1) and (P.2)
hold with some function v, (3.1) holds and β ≥ max (4 ‖v‖∞ , 2H/t0). Fix a = 1, take the dictionary (4.1) and the prior
(4.2) with g defined in Example 4.3 and α ≤ 1/(3pτ). Assume that R > 3pτ. Choosing τ2 ∼ 1/(pn) and R ∼ pτ,
SOI (5.1) holds with ΘD

µn,L,R
=

{
θ ∈ Rp : ‖θ‖1 ≤ R − 3pτ

}
,

ΩD
µn,n,L,λ(θ) ∼

‖θ‖0 ln(p)
n

, and ΨD
µn,L,p ∼

1
n
.

The order of ΩD
µn,n,L,λ

(θ) is the classical rate under the sparsity scenario. This scaling is similar as in [23] with the
same prior. However, the following remark shows that this prior is not adapted in the group-analysis case for any group
size strictly larger than 1.
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Remark 5.2. Suppose that G ≥ 2, and let γ = G + 2, ν = 2 and η = 1. We have γ/ν ≥ η + 1, and thus Lemma 2.1
yields

∫ ∞
0 xG+1(τ2 + x2)−2dx is not definite. Consequently, condition (4.4) is not fulfilled with g defined in Example 4.3

when G ≥ 2.

According to Remark 4.4, Remark 5.2 implies that Assumption (G.3) is not fulfilled for g in Example 4.3 when the
group size G ≥ 2 and D invertible. Thus one cannot construct a group-analysis SOI from Theorem 5.1 to guarantee
the quality of the corresponding estimator. Overcoming this limitation was yet another motivation behind the choice of
g in Example 4.4, which turns out to work well under the group-analysis sparsity scenario. In a nutshell, an aggregate
with g in Example 4.4 exhibits the group-analysis SOI defined in the following corollary with any G ≥ 1, any D ∈ Rp×q

satisfying Assumption (H.2) and any a ∈]0, 1].

Corollary 5.2. Let X satisfying Assumption (H.3), G ≥ 1 and D satisfying Assumption (H.2) with κ > 0. Let Assump-
tions (P.1) and (P.2) be satisfied with some function v, (3.1) holds and β ≥ max (4 ‖v‖∞ , 2H/t0). Take the dictionary
(4.1) and the prior (4.2) with a ∈]0, 1], α ≥ 0 and g defined in Example 4.4. We get that g satisfies Assumptions (G.1)-
(G.4). Then, let K D

a,g as defined in (4.3), and assume that R > 3
√

K D
a,gL. Then the group-analysis SOI (5.1) holds, with

λ = c and h(x) = 1 + (x/τ)b.

To get an explicit control of the remainder term, it is instructive to have a closed-form of K D
a,g. This can be done

for instance when D is invertible, see (4.5). The obtained group-analysis SOI is stated as follows.

Corollary 5.3. Consider the same framework as Corollary 5.2 with D invertible. For a ∈]0, 1], let

K̃ D
a,g =

Γ((2a+G)/b)Γ(c−(2a+G)/b)
Γ(G/b)Γ(c−G/b) , and set α ≤ 1/

(
3τa

√
K̃ D

a,gL
)1/a

. Choosing τ2 ∼ 1/(pn) and R ∼ Lτa, the group-analysis

SOI (5.1) holds with ΘD
µn,L,R

=
{
θ ∈ Rp :

∥∥∥D>θ
∥∥∥a

a,G ≤ R − 3τa
√

K̃ D
a,gL

}
,

ΩD
µn,n,L,λ(θ) ∼

∥∥∥D>θ
∥∥∥

0,G ln(L)

n
, and ΨD

µn,L,p ∼
1
n
.

By Assumption (H.1),
∥∥∥D>θ

∥∥∥
0,G is small when θ = θ̃ (with R must be sufficiently large to cover θ̃). Thus,∥∥∥D>θ̃

∥∥∥
0,G ln(L) is small compared to n. Under the sparsity scenario, the order of ΩD

µn,n,L,λ
(θ) becomes O(‖θ‖0 ln(p)/n)

which is the same rate as the aggregate with g in Example 4.3.

6. Forward-Backward proximal LMC algorithm

The goal of this section is to implement our EWA estimator with the probability measure (1.3) via a novel forward-
backward proximal Monte-Carlo algorithm based on the Langevin diffusion (coined FB-LMC).

Let us consider a linear regression problem where L (x) = x, and thus2

f̂n = Xθ̂n,

where X ∈ Rn×p is the design matrix (see Section 4.2). Recall the EWA estimator

θ̂n =

∫
Rp
θµn(θ)dθ,

with the measure

µn(θ) ∝ exp

−
∥∥∥y − Xθ

∥∥∥2
2

β

π(θ). (6.1)

2Generalization to non-linear link functions is possible from a practical point of view. However, in this case, the convergence guarantees of
the discrete Langevin-based MCMC sampling scheme would be much more intricate even for a simple exponential link function. One of the main
difficulties lies in that the data loss θ 7→

∥∥∥y − L (Xθ)
∥∥∥2

2 is not necessarily convex which prevents us from showing that the Langevin diffusion is
geometrically ergodic. This is an open question that we leave to a future work.
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Computing θ̂n corresponds to an integration problem which becomes very involved to solve analytically or even
numerically in high-dimension. A classical alternative is to approximate it via a Markov chain Monte-Carlo (MCMC)
method which consists in sampling from µn by constructing an appropriate Markov chain whose stationary distribution
is µn, and to compute sample path averages based on the output of the Markov chain. The theory of MCMC methods
is based on that of Markov chains on continuous state space. As in [23], we here use the Langevin diffusion process;
see [51].

6.1. The Langevin diffusion
Continuous dynamics A Langevin diffusion L in Rp, p ≥ 1 is a homogeneous Markov process defined by the stochas-
tic differential equation (SDE)

dL(t) =
1
2
ψ(L(t))dt + dW(t), t > 0, L(0) = l0, (6.2)

whereψ = ∇ ln(µ), µ is everywhere non-zero and a suitably smooth target density function onRp, W is a p-dimensional
Brownian process and l0 ∈ Rp is the initial value. Under mild assumptions, the SDE (6.2) has a unique strong solution
and, moreover, L(t) has a stationary distribution with density precisely µ [51, Theorem 2.1]. L(t) is therefore interesting
for sampling from µ. In particular, this opens the door to approximating integrals

∫
Rp f (θ)µ(θ)dθ by the average value

of a Langevin diffusion, i.e., 1
T

∫ T
0 f (L(t))dt for a large enough T . Under additional assumptions on µ and f in a proper

functional class, the expected squared error of the approximation can be controlled [57].

Forward Euler discretization In practice, in simulating the diffusion sample path, we cannot follow exactly the dy-
namic defined by the SDE (6.2). Instead, we must discretize it. A popular discretization is given by the forward (Euler)
scheme, which reads

Lk+1 = Lk +
δ

2
ψ(Lk) +

√
δZk, t > 0, L0 = l0,

where δ > 0 is a sufficiently small constant discretization step-size and {Zk}k are i.i.d. ∼ N(0, Ip). The average value
1
T

∫ T
0 L(t)dt can then be naturally approximated via the Riemann sum

δ

T
∑bT/δc−1

k=0 Lk.

It is then tempting to approximate θ̂n by applying this discretization strategy to the Langevin diffusion with µn in (6.1)
as the target density. However, quantitative consistency guarantees of this discretization require µ (hence ψ) to be suf-
ficiently smooth, which limits their applicability in our context. To cope with this difficulty, a few works have recently
proposed to replace ln(µ) with a smoothed version (typically involving the Moreau-Yosida regularization/envelope, see
Definition 2.2) [28, 29, 46]. In [29, 46] for instance, the authors proposed proximal-type algorithms to sample from
possibly non-smooth log-concave densities µ using the forward Euler discretization and the Moreau-Yosida regular-
ization. In [46]3, − ln(µ) is replaced with its Moreau envelope, while in [29], it is assumed that − ln(µ) = F + G, F
is convex Lipschitz continuously differentiable, and G is a proper closed convex function replaced by its Moreau en-
velope. In both these works, convexity plays a crucial role to get quantitative convergence guarantees and thus cannot
be applied to our prior. Proximal steps within MCMC methods have been recently proposed for some simple (convex)
signal processing problems [12], though without any guarantees.

6.2. Forward-Backward proximal Langevin MC algorithms
Consider the prior π in (4.2) with g is given in Example 4.4 and H = +∞. Then, µn is neither differentiable nor

log-concave. To overcome these difficulties, we will exploit the structure of µn and some arguments from variational

3The author however applied it to problems where − ln(µ) = F + G. But the gradient of the Moreau envelope of a sum, which amounts to
computing the proximity operator of − ln(µ) does not have an easily implementable expression even if those of F and G do.
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analysis [52]. For ease of notation, in the following, we denote with the same symbol the measure and its density with
respect to the Lebesgue measure. Thus µn reads

µn(θ) ∝ exp (−(V(θ)) (6.3)

where V def
= Fβ + Wλ ◦ D>, Fβ(θ) =

∥∥∥y − Xθ
∥∥∥2

2/β and Wλ(u) =
∑L
`=1wλ

(∥∥∥uG`
∥∥∥

2

)
with

wλ : x ∈ [0,+∞[ 7→ αaxa + c ln(τb + xb), (6.4)

and wλ is parameterized by λ = (a, b, c, α, τ) ∈]0, 1]×]0, 1]×]2 + G/b,+∞[×R+ × R+,∗.
We start by collecting some important properties on the function wλ and its proximal operator, as well as their

implications. We denote Vγ = Fβ + (γWλ) ◦ D>.

Lemma 6.1. The function wλ in (6.4) is bounded from below, increasing and continuously differentiable on ]0,+∞[.
Fix a = b = 1. Then, for any γ ∈]0, τ2/c[, the following holds,

(i) proxγwλ
is single-valued on [0,+∞[ and is given by

proxγwλ
(x) =

0 if x ≤ γwλ
′(0+),

t − γwλ
′
(
proxγwλ

(x)
)

if x > γwλ
′(0+).

(ii) For any x ≥ 0, 0 ≤ proxγwλ
(x) ≤ x.

(iii) proxγWλ
(u) =

(
proxγwλ

( ∥∥∥uG1

∥∥∥
2

) u>
G1

‖uG1‖2
, . . . , proxγwλ

( ∥∥∥uGL

∥∥∥
2

) u>
GL

‖uGL‖2

)>
.

(iv) proxγWλ◦D> is Lipschitz continuous.

(v) ∇(γWλ ◦ D>) = γ−1 D ◦ (Iq − proxγWλ
) ◦ D>. It is a uniformly bounded and Lipschitz continuous operator and

∇Vγ is a Lipschitz continuous mapping.

(vi) Assume that γ ∈
]
0,min

(
τ2/c, β/

(
2
∣∣∣∣∣∣∣∣∣X∣∣∣∣∣∣∣∣∣2))[. Let Mγ

def
= Ip − (2γ/β)X>X which is a symmetric positive definite

matrix. Then, ∇Mγ ,γV = γ−1 Mγ

(
Ip − proxγWλ◦D> (Ip − γ∇Fβ)

)
which is a Lipschitz continuous mapping.

We now describe two Langevin MC (LMC) sampling algorithms, originally proposed in [40], that are based on
forward-backward proximal splitting and establish their guarantees for the penalty wλ. In the rest of the section, we
will fix a = b = 1.

Semi-Forward-Backward LMC (Semi-FBLMC) Assume that γ ∈]0, τ2/c[. Define the following SDE with the
Moreau-Yosida regularized version of Wλ

dL(t) = −
1
2
∇Vγ(L(t))dt + dW(t), t > 0. (6.5)

Inserting Lemma 6.1(v) into (6.5), the Euler discretization of (6.5) reads

Lk+1 = Lk −
δ

2
∇Fβ(Lk) −

δ

2γ
D
(
D>Lk − proxγWλ

(D>Lk)
)

+
√
δZk, t > 0, L0 = l0. (6.6)

Forward-Backward LMC (FBLMC) Assume that γ ∈
]
0,min

(
τ2/c, β/

(
2
∣∣∣∣∣∣∣∣∣X∣∣∣∣∣∣∣∣∣2))[. One can consider an alternative

version of the SDE (6.5) with the Moreau-Yosida regularized version of V in the metric Mγ (see Lemma 6.1(vi)), i.e.,

dL(t) = −
1
2
∇
(

Mγ ,γV ◦ M−1/2
γ

)
(L(t))dt + M1/2

γ dW(t), t > 0. (6.7)

14



By the change of variable U(t) = M−1/2
γ L(t) we get the following SDE

dU(t) = −
1
2

M−1
γ ∇

Mγ ,γV(U(t))dt + dW(t), t > 0. (6.8)

In view of Lemma 6.1(vi), the Euler discretization of (6.8) is given by

Uk+1 = (1 − δ
2γ )Uk +

δ

2γ
proxγWλ◦D> (Uk − γ∇Fβ(Uk)) +

√
δZk, t > 0, U0 = l0. (6.9)

Remark 6.1. Observe that proxγWλ◦D> in (6.9) is no separable in general. Owing to Assumption (H.2), one can show
quite immediately that

proxγWλ◦D> = D̃ ◦ proxD> D̃
γWλ+ιIm(D> )

◦ D>,

where ιIm(D>)(u) = 0 if u ∈ Im(D>) and +∞ otherwise, and D> D̃ is indeed definite positive on Im(D>). This means
that, unless D is orthogonal, Wλ ◦ D> does not have an easy-to-compute expression, but rather necessitates to solve
an optimization subproblem. Thus, from a computational perspective, for a general frame D, Semi-FBLMC is more
efficient. For the case where D is invertible, one can operate a simple change of variable u = D>θ and replace Fβ

with Fβ ◦ D>−1, and Wλ ◦ D> with Wλ. In this case, FBLMC can be applied efficiently.

6.3. Convergence guarantees
By virtue of Lemma 6.1(v)-(vi), standard results (see, e.g., [51, Theorem 2.1]) show that for any initial point L(0)

such that E
{
‖L(0)‖22

}
< ∞, (6.5) has a unique solution which is strongly Markovian, E

{
‖L(t)‖22

}
< ∞ for all t > 0, and

L admits an (unique) invariant measure having the density µγ

µγ(θ) ∝ exp
(
−Vγ(θ)

)
.

The same also holds for (6.7) with the corresponding invariant measure. The following claim is a consequence of [40,
Proposition 3.1] and Lemma 6.1. In the sequel, ‖ν‖TV stands for the total variation norm of a signed measure ν.
Proposition 6.1. Let µγ be the invariant measure of either (6.5) or (6.7). Then,

∥∥∥µγ − µn

∥∥∥
TV → 0 as γ → 0.

We consider the Semi-FBLMC discretization (6.6) of the Langevin diffusion (6.5). Let L̃δ be the continuous-time
extension of the scheme (6.6)

L̃δ(t)
def
= L0 −

1
2

∫ t

0
∇Vγ(L̄(t))dt +

∫ t

0
dW(s),

where L̄(t) = Lk for t ∈ [kδ, (k + 1)δ[. We write Pt,γ
L (l0,Ω) = Pr {L(t) ∈ Ω|L(0) = l0} for all Borel sets Ω and initial

condition l0. Similarly, we denote Pt,δ,γ
L̃δ

(l0,Ω) = Pr
{
L̃δ(t) ∈ Ω|L̃δ(0) = l0

}
. The superscripts stress the dependence on

the parameters.
We also define the sample average

L̄δ,T,γ =
δ

T
∑bT/δc−1

k=0 Lk,

and the EWA estimate
θ̂γ =

∫
Rp
θµγ(θ)dθ.

Theorem 6.1. The following holds:

(i) limγ→0 limT→+∞ limδ→0

∥∥∥∥PT,δ,γ
L̃δ

(l0, ·) − µn

∥∥∥∥
TV

= 0.

(ii) Suppose that l0 = 0, then limT→+∞ limδ→0 E
{∥∥∥L̄δ,T,γ − θ̂γ

∥∥∥
2

}
= 0.

To prove these claims, we first show that the Langevin diffusion in (6.5) is uniformly geometrically ergodic. Then
we follow standard arguments, invoking Lemma 6.1, Proposition 6.1, the Girsanov formula and Pinsker inequality4.
Similarly to Theorem 6.1, convergence guarantees of the FBLMC discretization scheme (6.9) can be established. We
omit the details here for the sake of brevity.

4We have made no effort to sharpen the constants and the rates, and for instance their dependence on the dimension. This is beyond the scope of
this paper.
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7. Numerical experiments

In this section, some numerical experiments are conducted to illustrate and validate the numerical performance of
the proposed EWA estimator. We consider a linear regression problem

Y = Xθ0 + ξ,

where ξ is the noise, X is the design matrix. θ0 ∈ Rp is the unknown regression vector of interest assumed to obey
Assumption (H.1). Since H = +∞, we then have to choose a distribution on the noise ξ such that β is independent of
H. Such type of distributions is specified in [23, Section 2]. For our implementation, we assume ξ i.i.d. ∼ N(0, σ2).
The noise level σ is chosen according to the simulated θ0.

The parameters of EWA were chosen as prescribed in our theoretical analysis. For instance, the temperature pa-

rameter is set to β = 4σ2, the parameters of the prior: a = b = 1, c > (2 + G)/b, τ ∼ 1/(pn) and α ≤ 1/
(
3
√

K D
a,gL

)1/a
,

where K D
a,g is given in Corollary 5.3. The number of iterations N and the step-size δ are chosen respectively large and

small enough to guarantee convergence and discretization consistency of the algorithm.
Following the philosophy of reproducible research, all the code implementing our EWA algorithm and reproducing

the experiments of this paper are made publicly available for download at https://github.com/luuduytung/
GroupAnalyseEWAToolbox.

7.1. 1-D signal recovery under group sparsity
In this example, we set D = Ip, which corresponds to the classical group sparsity. The design matrix is drawn

uniformly at random from the Rademacher ensemble, i.e., its entries are i.i.d. variates valued in {−1, 1} with equal
probabilities. The non-zero entries of θ0 are equal to 1 and we denote S = ‖θ0‖0 the sparsity level of θ0. Two types of
sparsity behavior are considered: individual sparsity where Gθ0 = 1; group structured sparsity with Gθ0 = 4. Besides,
the positions of the non-zero/active entries (for Gθ0 = 1) or groups (for Gθ0 = 4) are chosen randomly uniformly on
{1, . . . , p}.

The experiments are performed by fixing p = 128, and taking S ∈ 2{2,...,7}, n ∈ 2{3,...,7}, step-size δ = 4σ2/(np)
and integration time T = 3500. The parameters in the prior are chosen to minimize the remainder term in the oracle
inequality (5.1). For each (S , n), and each value of Gθ0 , Nrep = 20 instances of the problem suite (X, θ0,Y) are generated,
and EWA is applied with a chosen G and the other parameters as detailed above. The estimation quality/success is
then assessed by

πS ,n =
1

Nrep

∑Nrep

j=1 I
(∥∥∥∥̂θ( j,S ,n)

n − θ( j,S ,n)
0

∥∥∥∥
n
≤ ε

)
, (7.1)

where ε > 0 (we choose ε = 0.4) and θ̂
( j,S ,n)
n (resp. θ( j,S ,n)

0 ) corresponds to θ̂n (resp. θ0) in the j-th replication of (S , n).
S/p and n/p are respectively normalized measures of sparsity and problem indeterminacy. We get a two-

dimensional phase space (S/p, n/p) ∈ [0, 1]2 describing the difficulty of a problem instance, i.e., problems are easier
as one moves up (more measurements) and to the left (sparser θ0). Phase diagrams plotting πS ,n in (7.1) as a function
(S/p, n/p) were widely advocated by Donoho and co-authors for `1 minimization [24]. Such diagrams often have an
interesting two-phase structure (as displayed in Figures 1(a)-(d), brighter color indicate better success), with phases
separated by a specific curve, called phase transition curve. Thus, a good estimator is intended to have a large bright
area which indicates its good performance at a wider range of (S , n).

Figure 1(a) (resp. (b)) shows the phase diagrams when Gθ0 = 1 and G = 1 (resp. G = 4) in EWA. In this case,
the phase transition curve for G = 1, the correct group size, is slightly better that with G = 4. The situation reverses
for Figures 1(c)-(d) where Gθ0 = 4, and one observes that the success area is significantly better using G = 4 than
G = 1. This is expected as it reveals better performance of EWA when used with the choice G = Gθ0 . This is also
confirmed by visual inspection of Figures 1(c’)-(d’), where we plotted instances of recovered vectors θ̂

( j,S ,n)
n when

(S ,Gθ0 ) ∈ {4, 8} × {1, 4} and n/p = 1/2. EWA was again applied with G = 1 and G = 4 in each case. Large spurious
entries appear outside the true support when the group size is not correctly chosen, though the impact is less important
for G = 1.
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It is worth observing that S/p =
∥∥∥θ0

∥∥∥
0,GGθ0/p. As far as the expected phase transition curve is concerned, one has

from Corollary 5.3 that it is expected to occur for

n/p = Cε

∥∥∥θ0
∥∥∥

0,GGθ0/p
(
ln(p/Gθ0 )/Gθ0

)
= CεS/p

(
ln(p/Gθ0 )/Gθ0

)
for some constant Cε > 0 depending on ε. That is, the phase transition curve is linear (p and Gθ0 are fixed for each
diagram), which is confirmed by visual inspection of Figures 1(a)-(d), where the overlaid blue line is the fitted linear
phase transition curve.
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Figure 1: (a)-(d): Phase diagrams of EWA for D = Ip, the color bar ranges from dark (πS ,n = 0) to bright (πS ,n = 1). The blue line is the fitted phase
transition curve. (a’)-(d’): Examples of vectors θ̂

( j,S ,n)
n recovered by EWA with n/p = 1/2, two sparsity levels S = 4 and S = 8 and two group sizes

Gθ0 = 1 and Gθ0 = 4.

7.2. 2-D image recovery under analysis group-sparsity
In the second numerical experiment, θ0 is a 2-D image which is a matrix in R160×160 (a close-up of the known

Shepp-Logan phantom, see Figure 2(a)). Thus vec(θ0) is vector in Rp with p = 1602, and our goal is to recover θ0
with values in [0, 1] from

Y = X vec(θ0) + ξ,

where ξ ∼ N(0, σ2In) and X ∈ Rn×p is again random whose entries are i.i.d. from the Rademacher distribution.
Since the targeted image is piecewise-constant, a popular prior is the so-called isotropic total variation [53] which is
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described in Example 4.1. It turns out that this can be cast in our analysis group-sparsity framework as a special case.
In this experiment, we use Semi FBLMC Algorithm to compute the EWA estimator.

(a) Original image (b) EWA estimated image

20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3
(c) Row profiles

Original
EWA

Figure 2: (a): Original close-up of Shepp-Logan phantom image. (b): Image recovered by EWA with δ = 2 · 10−8 and T = 104. (c) Profiles of a
row extracted from each image.

The results are depicted in Figure 2. σ = 0.525 in this experiment, the number of observations is n = 9p/16 =

14400, and we have
∥∥∥DTV(θ0)

∥∥∥
0,G = 1376 � n. A notable property of the EWA estimate is that it does not suffer from

the stair-casing effect, unlike total variation minimization.

8. Conclusion

In this paper, we proposed a class of EWA estimators constructed from a novel and versatile family of priors which
promotes analysis group-sparsity, where the analysis operator corresponds to a frame. Its quality is guaranteed by
establishing a sharp SOI with a small remainder term in high-dimension. We also described a forward-backward
proximal LMC algorithm, which is an implementation of EWA and can be viewed as a Forward Euler discretization
of a Langevin diffusion involving the Moreau-Envelope of the potential in a proper metric. We derived convergence
guarantees of this discretization. The performance of the estimator was illustrated on some numerical experiments
which support our theoretical findings. There are still open problems that we leave to a future work. More precisely,
one direction is to investigate how to remove the frame assumption. Another one would be to derive further/better
quantitative convergence bounds of the proposed discretization.
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9. Proofs

9.1. Proofs of Section 2
Proof of Lemma 2.3 Consider the linear mapping M : x ∈ Rd 7→ Mx ∈ Rr, r ≥ d. The Jacobian matrix of this
mapping is obviously M for any x ∈ Rd. Since M is a frame, it is injective, hence so-called d-regular (see [41,
Section 1.5]). In particular, det(MM>) > 0. Thus combining [41, Theorems 1.12 and 3.4] and the Cauchy-Binet
formula [41, Theorem 3.3]), we have the change of variables formula∫

Θ

u(Mx)dx =

∫
Rr

∑
x∈Θ∩

{
ω : Mω=v

}u(Mx)dv√
det(MM>)

=

∫
Im(M)

∑
x∈Θ∩

{
ω : Mω=v

}u(Mx)dv√
det(MM>)

.

Using once again that M is a frame, i.e., it is bijective on its image Im(M), the result follows. This concludes the
proof.

9.2. Proofs of Section 3
Proof of Proposition 3.1

• Gaussian noise: Let ξ ∼ N(0,Σ). We set ζ ∼ N(0, (2γ+γ2)Σ). Thus conditions (a) and (b) in Assumption (P.2)
are verified. We check now condition (c). Let t ∈

{
x ∈ Rn : ‖x‖2 ∈ [−∞,+∞]

}
, u =

(
t>

√
2γ + γ2Σ1/2

)>
and

ε ∼ N(0, In), we get that

E
{
et>ζ

}
= E

{
eu>ε

}
=

∏n
j=1E {e

u jε j } = e
‖u‖22

2 ≤ e
1
2

∥∥∥√2γ+γ2Σ1/2 t
∥∥∥2

2 ≤ e
(
γ+

γ2

2

)∣∣∣∣∣∣∣∣∣Σ∣∣∣∣∣∣∣∣∣‖t‖22 .
Thus, let a ∈ Rn and v(a) ≡

∣∣∣∣∣∣∣∣∣Σ∣∣∣∣∣∣∣∣∣, we then get

lnE
{
et>ζ |ξ = a

}
‖t‖22 γv(a)

≤ 1 +
γ

2
→
γ→0

1 ≤ 1.

• Laplace noise: Let ξ ∼ L(0,Σ), i.e., its associated characteristic function is ϕξ(t) =
(
1 + t>Σt/2

)−1, we choose
ζ according to the distribution associated to the characteristic function

ϕζ(t) = (1 + γ)−2
(
1 +

2γ + γ2

1 + (1 + γ)2 t>Σt/2

)
.

For any t ∈ Rn, we get that

ϕξ+ζ(t) = ϕξ(t)ϕζ(t) =
1

1 + (1 + γ)2 t>Σt/2
= ϕ(1+γ)ξ(t). (9.1)

Thus, ζ + ξ has the same distribution as (1 + γ)ξ. We also obtain E {ζ |ξ} = E {ζ} = (−i)∇ϕζ(0) = 0. It suffices
to check condition (c) of Assumption (P.2). We know that

E
{
et>ζ |ξ

}
= E

{
et>ζ

}
= ϕζ(−it) = 1

(1+γ)2

(
1 +

2γ + γ2

1 − (1 + γ)2 t>Σt/2

)
.

Using Taylor’s formula, we have

ln
(
E

{
etζ |ξ

})
=

γ t>Σt
1 − t>Σt/2

+ O(γ2).

Thus, let t ∈
{
x ∈ Rn : ‖x‖2 ≤ t0

}
, a ∈ Rn and v(a) ≡

∣∣∣∣∣∣∣∣∣Σ∣∣∣∣∣∣∣∣∣
1−t2

0

∣∣∣∣∣∣∣∣∣Σ∣∣∣∣∣∣∣∣∣2/2 , we get

lnE
{
et>ζ |ξ = a

}
‖t‖>2 γv(a)

→
γ→0

t>Σt/(1 − t>Σt/2)
‖t‖22

∣∣∣∣∣∣∣∣∣Σ∣∣∣∣∣∣∣∣∣/(1 − t2
0

∣∣∣∣∣∣∣∣∣Σ∣∣∣∣∣∣∣∣∣/2)
≤

1 − t2
0

∣∣∣∣∣∣∣∣∣Σ∣∣∣∣∣∣∣∣∣/2
1 − t>Σt/2

≤
1 − t2

0

∣∣∣∣∣∣∣∣∣Σ∣∣∣∣∣∣∣∣∣/2
1 − ‖t‖22

∣∣∣∣∣∣∣∣∣Σ∣∣∣∣∣∣∣∣∣/2 ≤ 1.

We get two last inequalities under the condition 1 − t2
0

∣∣∣∣∣∣∣∣∣Σ∣∣∣∣∣∣∣∣∣/2 > 0 equivalent t0 <
√

2/
∣∣∣∣∣∣∣∣∣Σ∣∣∣∣∣∣∣∣∣.
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• Bounded symmetric noise: Let ξ are symmetric and Pr
{∣∣∣ξi

∣∣∣ ≤ Bi

}
= 1 for some B ∈ Rn, we set ζ = (ζ1, . . . , ζn)>

such that ζi = (1 + γ)
∣∣∣ξi

∣∣∣ sgn(sgn(ξi) − (1 + γ)Ui) − ξi, Ui ∼ U([−1, 1]) for any i ∈ {1, . . . , n}. Using [23,
Equation (22)], for any t ∈ Rn and a ∈

{
x ∈ Rn : xi ∈ [−Bi, Bi], ∀i ∈ {1, . . . , n}

}
, we get that

E
{
et>ζ |ξ = a

}
=

∏n
j=1E

{
etiζi |ξi = ai

}
= e−t>a

(
e(1+γ)t>a 2 + γ

2 + 2γ
+ e−(1+γ)t>a γ

2 + 2γ

)
. (9.2)

From (9.2) and the symmetry of ξ, we obtain

E
{
et>(ζ+ξ)

}
= E

{
E

{
et>(ζ+ξ)|ξ

}}
= e(1+γ)t>ξ 2 + γ

2 + 2γ
+ e−(1+γ)t>ξ γ

2 + 2γ
= E

{
e(1+γ)t>ξ

}
.

Thus, ζ + ξ has the same distribution as (1 + γ)ξ. Since E {ζ |ξ = a} equals to the gradient of E
{
et>ζ |ξ = a

}
at t = 0, from (9.2) we have then E {ζ |ξ = a} = 0, ∀a ∈ [−B, B]. It suffices to check the condition (c) of
Assumption (P.2). Owing to [19, Lemma 3] and [23, Equation (22)], we get that ln

(
E

{
etiζi |ξi=ai

})
≤ (tiai)2γ(1+γ).

Thus, let t ∈
{
x ∈ Rn : ‖x‖2 ∈ [−∞,∞]

}
and v(a) = ‖a‖22, we get that

lnE
{
et>ζ |ξ = a

}
‖t‖22 γv(a)

=

∑n
i=1 lnE

{
etiζi |ξi = ai

}
‖t‖22 γ ‖a‖

2
2

≤

∑n
i=1t2

i a2
i γ(1 + γ)

‖t‖22 γ ‖a‖
2
2

≤ 1 + γ →
γ→0

1 ≤ 1.

9.3. Proofs of Section 4
Proof of Proposition 4.1 Let θ ∈ Θ and i ∈ {1, . . . , n}. Setting uθi =

∑p
j=1θ j f j(xi) and uθ = (uθ1, . . . , u

θ
n)>, and by virtue

of (2.1), (2.2), (4.1) and the fact that a ∈]0, 1], we have

∥∥∥uθ
∥∥∥

2 =
∥∥∥Xθ

∥∥∥
2 ≤

∣∣∣∣∣∣∣∣∣X∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣D̃∣∣∣∣∣∣∣∣∣∥∥∥D>θ
∥∥∥

2 ≤

∣∣∣∣∣∣∣∣∣X∣∣∣∣∣∣∣∣∣∥∥∥D>θ
∥∥∥

a,G
√
κ

≤

∣∣∣∣∣∣∣∣∣X∣∣∣∣∣∣∣∣∣R1/a

√
κ

,

which in turn implies uθ ∈ B. Therefore, for any
(
θ, θ′

)
∈ Θ2,

∥∥∥ f θ − f θ′
∥∥∥

2 =
∥∥∥L (

uθ
)
−L (

uθ′
)∥∥∥

2 ≤ 2 maxx∈B
∥∥∥L (x)

∥∥∥
2.

Proof of Lemma 4.1 Let us first check the integrability condition (G.2). By Lemmas 2.3 and 2.2, we obtain∫
Rp

∏L
`=1g(

∥∥∥[D>u]G`
∥∥∥

2)du =

∫
Im(D>)

∏L
`=1g(

∥∥∥vG`
∥∥∥

2)dv√
det(DD>)

≤

∫
Rq

∏L
`=1g(

∥∥∥vG`
∥∥∥

2)dv√
det(DD>)

=

(∫
RG g(

∥∥∥u
∥∥∥

2)du
)L√

det(DD>)

=
CL

G

(∫ ∞
0 zG−1g(z)dz

)L√
det(DD>)

.

Since G ≥ 1 and g : R+ → R+, by (4.4), we get

∫
Rp

∏L
`=1g(

∥∥∥[D>u]G`
∥∥∥

2)du ≤
CL

G

(∫ 1
0 zG−1g(z)dz +

∫ ∞
1 wG−1g(w)dw

)L

√
det(DD>)

≤
CL

G

(
supz∈[0,1] g(z) +

∫ ∞
1 wG+1g(w)dw

)L√
det(DD>)

< ∞. (9.3)
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Therefore, g satisfies Assumption (G.2). Now, we check the moment condition (G.3). Using similar arguments to the
bound (9.3), we have

∫
Rp

∥∥∥[D>u]G`
∥∥∥2

2

∏L
k=1g(

∥∥∥[D>u]Gk

∥∥∥
2)du ≤

∫
Rq

∥∥∥vG`
∥∥∥2

2
∏L

k=1g(
∥∥∥vGk

∥∥∥
2)dv√

det(DD>)

=

(∫
RG

∥∥∥u
∥∥∥2

2g(
∥∥∥u

∥∥∥
2)du

)(∫
RG g(

∥∥∥v
∥∥∥

2)dv
)L−1

√
det(DD>)

=
CL

G

∫ ∞
0 zG+1g(z)dz

(∫ ∞
0 wG−1g(w)dw

)L−1√
det(DD>)

< ∞, (9.4)

whence we conclude that g satisfies Assumption (G.3).

9.4. Proofs of Section 5
9.4.1. Proof of Theorem 5.1

Remind the prior π(dθ) from (4.2), where Θ =
{
θ ∈ Rp :

∥∥∥D>θ
∥∥∥a

a,G ≤ R
}
. Let rL = 3

√
K D

a,gL, Θp0
D =

{
θ ∈ Rp :∥∥∥D>θ − D>θ∗

∥∥∥a
a,G ≤ rL

}
and

θ∗ ∈
{
θ ∈ Rp :

∥∥∥D>θ
∥∥∥a

a,G ≤ R − 3
√

K D
a,gL = R − rL

}
. (9.5)

We define the probability measure

p0
D(dθ) =

1
CL

(
dπ
dθ

(θ − θ∗)
)
IΘp0

D (θ)dθ,

where CL > 0 is the normalization factor for p0
D. Since rL < R, θ ∈ Θp0

D implies that θ − θ∗ ∈ Θ. Therefore,

p0
D(dθ) =

1
CL

∏L
`=1 exp

(
−αa

∥∥∥[D>θ − D>θ∗]G`
∥∥∥a

2

)
g
(∥∥∥[D>θ − D>θ∗]G`

∥∥∥
2

)
IΘ(θ − θ∗)IΘp0

D (θ)dθ

=
1

CL

∏L
`=1 exp

(
−αa

∥∥∥[D>θ − D>θ∗]G`
∥∥∥a

2

)
g
(∥∥∥[D>θ − D>θ∗]G`

∥∥∥
2

)
IΘp0

D (θ)dθ.

For any i ∈ {1, . . . , n}, with Xi =
(

f1(xi), . . . , fp(xi)
)>

, one can write fθ(xi) = L
(∑p

j=1θ j f j(xi)
)

= L
(
X>i θ

)
. Taylor-

Lagrange formula then gives us

( fθ(xi) − f (xi))2 ≤ ( fθ∗ (xi) − f (xi))2 + C f ,L

[
X>i (θ − θ∗)

]2
+ 2( fθ∗ (xi) − f (xi))L ′

(
X>i θ

∗
)
X>i (θ − θ∗), (9.6)

where C f ,L =
∥∥∥L ′

∥∥∥2
∞

+
∥∥∥L ′′

∥∥∥
∞

(∥∥∥L ∥∥∥
∞

+
∥∥∥ f

∥∥∥
∞

)
. By summing over i from 1 to n, normalizing by 1/n, taking the

integral in Θ w.r.t. p0
D, inequality (9.6) becomes∫

Θ

∥∥∥ fθ − f
∥∥∥2

n p0
D(dθ) ≤

∥∥∥ fθ∗ − f
∥∥∥2

n + C f ,L

∫
Rp

1
n
∑n

i=1

[
X>i (θ − θ∗)

]2
p0

D(dθ)

+
2
n
∑n

i=1( fθ∗ (xi) − f (xi))L ′
(
X>i θ

∗
)
X>i

∫
Θ

(θ − θ∗)p0
D(dθ). (9.7)

Note that, the right term of inequality (9.7) corresponds to a sum of three components. In the following, we keep the
first component and treat the other two.
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Let us first show that the last component vanishes. Indeed, let θ ∈ Θp0
D , from (9.5) and the fact that a ∈]0, 1], we

have ∥∥∥D>θ
∥∥∥a

a,G =
∑L
`=1

∥∥∥[D>θ]G`
∥∥∥a

2 ≤
∑L
`=1

(∥∥∥[D>θ − D>θ∗]G`
∥∥∥

2 +
∥∥∥[D>θ∗]G`

∥∥∥
2

)a

≤
∥∥∥D>θ − D>θ∗

∥∥∥a
a,G +

∥∥∥D>θ∗
∥∥∥a

a,G

≤ rL +
∥∥∥D>θ∗

∥∥∥a
a,G ≤ R.

Then θ ∈
{
θ ∈ Rp :

∥∥∥D>θ
∥∥∥a

a,G ≤ R
}

= Θ. Therefore, we have the embedding

Θp0
D ⊆ Θ. (9.8)

In what follows, we denoteBa
a,G(x) =

{
z ∈ Rq :

∥∥∥z
∥∥∥a

a,G ≤ x
}
, ∀x > 0 for brevity. By (9.8), property (2.1), Lemma 2.3

and symmetry of Ba
a,G(rL) ∩ Im(D>), we obtain∫

Θ

(θ − θ∗)p0
D(dθ)

∝

∫
Θ∩Θp0

D

(θ − θ∗)
∏L

`=1 exp
(
−αa

∥∥∥[D>θ − D>θ∗]G`
∥∥∥a

2

)
g
(∥∥∥[D>θ − D>θ∗]G`

∥∥∥
2

)
dθ

=

∫
Θp0

D

(θ − θ∗)
∏L

`=1 exp
(
−αa

∥∥∥[D>θ − D>θ∗]G`
∥∥∥a

2

)
g
(∥∥∥[D>θ − D>θ∗]G`

∥∥∥
2

)
dθ

=
D̃√

det(DD>)

∫
Ba

a,G(rL)∩Im(D>)
z
∏L

`=1 exp
(
−αa

∥∥∥zG`
∥∥∥a

2

)
g
(∥∥∥zG`

∥∥∥
2

)
dz = 0, (9.9)

which is the desired claim.
We now bound the second term in the right hand side of (9.7). Define

p0(du) =
1

CL

√
det(DD>)

∏L
`=1 exp

(
−αa

∥∥∥uG`
∥∥∥a

2

)
g
(∥∥∥uG`

∥∥∥
2

)
IIm(D>)∩Ba

a,G(rL)(u)du. (9.10)

One can see that p0 coincides with the probability measure p0
D on Rp via a change of variables of type (2.3). So, p0

is a probability measure on Rq. For any i, j ∈ {1, . . . , L}, i , j, by a change of variables, we get
∫
Rq uGi u>G j

p0(du) =

−
∫
Rq uGi u>G j

p0(du), so ∫
Rq

uGi u
>
G j

p0(du) = 0. (9.11)

For any j ∈ {1, . . . , L}, as all groups have the same size, we have∫
Rq

uG j u
>
G j

p0(du) =

∫
Rq

uG1 u>G1
p0(du). (9.12)
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We obtain ∫
Rp

1
n
∑n

i=1

[
X>i (θ − θ∗)

]2
p0

D(dθ)

((2.1) and Lemma 2.3) =
1
n

∫
Rq

[
X D̃u

]>
X D̃up0(du)

=
1
n

∫
Rq

tr
(
u> D̃

>
X>X D̃u

)
p0(du)

=
1
n

tr
((

X D̃
)>

X D̃
∫
Rq

uu>p0(du)
)

((9.11) and (9.12)) =
1
n
∑L
`=1 tr

([(
X D̃

)>
X D̃

]
G`

∫
Rq

uG1 u>G1
p0(du)

)
(Von Neumann’s trace inequality) ≤

1
n
∑L
`=1

∑G
j=1σ j

([(
X D̃

)>
X D̃

]
G`

)
σ j

(∫
Rq

uG1 u>G1
p0(du)

)
≤

1
n

∫
Rq

∥∥∥uG1

∥∥∥2
2 p0(du)

∑L
`=1 tr

([(
X D̃

)>
X D̃

]
G`

)
=

1
n

tr
((

X D̃
)>

X D̃
) ∫

Rq

∥∥∥uG1

∥∥∥2
2 p0(du). (9.13)

Moreover, by inequality (2.2), Assumption (H.3) and Von Neumann’s trace inequality, we obtain

tr
((

X D̃
)>

X D̃
)

n
≤

∑p
j=1σ j

(
X>X

n

)
σ j

(
D̃D̃

>
)
≤ σ1

(
D̃D̃

>
)∑p

j=1σ j

(
X>X

n

)
≤

p
κ
. (9.14)

Putting together (9.13) and (9.14), we get the bound

C f ,L

∫
Rp

1
n
∑n

i=1

[
X>i (θ − θ∗)

]2
p0

D(dθ) ≤ C f ,L
p
κ

∫
Rq

∥∥∥uG1

∥∥∥2
2 p0(du). (9.15)

Thanks to (9.9) and (9.15), inequality (9.7) becomes∫
Θ

∥∥∥ fθ − f
∥∥∥2

n p0
D(dθ) ≤

∥∥∥ fθ∗ − f
∥∥∥2

n + C f ,L
p
κ

∫
Rq

∥∥∥uG1

∥∥∥2
2 p0(du). (9.16)

Now, inserting (9.16) into Theorem 3.1 (with p = p0
D), we arrive at

E
{∥∥∥ f̂n − f

∥∥∥2
n

}
≤

∥∥∥ fθ∗ − f
∥∥∥2

n + C f ,L
p
κ

∫
Rq

∥∥∥uG1

∥∥∥2
2 p0(du) +

βKL(p0
D, π)

n
. (9.17)

To complete the proof, it remains to bound the last two terms in the right hand side of (9.17). This is the goal of
the following lemma.
Lemma 9.1. Consider the same framework as the one in Theorem 5.1, we have∫

Rq

∥∥∥uG1

∥∥∥2
2 p0(du) ≤ 2K D

1,gerLα
a
, (9.18)

and
KL(p0

D, π) ≤ 1 + rLα
a + λ

∑L
`=1 ln

{
h
(∥∥∥[D>θ∗

]
G`

∥∥∥
2

)}
+ αa

∥∥∥D>θ∗
∥∥∥a

a,G. (9.19)

With rL = 3
√

K D
a,gL, it follows from (9.17) and Lemma 9.1 that

E
{∥∥∥ f̂n − f

∥∥∥2
n

}
≤

∥∥∥ fθ∗ − f
∥∥∥2

n +
β

n

(
1 + 3

√
K D

a,gLαa + αa
∥∥∥D>θ∗

∥∥∥a
a,G

)
+
λβ

n
∑L
`=1 ln

{
h
(∥∥∥[D>θ∗

]
G`

∥∥∥
2

)}
+

2K D
1,ge3
√

K D
a,gLαa

pC f ,L

κ
.

According to (9.5), this completes the proof of Theorem 5.1.
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Proof of Lemma 9.1 To prove Lemma 9.1, we need an intermediate result.

Lemma 9.2. Let s > L
√

K D
a,g. The following inequality holds

1
T

∫{
u∈Rp :

∥∥∥D>u
∥∥∥a

a,G
>s
} ∏L

`=1g(
∥∥∥[D>u]G`

∥∥∥
2)du ≤

L2K D
a,g(

s − L
√

K D
a,g

)2 ,

where T =
∫
Rp

∏L
`=1g(

∥∥∥[D>u]G`
∥∥∥

2)du.

Proof of Lemma 9.2. Let U be a random vector in Rp with density u 7→ 1
T

∏L
`=1g(

∥∥∥[D>u]G`
∥∥∥

2), where T < ∞ by
Assumption (G.2). By Chebyshev inequality, we have

1
T

∫{
u∈Rp :

∥∥∥D>u
∥∥∥a

a,G
>s
} ∏L

`=1g(
∥∥∥[D>u]G`

∥∥∥
2)du

= Pr
{∑L

`=1

∥∥∥[D>U]G`
∥∥∥a

2 > s
}

= Pr
{∑L

`=1

∥∥∥[D>U]G`
∥∥∥a

2 − E
{∥∥∥[D>U]G`

∥∥∥a
2

}
> s −

∑L
`=1E

{∥∥∥[D>U]G`
∥∥∥a

2

}}
≤ E

{[∑L
`=1

∥∥∥[D>U]G`
∥∥∥a

2 − E
{∥∥∥[D>U]G`

∥∥∥a
2

}]2
}
/(s −

∑L
`=1E

{∥∥∥[D>U]G`
∥∥∥a

2

}
)2

= var
(∑L

`=1

∥∥∥[D>U]G`
∥∥∥a

2

)
/(s −

∑L
`=1E

{∥∥∥[D>U]G`
∥∥∥a

2

}
)2

≤ E
{(∑L

`=1

∥∥∥[D>U]G`
∥∥∥a

2

)2
}
/(s −

∑L
`=1E

{∥∥∥[D>U]G`
∥∥∥a

2

}
)2. (9.20)

Next, by Cauchy-Schwartz inequality and Remark 4.2, we obtain

E
{(∑L

`=1

∥∥∥[D>U]G`
∥∥∥a

2

)2
}
≤ E

{
L
∑L
`=1

∥∥∥[D>U]G`
∥∥∥2a

2

}
≤ L2K D

a,g (9.21)

and by Jensen inequality

s −
∑L
`=1E

{∥∥∥[D>U]G`
∥∥∥a

2

}
≥ s −

∑L
`=1

√
E

{∥∥∥[D>U]G`
∥∥∥2a

2

}
≥ s − L

√
K D

a,g > 0. (9.22)

Thus, combining (9.20), (9.21) and (9.22), we get

1
T

∫{
u∈Rp :

∥∥∥D>u
∥∥∥a

a,G
>s
} ∏L

`=1g(
∥∥∥[D>u]G`

∥∥∥
2)du ≤

L2K D
a,g(

s − L
√

K D
a,g

)2 .

We now turn to the proof of Lemma 9.1

Proof of Lemma 9.1. Let us begin by the proof of inequality (9.18). We have∫
Rq

∥∥∥uG1

∥∥∥2
2 p0(du) =

1

CL

√
det(DD>)

∫
Ba

a,G(rL)∩Im(D>)

∥∥∥uG1

∥∥∥2
2

∏L
`=1e−α

a
∥∥∥uG`

∥∥∥a

2 g
(∥∥∥uG`

∥∥∥
2

)
du

≤
1

CL

√
det(DD>)

∫
Ba

a,G(rL)∩Im(D>)

∥∥∥uG1

∥∥∥2
2

∏L
`=1g

(∥∥∥uG`
∥∥∥

2

)
du. (9.23)
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In the following, we show inequality (9.18) by bounding the right term of inequality (9.23). By Lemma 2.3 and
Remark 4.2, we get∫

Ba
a,G(rL)∩Im(D>)

∥∥∥uG1

∥∥∥2
2
∏L
`=1g(

∥∥∥uG`
∥∥∥

2)du√
det(DD>)

∫
Rp

∏L
`=1g(

∥∥∥[D>u]G`
∥∥∥

2)du
≤

∫
Im(D>)

∥∥∥uG1

∥∥∥2
2
∏L
`=1g(

∥∥∥uG`
∥∥∥

2)du√
det(DD>)

∫
Rp

∏L
`=1g(

∥∥∥[D>u]G`
∥∥∥

2)du

=

∫
Rp

∥∥∥[D>u]G1

∥∥∥2
2
∏L
`=1g(

∥∥∥[D>u]G`
∥∥∥

2)du∫
Rp

∏L
`=1g(

∥∥∥[D>u]G`
∥∥∥

2)du
≤ K D

1,g.

Then
1√

det(DD>)

∫
Ba

a,G(rL)∩Im(D>)

∥∥∥uG1

∥∥∥2
2

∏L
`=1g(

∥∥∥uG`
∥∥∥

2)du ≤ K D
1,gT. (9.24)

We now bound CL
−1. By a change of variables, we obtain

CL
−1 =

∫
ΘpD

0

∏L
`=1e−α

a
∥∥∥[D>θ−D>θ∗]G`

∥∥∥a

2 g
(∥∥∥[D>θ − D>θ∗]G`

∥∥∥
2

)
dθ


−1

=

∫{
u∈Rp :

∥∥∥D>u
∥∥∥a

a,G
≤rL

} e−α
a
∥∥∥D>u

∥∥∥a

a,G
∏L

`=1g(
∥∥∥[D>u]G`

∥∥∥
2)du

−1

≤ erLα
a

∫{
u∈Rp :

∥∥∥D>u
∥∥∥a

a,G
≤rL

} ∏L
`=1g(

∥∥∥[D>u]G`
∥∥∥

2)du

−1

.

Since rL = 3
√

K D
a,gL >

√
K D

a,gL, Lemma 9.2 gives us

CL
−1 ≤ erLα

a

T
1 − 1

T

∫{
u∈Rp :

∥∥∥D>u
∥∥∥a

a,G
>rL

} ∏L
`=1g(

∥∥∥[D>u]G`
∥∥∥

2)du


−1

≤ erLα
a
T−1

1 − L2K D
a,g

(rL − L
√

K D
a,g)2


−1

= erLα
a
T−1

(
1 −

1
4

)−1

≤ 2erLα
a
T−1. (9.25)

Combining (9.24) and (9.25), (9.23) becomes
∫
Rq

∥∥∥uG1

∥∥∥2
2 p0(du) ≤ 2K D

1,gerLα
a . That concludes the proof of inequal-

ity (9.18) in Lemma 9.1.
Next, we prove inequality (9.19). Remind that supp(π) = Θ, supp(p0

D) = Θp0
D . By (9.8), we get Θp0

D ⊆ Θ

implying that p0
D is absolutely continuous w.r.t. π. So KL(p0

D, π) < ∞ which can be bounded. The bound in (9.19)
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can be proved as follows. By Lemma 2.3, we have

KL(p0
D, π) =

∫
Rp

ln
(

p0
D(dθ)
π(dθ)

)
p0

D(dθ)

=

∫
Rp

ln

Cα,g,R

CL

∏L
`=1e−α

a
∥∥∥[D>θ−D>θ∗]G`

∥∥∥a

2 g
(∥∥∥[D>θ − D>θ∗]G`

∥∥∥
2

)
∏L
`=1e−α

a
∥∥∥[D>θ]G`

∥∥∥a

2 g
(∥∥∥[D>θ]G`

∥∥∥
2

)
p0

D(dθ)

=

∫
Rq

ln

Cα,g,R

CL

∏L
`=1

eα
a
∥∥∥tG`

∥∥∥a

2 g
(∥∥∥tG` − t∗

G`

∥∥∥
2

)
eα

a
∥∥∥tG`−t∗

G`

∥∥∥a

2 g
(∥∥∥tG`

∥∥∥
2

)
p0(d t)

= ln
(
Cα,g,R

CL

)
+ αa∑L

`=1

∫
Rq

[∥∥∥tG`
∥∥∥a

2 −
∥∥∥tG` − t∗G`

∥∥∥a
2

]
p0(d t)

+
∑L
`=1

∫
Rq

ln

g
(∥∥∥tG` − t∗

G`

∥∥∥
2

)
g
(∥∥∥tG`

∥∥∥
2

) p0(d t),

where p0 is a probability measure in Rq defined in (9.10). We know that t∗ = D>θ∗, according to the fact that∥∥∥tG`
∥∥∥a

2 −
∥∥∥tG` − t∗

G`

∥∥∥a
2 ≤

∥∥∥t∗
G`

∥∥∥a
2 and Assumption (G.4), we get

KL(p0
D, π) ≤ ln

(
Cα,g,R

CL

)
+ αa

∥∥∥D>θ∗
∥∥∥a

a,G + λ
∑L
`=1 ln

{
h
(∥∥∥[D>θ∗

]
G`

∥∥∥
2

)}
. (9.26)

Now, it remains to bound ln(Cα,g,R/CL). Remind that Cα,g,R is the normalization factor of π, and thus

Cα,g,R =

∫
Θ

∏L
`=1 exp

(
−αa

∥∥∥[D>θ]G`
∥∥∥a

2

)
g
(∥∥∥[D>θ]G`

∥∥∥
2

)
dθ ≤

∫
Rp

∏L
`=1g

(∥∥∥[D>θ]G`
∥∥∥

2

)
dθ = T.

Combining this with the bound of CL
−1 in (9.25), we obtain

ln
(
Cα,g,R

CL

)
≤ rLα

a + ln(2) ≤ 1 + rLα
a. (9.27)

Inserting (9.27) into (9.26), we get inequality (9.19). This completes the proof.

9.4.2. Proofs of corollaries
Proof of Corollary 5.1 Let γ = 3, ν = 2 and η = 1. We have γ/ν < η + 1 so that Lemma 2.1 applies. We thus obtain∫ ∞

0
zG+1g(z)dz =

∫ ∞

0

z2

(z2 + τ2)2 dz < ∞.

From Lemma 4.1, g satisfies Assumptions (G.2) and (G.3). Moreover, taking h(t) = 1 + t/τ and λ = 4, for all
(t, t∗) ∈ R2, we have by Young’s inequality

g(|t − t∗|)
g(|t|)

=

[
τ2 + t2

τ2 + (t − t∗)2

]2

=

[
1 +

2τ(t − t∗)t∗/τ + t∗2

τ2 + (t − t∗)2

]2

≤

[
1 +
|t∗|
τ

+
t∗2

τ2

]2

≤ h(|t∗|)λ.

Therefore, g satisfies Assumptions (G.1)-(G.4) for G = 1. Owing to Remark 4.3 and Lemma 2.1, we obtain

K D
1,g =

∫ ∞
0

x2

(τ2+x2)2 dx∫ ∞
0

1
(τ2+y2)2 dy

= τ2.

We are now in position to apply Theorem 5.1 with D = Ip (then q = p), G = 1 (then L = q), a = 1 and α ≤ 1/(3pτ) to
conclude. Namely, since τ2 ∼ (pn)−1 and R ∼ pτ, we get that ΨD

µn,L,p
≤ 2eC f ,L τ2 p ∼ n−1, and

ΩD
µn,n,L,λ(θ) =

4β
n

∑p
j=1 ln(1 + |θ j|/τ) ≤

4β
n
‖θ‖0 ln(1 + R/τ) ∼

‖θ‖0 ln(p)
n

.

This completes the proof.
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Proof of Corollary 5.2 Let γ = 2 +G, ν = b and η = c− 1. We have γ/ν < η+ 1 and thus Lemma 2.1 applies, whence
we obtain ∫ ∞

0
xG+1g(x)dx =

∫ ∞

0

xG+1

(τb + xb)c dx < ∞.

From Lemma 4.1, g satisfies Assumptions (G.2) and (G.3). Recall that b ∈]0, 1]. Taking h(x) = 1 + (x/τ)b and λ = c,
for all (t, t∗) ∈ RG × RG, we have

g(‖t−t∗‖2)
g(‖t‖2) =

[
τb+‖t‖b2

τb+‖t−t∗‖b2

]c
≤

[
τb+‖t−t∗‖b2+‖t∗‖b2

τb+‖t−t∗‖b2

]c
≤

[
1 +

‖t∗‖b2
τb+‖t−t∗‖b2

]c
≤ h(‖t∗‖2)λ.

Therefore, g satisfies Assumptions (G.1)-(G.4) with any G ≥ 1. Applying Theorem 5.1, we conclude the proof.

Proof of Corollary 5.3 Since g satisfies Assumptions (G.2), (G.3) and D is invertible, by Remark 4.3 and Lemma 2.1,
we get

K D
a,g =

∫ ∞
0

rG−1+2a

(τb+rb)c dr∫ ∞
0

qG−1

(τb+qb)c dq
= τ2a

Γ
(

2a+G
b

)
Γ
(
c − 2a+G

b

)
Γ
(

G
b

)
Γ
(
c − G

b

) = K̃ D
a,gτ

2a.

Since τ2 ∼ (pn)−1 and R ∼ Lτa, we get that ΨD
µn,L,p

≤ 2C f ,L K̃ D
1,geκ−1 pτ2 ∼ n−1, and

ΩD
µn,n,L,λ(θ) =

cβ
n

∑L
`=1 ln

1 +

 ∥∥∥[D>θ]G`

∥∥∥
2

τ

b ≤ cβ
n

∥∥∥D>θ
∥∥∥

0,G ln

1 +

[
R1/a

τ

]b ∼
∥∥∥D>θ

∥∥∥
0,G ln(L)

n
.

This ends the proof.

9.5. Proofs of Section 6
9.5.1. Proof of Lemma 6.1

wλ is clearly increasing, bounded from below by wλ(0), and continuously differentiable (in fact even C∞) on ]0,+∞[.

(i) The expression of the proximal mapping follows from [40, Lemma 7.2] provided that it is single-valued. To show
the latter statement, it is sufficient to prove that the function u : x ∈ [0,+∞[7→ x + γwλ

′(x) = x + γc/(τ+ x) + γα
has a unique minimizer occurring at 0. One can see that u admits a local maximum at x = −

√
γc − τ < [0,+∞[

and a local minimum at x =
√
γc − τ. Thus, the problem minx∈[0,+∞[ u(x) has a unique solution at 0 when x ≤ 0

equivalent to γ ≤ τ2/c.

(ii) For γ ≤ τ2/c, it is immediate to see that the function u defined in (i) is nondecreasing on [0,+∞[, and thus so
is proxγwλ

. It then follows that proxγwλ
(x) ≥ proxγwλ

(0) = 0 for any x ∈ [0,+∞[. Since wλ is increasing, the
second inequality follows.

(iii) See [40, Lemma 7.1].

(iv) Denote the function x ∈]0,+∞[ 7→ v(x) = x
r + wλ

′(x) for r > 0. For x, z ≥ 0, we have

(v(z) − v(x))(z − x) = (z − x)2/(r) − c
(z − x)2

(τ + z)(τ + x)
≥ (z − x)2(r−1 − cτ−2) ≥ 0, ∀r ∈]0, τ2/c].

This shows that v is nondecreasing, or equivalently, that wλ(x) + 1
2r x2 is convex (i.e., wλ is semi-convex). Thus

‖u‖22
2r

+ Wλ(u) =
∑L
`=1


∥∥∥uG`

∥∥∥2
2

2r
+ wλ

(∥∥∥uG`
∥∥∥

2

) =
∑L
`=1

{(
(·)2

2r
+ wλ

)
◦ ‖·‖2 (uG` )

}
.

Since x 7→ x2

2r + wλ(x) is convex and increasing, and the norm is also convex, we deduce that ‖·‖
2
2

2r + Wλ is convex,

and so is
(
‖·‖22
2r′ + Wλ

)
◦D> for r′ = r/ν (recall ν from (H.2)). It then follows from [40, Lemma 5.3] that proxγWλ◦D>

is Lipschitz continuous for any γ ∈]0, r].
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(v) [40, Lemma 3.2], which applies thanks to (i), yields the expression of proxγWλ
. ∇(γWλ ◦ D>) is Lipschitz

continuous thanks to (iii), which, together with Lipschitz continuity of ∇Fβ yields that of ∇Vγ. Let us turn to
uniform boundedness of ∇(γWλ ◦ D>). For any θ ∈ Rp, denote u = D>θ. Thus, using (i) and (iii) and that wλ

′

is a decreasing function on ]0,+∞[, we have ∀θ ∈ Rp,∥∥∥∇(γWλ ◦ D>)(θ)
∥∥∥2

2 ≤ γ
−2ν

∑L
`=1

{∥∥∥uG`
∥∥∥

2 − proxγwλ

(∥∥∥uG`
∥∥∥

2

)}2

≤ γ−2ν
∑L
`=1

γwλ
′
(
proxγwλ

(∥∥∥uG`
∥∥∥

2

))
if

∥∥∥uG`
∥∥∥

2 > γwλ
′(0+)

γwλ
′(0+) otherwise

≤ γ−1νLwλ
′(0+) = γ−1νL(α + c/τ).

(vi) Combine (i), [40, Lemma 3.2 and Lemma 6.1], (iii) and that Mγ is positive definite.

9.5.2. Proof of Theorem 6.1
Uniform geometric ergodicity We start by showing that L(t) in (6.5) is H-uniformly geometrically ergodic, where
H : Rp → [1,+∞[ is a measurable function. Let | f |H

def
= supθ∈Rp

| f (θ)|
H(θ) . Recall that H-uniform geometric ergodicity

requires that for all l0 ∣∣∣∣∣E { f (L(t))|L0 = l0} −

∫
Rp

f (θ)µγ(θ)dθ
∣∣∣∣∣ ≤ KH(l0)ρt (9.28)

for some K < +∞ and ρ ∈ [0, 1[ and any function f satisfying | f |H ≤ 1.
Denote A

def
= −

〈
∇Vγ,∇

〉
+ ∆ is the µγ symmetric natural operator. By [51, Theorem 2.2], L(t) is H-uniformly

geometrically ergodic if H is a Lyapunov function for the generator A , i.e. H is a C2 function and there exist δ > 0,
ϑ ≥ 0 and some R > 0 such that for all θ ∈ Rp

A H(θ) ≤ −δH(θ) + ϑIBR (θ) (9.29)

where BR
def
=

{
θ ∈ Rp : ‖θ‖2 ≤ R

}
. We denote Bc

R
def
= Rp \ BR. To prove geometric ergodicity, we use the following

fact. Since Fβ is differentiable, convex and e−Fβ is integrable, it follows from [2, Lemma 2.2] that there exist η > 0 and
r > 0 such that for all θ ∈ Bc

r , 〈
∇Fβ(θ), θ

〉
≥ η ‖θ‖2 . (9.30)

Lemma 9.3. The drift condition (9.29) is satisfied with the Lyapunov function H(θ) = exp
(
η/4

√
1 + ‖θ‖22

)
, δ = η2/16,

ϑ = η/4H(R)
(
η/4 + d + 2β−1

∣∣∣∣∣∣∣∣∣X∣∣∣∣∣∣∣∣∣2R2 + 2β−1
∥∥∥X>y

∥∥∥
2 R

)
+ η2/16 and R = max(r, 1 + 2p/η). In turn, L(t) in (6.5)

satisfies (9.28).

Proof of Lemma 9.3. Elementary derivations give

A H(θ) = −η/4
H(θ)√
1 + ‖θ‖22

〈∇Fβ(θ), θ
〉

+
〈
∇(γWλ)(D>θ), D>θ

〉
− η/4

‖θ‖22√
1 + ‖θ‖22

− p +
‖θ‖22

1 + ‖θ‖22

.
Denote u = D>θ. In view of Lemma 6.1(ii), (iii) and (v), we have

〈∇(γWλ)(u),u〉 = γ−1
(
‖u‖22 −

〈
proxγWλ

(u),u
〉)

= γ−1
L∑
`=1

∥∥∥uG`
∥∥∥

2

{∥∥∥uG`
∥∥∥

2 − proxγwλ

(∥∥∥uG`
∥∥∥

2

)}
≥ 0. (9.31)

This, together with (9.30) yields the bound

A H(θ) ≤ −η/4H(θ)
(
ηR − p
1 + R

− η/4
)
IBc

R
(θ) + η/4H(R)

(
η/4 + d + 2β−1

∣∣∣∣∣∣∣∣∣X∣∣∣∣∣∣∣∣∣2R2 + 2β−1
∥∥∥X>y

∥∥∥
2 R

)
IBR (θ),

whence we deduce the desired claim.
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Let us now turn to the proof of the theorem.

(i) By the triangle inequality, we have∥∥∥∥PT,δ,γ
L̃δ

(l0, ·) − µn

∥∥∥∥
TV
≤

∥∥∥∥PT,δ,γ
L̃δ

(l0, ·) − PT,γ
L (l0, ·)

∥∥∥∥
TV

+
∥∥∥∥PT,γ

L (l0, ·) − µγ
∥∥∥∥

TV
+

∥∥∥µγ − µn

∥∥∥
TV .

In view of Lemma 6.1(v) and [17, Lemma 2] and the Pinkser inequality, the first term in the right hand side
goes to 0 as δ → 0. The second term converges to 0 as T → +∞ thanks to uniform geometric ergodicity (see
Lemma 9.3), where we apply (9.28) with ‖ f ‖∞ ≤ 1. The last term vanishes as γ → 0 by virtue of Proposition 6.1.

(ii) In the following, C is any positive constant that does not depend on δ and T . Let δ ∈
]
0, 2β/

∣∣∣∣∣∣∣∣∣X∣∣∣∣∣∣∣∣∣2[. Since
E {Zk} = 0 and ∇(γWλ) ◦ D> is uniformly bounded, we have∥∥∥E {Lk+1}

∥∥∥
2 ≤

∥∥∥E {
Lk − δ/2∇Fβ(Lk)

} ∥∥∥
2 + Cδ

≤ E
{∥∥∥(Ip − δ/2∇Fβ)(Lk) − (Ip − δ/2∇Fβ)(0)

∥∥∥
2

}
+

(
C +

∥∥∥∇Fβ(0)
∥∥∥

2 /2
)
δ

≤ E {Lk} + (C +
∥∥∥X>y

∥∥∥
2 /2)δ ≤ (C +

∥∥∥X>y
∥∥∥

2 /2)T, ∀k[0, bT/δc],

where we used the fact that Fβ is a differentiable convex function whose gradient is 2
∣∣∣∣∣∣∣∣∣X∣∣∣∣∣∣∣∣∣2/β-Lipschitz, and

thus, Ip − δ∇Fβ is non-expansive for the prescribed choice of δ [3]. In addition, by independence of Zk from Lk

and Y, and in view of (9.31) and Lipschitz continuity of ∇Fβ, we have

E
{∥∥∥Lk+1

∥∥∥2
2

}
≤ E

{∥∥∥Lk − δ/2∇Vγ(Lk)
∥∥∥2

2

}
+ δp

≤ E
{∥∥∥Lk − δ/2∇Fβ(Lk) + δ/2∇Fβ(0)

∥∥∥2
2 − δ

〈
Lk − δ/2(∇Fβ(Lk) − ∇Fβ(0)),∇(γWλ ◦ D>)(Lk)

〉}
+ Cδ2 + δp

≤ E
{∥∥∥Lk

∥∥∥2
2 − δ

〈
Lk − δ/2(∇Fβ(Lk) − ∇Fβ(0)),∇(γWλ ◦ D>)(Lk)

〉}
+ Cδ2 + δp

≤ E
{∥∥∥Lk

∥∥∥2
2

}
+ Cδ2

∥∥∥E {Lk}
∥∥∥

2 + Cδ2 + δp

≤ E
{∥∥∥Lk

∥∥∥2
2

}
+ Cδ2

∥∥∥E {Lk}
∥∥∥

2 + Cδ2 + δp

≤ E
{∥∥∥Lk

∥∥∥2
2

}
+ Cδ2T + Cδ2 + δp ≤ CδT 2 + CδT + pT = O(T 2), ∀k[0, bT/δc]. (9.32)

For T > 0 and R > 0, denote L̃T
δ

def
= 1/T

∫ T
0 L̃δ(t)dt, L̃T,R

δ
def
= 1/T

∫ T
0 L̃δ(t)IBR (L̃δ(t))dt, LT,R def

=

1/T
∫ T

0 L(t)IBR (L(t))dt and θ̂
R
γ

def
=

∫
BR
θµγ(θ)dθ. The triangle and Jensen inequalities yield

E
{∥∥∥L̄δ,T,γ − θ̂γ

∥∥∥
2

}
≤ E

{∥∥∥L̄δ,T,γ − L̃T
δ

∥∥∥
2

}
+ E

{∥∥∥L̃T,R
δ − LT,R

∥∥∥
2

}
+ E

{∥∥∥LT,R − θ̂
R
γ

∥∥∥
2

}
+

1
T

∫ T

0
E

{∥∥∥L̃δ(t)
∥∥∥

2IBc
R(L̃δ(t))

}
dt +

∫
Bc

R

∥∥∥θ∥∥∥2µγ(θ)dθ.

For the last two terms, we have the bounds

1
T

∫ T

0
E

{∥∥∥L̃δ(t)
∥∥∥

2IBc
R(L̃δ(t))

}
dt ≤ R−1 1

T

∫ T

0
E

{∥∥∥L̃δ(t)
∥∥∥2

2

}
dt ≤

(9.32)
CT 2/R and∫

Bc
R

∥∥∥θ∥∥∥2µγ(θ)dθ ≤ R−1
∫
Rp

∥∥∥θ∥∥∥2
2µγ(θ)dθ ≤

(G.3)
C/R.

Choosing, e.g., R = 1/T 3, these terms converge to 0 as T → ∞. Using (9.32) and arguing as in [23, Step 1,
Proposition 2], we have

E
{∥∥∥L̄δ,T,γ − L̃T

δ

∥∥∥
2

}
≤ Cδ(1 + δT 2)→ 0 as δ→ 0.
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Using Girsanov formula and Pinsker inequality, as in [23, Step 2, Proposition 2], the distribution of
{
L̃δ(t)

}
t∈[0,T ]

converges to that of {L(t)}t∈[0,T ] in total variation as δ→ 0. In turn,

E
{∥∥∥L̃T,R

δ − LT,R
∥∥∥

2

}
→ 0 as δ→ 0.

Using Lemma 9.3 with f (θ) = θiIBR (θ), and arguing as in [23, Step 4, Proposition 2], we have

E
{∥∥∥LT,R − θ̂

R
γ

∥∥∥
2

}
≤ CT−1/2 → 0 as T → ∞.

This completes the proof.
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