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Neutral and tree sets of arbitrary characteristic

Francesco Dolce and Dominique Perrin

Université Paris-Est, LIGM

Abstract

We study classes of minimal sets defined by restrictions on the possible ex-
tensions of the words. These sets generalize the previously studied classes of
neutral and tree sets by relaxing the condition imposed on the empty word and
measured by an integer called the characteristic of the set. We present several
enumeration results holding in these sets of words. These formulae concern
return words and bifix codes. They generalize formulae previously known for
Sturmian sets or more generally for tree sets. We also give two geometric exam-
ples of this class of sets, namely the natural coding of some interval exchange
transformations and the natural coding of some linear involutions.

Keywords: Neutral Sets, Tree Sets, Bifix Codes, Interval Exchanges, Linear
Involutions

1. Introduction

Sets of words of linear complexity play an important role in combinatorics
on words and symbolic dynamics. This family of sets includes set of factors
of Sturmian and Arnoux-Rauzy words, interval exchange sets and primitive
morphic sets, that is, sets of factors of fixed points of primitive morphisms.

We study here several families of sets of words of linear complexity defined
by properties of a graph E(x), called the extension graph of x. This graph
expresses the possible extensions of x on both sides by a letter of the alphabet
A.

A set S is neutral if the Euler characteristic of the graph of any nonempty
word is equal to 1. A special family of neutral sets is given by tree sets, sets
such that E(x) is a tree for every nonempty word and acyclic for every word.
The Euler characteristic of the graph E(ε) is called the characteristic of S and
is denoted by χ(S). These sets were first considered in [1] and in [4].

The motivation for studying neutral and tree sets is the following: First,
the family of uniformly recurrent tree sets appears as the natural closure of two
known families, namely the Sturmian sets and the interval exchange sets. Next,
the family of neutral sets is a naturally defined generalization of tree sets for
which a number of properties true for tree sets still hold.

The factor complexity of a neutral set S on k letters is for n 6= 1
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pn = n(k − χ(S)) + χ(S). (1)

We prove here several results concerning neutral sets. The first one (Theo-
rem 4.9) is a formula giving the cardinality of a finite S-maximal bifix code X
of S-degree n in a recurrent neutral set S on k letters as

Card(X) = n(k − χ(S)) + χ(S). (2)

The remarkable feature is that, for fixed S, the cardinality of X depends
only on its S-degree. In the particular case where X is the set of all words of
S of length n, we recover Equation (1). Formula (2) generalizes the formula
proved in [2] for Sturmian sets and in [6] for neutral sets of characteristic 1.

The second one concerns return words. The set of right return words to a
word x in a factorial set S, denoted by RS(x), is an important notion. It is the
set of words u such that xu is in S and ends with x for the first time. In several
families of sets of linear complexity, the set of return words to x is known to
be of fixed cardinality independent of x. This was proved for Sturmian words
in [14], for interval exchange sets in [17] (see also [11]) and for neutral sets of
characteristic zero in [1].

We first prove here (Theorem 5.2) that the set CRS(X) of complete return
words to a bifix code X (satisfying additional hypotheses) in a recurrent neutral
set S on k letters satisfies Card(CRS(X)) = Card(X) + k − χ(S) and that
this quantity is an upper bound for Card(CRS(X)) for every neutral set. The
remarkable feature here is that, for fixed S, the cardinality of CRS(X) depends
only on Card(X). When X is reduced to one element x, we have CRS(x) =
xRS(x) and we recover the result of [1]. When X = S ∩ An, then CRS(X) =
S ∩ An+1. This implies pn+1 = pn + k − χ(S) and also gives Equation (1)
by induction on n. The proofs of these formulæ use a probability distribution
naturally defined on a neutral set.

As a corollary of Theorem 5.2 we prove that in neutral sets the notions of
recurrence and uniformly recurrence coincide (Corollary 5.3).

A third result concerns the decoding of a neutral set by a bifix code. We
prove that the decoding of any recurrent neutral set S by an S-maximal bifix
code is a neutral set. We find an analogous result also for tree sets. This
property is proved for uniformly recurrent tree sets in [7].

We study in more detail the decoding of a neutral set S by special bifix codes
called modular codes. These bifix codes have S-degree equal to the characteristic
of S. We prove that the decoding of a recurrent tree set by the modular code
is union of c recurrent tree sets of characteristic 1 (Theorem 7.3). The result is
proved for uniformly recurrent tree sets of characteristic 2 in [8].

We finally prove two results which allows one to obtain a large family of neu-
tral sets (actually tree sets) of geometric origin, namely using interval exchange
transformations or linear involutions. More precisely, we prove that the natural
coding of an interval exchange transformation without connections of length
≥ 1 is a tree set and that the natural coding of a linear involution without con-
nections is a tree set of characteristic 2. This extends a result in [5] concerning
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interval exchange without connections as well as a result of [9] concerning linear
involutions without connection.

Acknowledgement.. This paper is an extended version of a conference paper [13].
This work was supported by grants from Région Île-de-France and ANR project
Eqinocs ANR-13-BS02-004.

2. Extension graphs

Let A be a finite alphabet. We denote by A∗ the set of all words on A.
We denote by ε the empty word. A factor of a word x is a word v such that
x = uvw. If both u and w are nonempty, we say that x is an internal factor. A
set of words on the alphabet A is said to be factorial if it contains the factors
of its elements as well as the alphabet A.

Let S be a factorial set on the alphabet A. For w ∈ S, we define

LS(w) = {a ∈ A | aw ∈ S},
RS(w) = {a ∈ A | wa ∈ S},
ES(w) = {(a, b) ∈ A×A | awb ∈ S}

and furthermore

ℓS(w) = Card(LS(w)), rS(w) = Card(RS(w)), eS(w) = Card(ES(w)).

We omit the subscript S when it is clear from the context. A word w is
right-extendable if r(w) > 0, left-extendable if ℓ(w) > 0 and biextendable if
e(w) > 0. A factorial set S is called right-extendable (resp. left-extendable,
resp. biextendable) if every word in S is right-extendable (resp. left-extendable,
resp. biextendable).

A word w is called right-special if r(w) ≥ 2. It is called left-special if ℓ(w) ≥
2. It is called bispecial if it is both left-special and right-special. For w ∈ S, we
define

mS(w) = eS(w) − ℓS(w)− rS(w) + 1.

A word w is called neutral if mS(w) = 0. We say that a set S is neutral if
it is factorial and every nonempty word w ∈ S is neutral. The characteristic of
S is the integer χ(S) = 1−mS(ε).

Thus, a neutral set of characteristic 1 is such that all words (including the
empty word) are neutral. This is what is called a neutral set in [4].

Example 2.1 Let A = {a, b} and let ϕ be the morphism from A∗ to itself
defined by ϕ : a 7→ ab, b 7→ a. Let S be the set of factors of the fixed point
x = ϕω(a). The set S, called the Fibonacci set is a neutral set of characteristic
1. Indeed one can prove that every word, including the empty word, is neutral.

The following example of a neutral set of characteristic larger than 1 is
from [4].
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Example 2.2 Let A = {a, b, c, d} and let σ be the morphism from A∗ into itself
defined by σ : a 7→ ab, b 7→ cda, c 7→ cd, d 7→ abc. Let S be the set of factors of
the infinite word x = σω(a). One has S ∩ A2 = {ab, ac, bc, ca, cd, da} and thus
m(ε) = −1. It is shown in [4] that every nonempty word is neutral. Thus S is
neutral of characteristic 2.

A set of words S 6= {ε} is recurrent if it is factorial and for any u,w ∈ S,
there is a v ∈ S such that uvw ∈ S. An infinite factorial set is said to be
uniformly recurrent if for any word u ∈ S there is an integer n ≥ 1 such that u
is a factor of any word of S of length n. A uniformly recurrent set is recurrent.

The factor complexity of a factorial set S of words on an alphabet A is the
sequence pn = Card(S ∩ An). Let sn = pn+1 − pn and bn = sn+1 − sn be
respectively the first and second order differences sequences of the sequence pn.

The following result is [12, Proposition 3.5] (see also [10, Theorem 4.5.4]).

Proposition 2.3 Let S be a factorial set on the alphabet A. One has bn =
∑

w∈S∩An m(w) and sn =
∑

w∈S∩An(r(w) − 1) for all n ≥ 0.

One deduces easily from Proposition 2.3 the following result which shows
that a neutral set has linear complexity.

Proposition 2.4 The factor complexity of a neutral set on k letters is given by
p0 = 1 and pn = n(k − χ(S)) + χ(S) for every n ≥ 1.

Proof. Since S contains the empty word and the alphabet, we have p0 = 1 and
p1 = k. Thus s0 = k − 1

By Proposition 2.3 one has b0 = m(ε) = 1−χ(S) and bn = 0 for every n > 0.
Thus sn = k − χ(S) for every n > 0.

The conclusion immediately follows by induction on n.

Let S be a biextendable set of words. For w ∈ S, we consider the set E(w)
as an undirected graph on the set of vertices which is the disjoint union of L(w)
and R(w) with edges the pairs (a, b) ∈ E(w). This graph is called the extension
graph of w. We sometimes denote by 1⊗L(w) and R(w)⊗ 1 the copies of L(w)
and R(w) used to define the set of vertices of E(w). We note that since E(w)
has ℓ(w) + r(w) vertices and e(w) edges, the number 1 − mS(w) is the Euler
characteristic of the graph E(w) 1.

A biextendable set S is called a tree set of characteristic c if for any nonempty
w ∈ S, the graph E(w) is a tree and if E(ε) is a union of c trees (the definition
of tree set in [4] corresponds to a tree set of characteristic 1). Note that a tree
set of characteristic c is a neutral set of characteristic c.

Example 2.5 Let S be the neutral set of Example 2.2. The graph E(ε) is
represented in Figure 1. It is acyclic with two connected components. It is

1We consider here graphs as 1-dimensional compexies and thus they have no faces.
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shown in [4] that the extension graph of any nonempty word is a tree. Thus S
is a tree set of characteristic 2.

1⊗ a

a⊗ 11⊗ b

b⊗ 1

c⊗ 1

1⊗ c

1⊗ d

d⊗ 1

Figure 1: The two trees forming the graph E(ε). Vertices correspond to letters, while edges
correspond to words of length 2 in S.

Let S be a factorial set. For x ∈ S, we define

ρS(x) = eS(x)− ℓS(x), λS(x) = eS(x) − rS(x).

Thus, when x is neutral, ρS(x) = rS(x) − 1 and λS(x) = ℓS(x) − 1. The
following result shows that in a biextendable neutral set, ρS is a left probability
distribution on S (and λS is a right probability), except for the value on ε which
is ρ(ε) = e(ε)− ℓ(ε) = m(ε) + r(ε) − 1 = Card(A) − χ(S) and can be different
from 1 (see [2] for the definition of a right or left probability distribution). We
omit the subscript S when it is clear from the context.

Proposition 2.6 Let S be a biextendable neutral set. Then for any x ∈ S, one
has λS(x), ρS(x) ≥ 0 and

∑

a∈L(x)

ρS(ax) = ρS(x),
∑

a∈R(x)

λS(xa) = λS(x).

Proof. Since S is biextendable, we have ℓ(x), r(x) ≤ e(x). Thus λ(x), ρ(x) ≥ 0.
Next,

∑

a∈L(x) ρ(ax) =
∑

a∈L(x)(r(ax)− 1) = e(x)− ℓ(x) = ρ(x). The proof for
λ is symmetric.

If in a neutral set S we have ρ(ε) = 0, then ρ(x) = 0 for all x ∈ S. Otherwise,
ρ′(x) = ρ(x)/ρ(ε) is a left probability distribution. A symmetric result holds
for λ.

3. Multiplying maps

We now introduce a construction which allows one to build tree sets of
characteristic m starting from a tree set of characteristic 1.

A transducer is a labeled graph with vertices in a set Q and edges labeled
in Σ × A. The set Q is called the set of states, the set Σ is called the input
alphabet and A is called the output alphabet. The graph obtained by erasing the
output letters is called the input automaton (with an unspecified initial state).
Similarly, the output automaton is obtained by erasing the input letters.

Let A be a transducer with set of states Q = {0, 1, . . . ,m− 1} on the input
alphabet Σ and the output alphabet A. We assume that
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1. the input automaton is a group automaton, that is, every letter of Σ acts
on Q as a permutation,

2. the output labels of the edges are all distinct.

We define m maps δk : Σ∗ → A∗ corresponding to the initial state k, for
k = 0, 1, . . . ,m − 1. Let δk(u) = v if the path starting at state k with input
label u has output v. An m-tuple δ = (δ0, δ1, . . . , δm−1) is called am-multiplying
map and the transducer A a m-multiplying transducer. The image of a set of
words T on the alphabet Σ by the m-multiplying map δ is the set δ(T ) =
δ0(T ) ∪ δ1(T ) ∪ · · · ∪ δm−1(T ).

The following is a generalization of [8, Proposition 4.3].

Theorem 3.1 For any tree set T of characteristic c on the alphabet Σ and any
m-multiplying map δ, the image of T by δ is a tree set of characteristic mc.

Proof. Set S = δ(T ) = δ0(T ) ∪ δ1(T ) ∪ · · · ∪ δm−1(T ). The set S is clearly
biextendable since T is biextendable by definition.

Let us consider a nonempty word x = δi(y), with 0 ≤ i ≤ m− 1. The graph
ES(x) is isomorphic to the graph ET (y). Indeed, let j be the end of the path
with origin i and input label y in the m-multiplying transducer. For ai, bj ∈ A,
one has aixbj ∈ S if and only if ayb ∈ T where a (resp. b) is the input label of
the edge with output label ai (resp. bj) ending in i (resp. with origin j). Thus,
ES(x) is a tree for any nonempty word x ∈ S.

Finally, the graph ES(ε) is, up to orientation, the union of m graphs, all
of them isomorphic to ET (ε). Indeed, consider the map π from S ∩ A2 onto
{0, 1, · · · ,m − 1} which assigns to ab ∈ S ∩ A2 the state i which is the end of
the edge of A with output label a (and the origin of the edge with output label
b). Set Si = π−1(i). We have a partition S ∩ A2 = S0 ∪ S1 ∪ · · · ∪ Sm−1 such
that each graph having Si as set of edges is isomorphic to ET (ε). Since ET (ε)
is a forest of c trees, the graph ES(ε) is a forest of mc trees.

Example 3.2 Let B = {a, b} and let T be the Fibonacci set (see Example 2.1).
Let δ be the doubling map given by the transducer of Figure 2.

0 1b | d
a | a

a | c
b | b

Figure 2: A doubling automaton.

The graph ES(ε) is represented in Figure 1.

4. Bifix codes

A prefix code is a set of nonempty words which does not contain any proper
prefix of its elements. A suffix code is defined symmetrically. A bifix code is
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a set which is both a prefix code and a suffix code (see [3] for a more detailed
introduction). Let S be a recurrent set. A prefix (resp. bifix) code X ⊂ S is
S-maximal if it is not properly contained in a prefix (resp. bifix) code Y ⊂ S.
Since S is recurrent, a finite S-maximal bifix code is also an S-maximal prefix
code (see [2, Theorem 4.2.2]). For example, for any n ≥ 1, the set X = S ∩ An

is an S-maximal bifix code.
Given a set X , we define ρ(X) =

∑

x∈X ρ(x). We prove the following result.
It accounts for the fact that, in a Sturmian set S, any finite S-maximal suffix
code contains exactly one right-special word [2, Proposition 5.1.5].

Proposition 4.1 Let S be a neutral set and let X be a suffix code. Then
ρ(X) ≤ Card(A) − χ(S) with equality if X is finite and S-maximal.

Proof. If ρ(ε) = 0, then χ(S) = Card(A) and thus the formula holds. Otherwise,
ρ′ is a left probability distribution (as seen at the end of Section 2), and the
formula holds by a well-known property of suffix codes (see [2, Proposition
3.3.4]).

Example 4.2 Let S be the neutral set of characteristic 2 of Example 2.2. The
setX = {a, ac, b, bc, d} is an S-maximal suffix code (its reversal is the S̃-maximal
prefix code X̃ = {a, b, ca, cb, d}). The values of ρ on X are represented in
Figure 3 on the left. One has ρ(X) = ρ(a) + ρ(bc) = 2, in agreement with
Proposition 4.1.

2

1

0

1

0

0

1

a
b

c

d

a

b

2

1

0

1

0

0

0

1

1

0

0

0

a

b
c

d

b

c

c

a

d

a

d
2

1

0

1

0

0

1

0

0

0

0

0

a
b
c

d

d

c

a

c

b

a

b

Figure 3: An S-maximal suffix code (left) and an S-maximal bifix code represented as a prefix
code (center) and as a suffix code (right).

Let X be a bifix code. Let Q be the set of words without any suffix in X and
let P be the set of words without any prefix in X . A parse of a word w with
respect to a bifix code X is a triple (q, x, p) ∈ Q ×X∗ × P such that w = qxp.
We denote by dX(w) the number of parses of a word w with respect to X . The
S-degree of X , denoted by dX(S) is the maximal number of parses with respect
to X of a word of S. For example, the set X = S ∩An has S-degree n.

Example 4.3 Let S be the neutral set of characteristic 2 of Example 2.2. The
set X = {ab, acd, bca, bcd, c, da} is an S-maximal bifix code of S-degree 2 (see
Figure 3 on the center and the right).
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Let S be a recurrent set and let X be a finite bifix code. By [2, Theorem
4.2.8], X is S-maximal if and only if its S-degree is finite. Moreover, in this
case, a word w ∈ S is such that dX(w) < dX(S) if and only if it is an internal
factor of a word of X .

The following is [2, Theorem 4.3.7].

Theorem 4.4 Let S be a recurrent set and let X be a finite S-maximal bifix
code of S-degree n. The set of nonempty proper prefixes of X is a disjoint union
of n− 1 S-maximal suffix codes.

Example 4.5 Let S and X be as in Example 4.3. The set of nonempty proper
prefixes of X is the S-maximal suffix code represented on the left of Figure 3.

We now recall the definitions of kernel and derived code. Let S be a recurrent
set.

The kernel of a finite S-maximal bifix code X is the set of words of X which
are an internal factor of X .

Example 4.6 Let S and X be as in Example 4.3. The kernel of X is K = {c}.
Indeed c is the only word that is both an element of X and an internal factor
of elements of X (namely, acd, bca and bcd).

Let now X be a finite S-maximal bifix code of S-degree d ≥ 2. Let P ′ be
the set of proper prefixes of X which are internal factors of X . Then P ′ is a
non empty prefix-closed set and thus it is the set of proper prefixes of a unique
prefix code X ′ called the derived code of X . It is actually an S-maximal bifix
code of S-degree d−1 (see [2], Theorem 4.3.1 and Proposition 4.3.5). Note that
the set P of proper prefixes of X is the disjoint union of P ′ and an S-maximal
suffix code Y . Thus, consistently with Theorem 4.4, P ′ \ {ε} is a disjoint union
of d− 2 S-maximal suffix codes and P \ {ε} a disjoint union of d− 1 S-maximal
suffix codes.

Example 4.7 Let S and X be as in Example 4.3. The derived code of X is
X ′ = A. We have P = {ε, a, b, d, ac, bc, da} and P ′ = {ε}. Thus P = P ′ ∪ Y
where S-maximal suffix code represented in Figure 3 on the left.

The following statement is closely related with a similar statement concern-
ing the average length of a bifix code, but which requires an invariant probability
distribution (see [2, Corollary 4.3.8]).

Proposition 4.8 Let S be a recurrent neutral set and let X be a finite S-
maximal bifix code of S-degree n. The set P of proper prefixes of X satisfies
ρS(P ) = n(Card(A)− χ(S)).

Proof. By Theorem 4.4, we have P \{ε} = ∪n−1
i=1 Yi, where the Yi are S-maximal

suffix codes. By Proposition 4.1, we have ρ(Yi) = Card(A) − χ(S) and thus
ρ(P ) = ρ(ε) + (n− 1)(Card(A) − χ(S)) = n(Card(A)− χ(S)).
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The following theorem is a generalization of [6, Theorem 3.6] where it is
proved for a neutral set of characteristic 1. We consider a recurrent set S, and
we implicitly assume that all words of S are on the alphabet A.

Theorem 4.9 Let S be a neutral recurrent set. For any finite S-maximal bifix
code X of S-degree d, one has

Card(X) = d(Card(A) − χ(S)) + χ(S). (3)

Note that we recover, as a particular case of Theorem 4.9 applied to the set X of
words of length n in S, the fact that for a set S satisfying the hypotheses of the
theorem, the factor complexity is p0 = 1 and pn = n(Card(A) − χ(S)) + χ(S).
Proof of Theorem 4.9. Since X is a finite S-maximal bifix code, it is an S-
maximal prefix code (see Section 4). By a well-known property of trees, this
implies that Card(X) = 1+

∑

p∈P (r(p)−1) where P is the set of proper prefixes
of X . Since ρ(p) = r(p) − 1 for p non empty and ρ(ε) = m(ε) + r(ε) − 1, we
have

Card(X) = 1 +
∑

p∈P

(r(p) − 1) = 1 +
∑

p∈P

ρ(p)−m(ε)

= ρ(P ) + χ(S) = d(Card(A)− χ(S)) + χ(S)

since ρ(P ) = d(Card(A)− χ(S)) by Proposition 4.8.

Example 4.10 Let S be the neutral set of Example 2.2 and let X be the S-
maximal bifix code of Example 4.3. We have Card(X) = 2(4 − 2) + 2 = 6
according to Theorem 4.9.

The following statement is a converse of Theorem 4.9.

Theorem 4.11 Let S be a uniformly recurrent set containing the alphabet A. If
every finite S-maximal bifix code of S-degree d has d(Card(A)−c)+c elements,
then S is neutral of characteristic c.

To prove Theorem 4.11, we use the following result, which can be proved in the
same way as Theorem 3.12 in [6], using internal transformations.

Proposition 4.12 Let S be a uniformly recurrent set containing the alphabet
A and let d0 ≥ 2. If all finite S-maximal bifix codes of S-degree d ≥ d0 have
the same cardinality, then any word of length greater than or equal to d0 − 1 is
neutral.

Proof of Theorem 4.11. We first apply the statement to the S-maximal bifix
code X = S ∩A2 which has S-degree 2. Since Card(X) = 2(Card(A)− c)+ c =
2Card(A) − c, we conclude that mS(ε) = 1 − c. On the other hand, applying
Proposition 4.12 with d0 = 2, we conclude that every nonempty word is neutral.
Thus S is neutral of characteristic c.

We also note that Theorem 4.9 can be formulated in an equivalent way using
the notion of derived code of a maximal bifix code.
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Theorem 4.13 Let S be a recurrent neutral set, let X be a finite S-maximal
bifix code of S-degree d ≥ 2 and let X ′ be the derived code of X. One has

Card(X) = Card(X ′) + Card(A)− χ(S). (4)

Indeed, since X ′ has degree dS(X)− 1, by Theorem 4.9, we have

Card(X)− Card(X ′) = Card(A)− χ(S).

Conversely, we may prove Theorem 4.9 by induction on n, assuming Theo-
rem 4.13. Equation (3) holds for n = 1 since in this case X = A. Next, assume
that it holds for d− 1. Then, by Equation (4), we have

Card(X) = Card(X ′) + Card(A)− χ(S)

= (d− 1)(Card(A) − χ(S)) + χ(S) + Card(A)− χ(S)

= d(Card(A)− χ(S)) + χ(S).

Example 4.14 Let S be the neutral set of Example 2.2 and let X be the
S-maximal bifix code of Example 4.3. We have X ′ = A and accordingly
Card(X) = Card(A) + Card(A)− 2 = 6.

5. Return words

Let S be a factorial set of words. For a set X ⊂ S of nonempty words,
a complete return word to X is a word of S which has a proper prefix in X ,
a proper suffix in X and no internal factor in X . We denote by CRS(X) the
set of complete return words to X . The set CRS(X) is a bifix code. If S is
uniformly recurrent, CRS(X) is finite for any finite set X . For x ∈ S, we denote
by CRS(x) instead of CRS({x}).

Example 5.1 Let n ≥ 1 and let X = S ∩ An. Then CRS(X) = S ∩ An+1.

Theorem 5.2 Let S be a neutral set. For any finite nonempty bifix code X ⊂ S
with empty kernel, we have

Card(CRS(X)) ≤ Card(X) + Card(A)− χ(S) (5)

with equality if S is recurrent.

Proof. Let P be the set of proper prefixes of CRS(X). For q ∈ P , we define
α(q) = Card{a ∈ A | qa ∈ P ∪ CRS(X)} − 1. For P ′ ⊂ P , we set α(P ′) =
∑

p∈P ′ α(p).
Since CRS(X) is a finite prefix code, we have, by a well-known property of

trees, Card(CRS(X)) ≤ 1 + α(P ) with equality if CRS(X) is nonempty (that
is, if S is recurrent).

Let P ′ be the set of words in P which are proper prefixes of X and let Y =
P \P ′. Since P ′ is the set of proper prefixes of X , we have α(P ′) = Card(X)−1.

10



Since P ∪ CRS(X) ⊂ S, one has α(q) ≤ ρS(q) for any q ∈ P . Moreover, if
S is recurrent, and since X has empty kernel, any word of S with a prefix in X
is comparable for the prefix order with a word of CRS(X). This implies that
for any q ∈ Y and any b ∈ RS(q), one has qb ∈ P ∪ CRS(X). Consequently, we
have α(q) = ρS(q) for any q ∈ Y . Thus we have shown that

Card(CRS(X)) ≤ 1 + α(P ′) + ρ(Y ) ≤ Card(X) + ρ(Y )

with equality if S is recurrent. Let us show that Y is a suffix code which is
S-maximal if S is recurrent. This will imply our conclusion by Proposition 4.1.
Suppose that q, uq ∈ Y with u nonempty. Since q is in Y , it has a proper prefix
in X . But this implies that uq has an internal factor in X , a contradiction.
Thus Y is a suffix code. Assume next that S is recurrent. Consider w ∈ S.
Then, for any x ∈ X , there is some u ∈ S such that xuw ∈ S. Let y be the
shortest suffix of xuw which has a proper prefix in X . Then y ∈ Y . This shows
that Y is an S-maximal suffix code.

Since a recurrent set S is uniformly recurrent if and only if the set of return
words is finite (see, for example, [7, Proposition 4.2]), we have the following
consequence of Theorem 5.2.

Corollary 5.3 A recurrent neutral set is uniformly recurrent.

Proof. By Theorem 5.2, the set CRS(x) is finite for any x ∈ X .

Let S be a factorial set. A right return word to x in S is a word w such that
xw is a word of S which ends with x and has no internal factor equal to x (thus
xw is a complete first return word to x). We denote by RS(x) the set of right
return words to x in S. Since CRS(x) = xRS(x), the sets CRS(x) and RS(x)
have the same number of elements. Thus we have the following consequence of
Theorem 5.2.

Corollary 5.4 Let S be a uniformly recurrent neutral set. For any x ∈ S, the
set RS(x) has Card(A)− χ(S) + 1 elements.

Example 5.5 Consider again the neutral set S of Example 2.2. We have
RS(a) = {bca, bcda, cad}.

The following statement, which holds under fairly general hypotheses, shows
an interesting connection between complete return words to a bifix code and the
derived code (see Section 4). It explains the similarity between Formulae (4)
and (5) (with equality).

Proposition 5.6 Let S be a recurrent set. Let X be a finite S maximal bifix
code, let X ′ be the derived code of X and let K,K ′ be the kernels of X and X ′

respectively. Then
CRS(X

′ \K) = X \K. (6)

11



Proof. Let us first show the inclusion from right to left. Let x ∈ X \K. Then
x has a proper prefix in X ′ \ K, namely the shortest prefix of x which is not
an internal factor of X (see [2, Lemma 4.3.3]). Similarly, x has a proper suffix
which is in X ′\K. Moreover x cannot have an internal factor in X ′\K. Indeed,
by definition of X ′, the words in X ′ \ K are not internal factors of X . This
shows that x ∈ CRS(X

′ \K).
Conversely, consider x ∈ CRS(X

′ \K). Let P be the set of proper prefixes
of X . Let y (resp. z) be the proper prefix (resp. suffix) of x which is in X ′ \K.
Since x′ is in X ′, it is in P . We cannot have x ∈ P since otherwise z would be
in K. Thus x has a prefix yu in X . By the first part of the proof, yu has a suffix
in CRS(X

′ \ K, and thus x has an internal factor in X ′ \ K, a contradiction
unless x = yu. Thus x ∈ X .

If S is assumed to be uniformly recurrent and neutral, Formulæ (4) and (5)
(with equality) show that both sides of Equation (6) have the same cardinality.
Thus the inclusion implies the equality.

Example 5.7 Let S and X be as in Example 4.3. We have K = {c} and

X \K = {ab, acd, bca, bcd, da} = CRS({a, b, d})

in agreement with Proposition 5.6.

6. Bifix decoding

In this section we show some closure properties for the families of neutral
and tree sets.

Let S be a factorial set and let X be a finite S-maximal bifix code. A coding
morphism for X is a morphism f : B∗ → A∗ which maps bijectively an alphabet
B onto X . The set f−1(S) is called a maximal bifix decoding of S.

Theorem 6.1 Any maximal bifix decoding of a recurrent neutral set is a neutral
set with the same characteristic.

Let S be a factorial set. For two sets of words X,Y and a word w ∈ S, we
set LX

S (w) = {x ∈ X | xw ∈ S}, RY
S (w) = {y ∈ Y | wy ∈ S}, EX,Y

S (w) =
{(x, y) ∈ X × Y | xwy ∈ S}, and furthermore

eX,Y
S (w) = Card(EX,Y

S (w)), ℓXS (w) = Card(LX
S (w)), rYS (w) = Card(RY

S (w)).

Finally, for a word w, we define mX,Y
S (w) = eX,Y

S (w)− ℓXS (w)−rYS (w)+1. Note

that EA,A
S (w) = ES(w), m

A,A
S (w) = mS(w), and so on.

Proposition 6.2 Let S be a neutral set, let X be a finite S-maximal suffix code
and let Y be a finite S-maximal prefix code. Then mX,Y

S (w) = mS(w) for every
w ∈ S.

12



Proof. We use an induction on the sum of the lengths of the words in X and in
Y .

If X,Y contain only words of length 1, since X (resp. Y ) is an S-maximal
suffix (resp. prefix) code, we have X = Y = A and there is nothing to prove.

Assume next that one of them, say Y , contains words of length at least 2.
Let p be a nonempty proper prefix of Y of maximal length. Set Y ′ = (Y \pA)∪p.
If wp /∈ S, then mX,Y (w) = mX,Y ′

(w) and the conclusion follows by induction
hypothesis. Thus we may assume that wp ∈ S. Then

mX,Y (w)−mX,Y ′

(w) = eX,A(wp) − ℓX(wp) − rA(wp) + 1 = mX,A(wp).

By induction hypothesis, we havemX,Y ′

(w) = m(w) andmX,A(wp) = 0, whence
the conclusion.

Proof of Theorem 6.1. Let S be a recurrent neutral set and let f : B∗ → A∗ be
a coding morphism for a finite S-maximal bifix code X . Set U = f−1(S). Let

v ∈ U \ {ε} and let w = f(v). Then mU (v) = mX,X
S (w). Since S is recurrent,

X is an S-maximal suffix code and prefix code. Thus, by Proposition 6.2,
mU (v) = mS(w), which implies our conclusion.

The following example shows that the maximal decoding of a uniformly
recurrent neutral set need not be recurrent.

Example 6.3 Let S be the set of factors of the infinite word (ab)ω . The set
X = {ab, ba} is a bifix code of S-degree 2. Let f : u 7→ ab, v 7→ ba. The set
f−1(S) is the set of factors of uω ∪ vω and it is not recurrent.

An interesting corollary of Theorem 6.1 is the following.

Corollary 6.4 Any maximal bifix decoding of a recurrent tree set is a tree set
with the same characteristic.

Proof. Let S be a recurrent tree set of characteristic c and let f : B∗ → A∗

be a coding morphism for a finite S-maximal bifix code X . By definition S
is acyclic. By [4, Theorem 3.11], the set U = f−1(S) is also acyclic. From

Proposition 6.2, we have that mU (f
−1(w)) = mX,X

S (w) = mS(w) for every
w ∈ S. Thus mU (u) = 0 for every nonempty word u and mU (ε) = χ(S). By
an elementary result of graph theory it follows that EU (u) is a tree for every
nonempty u ∈ U and EU (ε) is a forest of χ(S) trees. Hence U is a tree set of
characteristic χ(U) = χ(S).

7. Modular codes

For some special bifix code, we can give a more precise description of the
bifix decoding.
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Let S be a tree set of characteristic c. Since S is biextendable, any letter
a ∈ A occurs exactly twice as a vertex of E(ε), one as an element of L(ε) and
one as an element of R(ε).

Denote by T0, . . .Tc−1 the c trees such that E(ε) = T0∪· · ·∪Tc−1. We define
the modular weight of a letter a as ‖a‖ = j − i (mod c), where Ti is the tree
containing a as a left extension and Tj the tree containing a as a right extension.

Given a word w = a0a1 · · · am, we define the modular weight of w as ‖w‖ =
∑m

k=0 ‖ak‖ (mod c).
Note that the modular weight of a word depends on the choice of the order

for the trees Ti.
The set of words having modular weight equal to zero has the form X∗ ∩ S

for some special bifix code X ⊂ S called the modular code. The set X is the set
of words having modular weight 0 such that all nonempty prefixes (or suffixes)
have positive modular weight. It is easy to see that X is actually a S-maximal
bifix code.

Another way to define the modular code is by using the modular graph. This
graph is defined as the directed graph G with vertices 0, 1, . . . , c − 1 and edges
all triples (i, a, j) for 0 ≤ i, j ≤ c− 1 and a ∈ A such that (1⊗ b, a⊗ 1) ∈ Ti and
(1⊗ a, c⊗ 1) ∈ Tj for some b, c ∈ A. Observe that for every letter a ∈ A there is
exactly one edge labeled a because a appears exactly one as a left (resp. right)
vertex in E(ε).

Note that, when S is a tree set of characteristic c obtained by a multiplying
map using a transducer A, the modular graph of S is the output automaton of
A.

Example 7.1 Let S be the tree set of characteristic 2 of Example 3.2. The
modular graph of S is represented in Figure 4. It is the output automaton of
the 2-multiplying transducer of Figure 2.

0 1d

a

c
b

Figure 4: The modular graph.

The following is a generalization of [8, Proposition 4.5].

Proposition 7.2 Let S be a tree set of characteristic c and let G be its modular
graph. Let Si,j be the set of words in S which are the label of a path from i to
j in the graph G.
(1) The family (Si,j \ {ε})0≤i,j≤c−1 is a partition of S \ {ε}.
(2) For u ∈ Si,j \ {ε} and v ∈ Sk,ℓ \ {ε}, if uv ∈ S, then j = k.

(3) ‖w‖ = 0 if and only if w ∈ Sk,k for some 0 ≤ k ≤ c− 1.

Proof. We first note that for a, b ∈ A such that ab ∈ S, there is a path in G
labeled ab. Since (a, b) ∈ E(ε), there is a k such that (1⊗ a, b⊗ 1) ∈ Tk. Then
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we have a ∈ Si,k and b ∈ Sk,j for some 0 ≤ i, j ≤ c− 1}. This shows that ab is
the label of a path from i to j in G.

Let us prove by induction on the length of a nonempty word w ∈ S that
there exists a unique pair i, j such that w ∈ Si,j . The property is true for a
letter, by definition of the extension graph E(ε) and for words of length 2 by
the above argument. Let next w = ax be in S with a ∈ A and x nonempty.
By induction hypothesis, there is a unique pair (k, j) such that x ∈ Sk,j . Let b
be the first letter of x. Then the edge of G with label b starts in k. Since ab is
the label of a path, we have a ∈ Si,k for some i and thus ax ∈ Si,j . The other
assertions follow easily.

Note that point (3) of Proposition 7.2 says that the modular code does not
depend on the choice of the order of the states in the modular graph (or of the
trees Ti in E(ε)).

The following theorem improves Corollary 6.4 in the case of a bifix decoding
by the modular code. The same result is proved in [8, Theorem 4.6] for uniformly
recurrent tree sets of characteristic 1 (recall that by Corollary 5.3 a recurrent
tree set is uniformly recurrent).

Theorem 7.3 The decoding of a recurrent tree set S of characteristic c by
the modular code is a union of c recurrent tree sets of characteristic 1. More
precisely, if f is the coding morphism for the modular code, then f−1(S0,0),
f−1(S1,1), . . . , f

−1(Sc−1,c−1) are recurrent tree sets of characteristic 1.

Proof. Let us define Tk = f−1(Sk,k) for every 0 ≤ k ≤ c − 1. Fixed a k, we
show that Tk is a recurrent tree set of characteristic 1.

First, it is easy to verify that Tk is biextendable.
Next, since S is recurrent, for every u, v ∈ Sk,k ⊂ S there exists a w ∈ S

such that uwv ∈ S. From point (2) of Proposition 7.2 follows that w ∈ Sk,k.
Thus Tk is recurrent.

Let now X be the modular code and set Xk = X ∩ Sk,k. In order to prove

that Tk is a tree set it is enough to show that ESk,k
(w) = EXk,Xk

S (w) is a tree

for any w ∈ Sk,k. Note first that ESk,k
(w) = EX,X

S (w) for any w ∈ Sk,k \ {ε}.
Indeed, for w ∈ Sk,k and x, y ∈ X such that xwy ∈ S, one has x, y ∈ Xk and
thus xwy ∈ Sk,k.

According to Proposition [4, Proposition 3.9], the graph EX,X
S (w) is a tree

for any word w ∈ S \ {ε} , whence the result.

Next, let us show that the graph EXk,Xk

S (ε) is also a tree. First, since a tree

set is acyclic, the graph EX,X
S (ε) is acyclic by Proposition [4, Proposition 3.7]

and so is its subgraph EXk,Xk

S .

Let us prove that for every x, y ∈ Sk,k there is a path in EXk,Xk

S (ε) from x
to y.

If x, y ∈ A, then there is a path from x to y in E(ε) and thus a there is a

path from x to y in EXk,Xk

S (ε) obtained by replacing an edge (a, b) ∈ A× A of
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the path by an edge (z, t) in XXk,Xk

S ×XXk,Xk

S such that z ends with a and t
begins with b.

Otherwise, assume for example that y = au with u nonempty. Set Y = {v ∈
S | av ∈ Xk}. Since Y is an a−1S-maximal prefix code, by [4, Proposition 3.9],

the graph EXk,Y
S (a) is a tree. Since u ∈ Y , there is a path in EXk,Y

S (a) from x to

u. This implies that there is a path from x to y in EXk,Xk

S (ε). Thus EXk,Xk

S (ε)
is connected.

8. Interval exchanges

In this section we define interval exchange sets and we show that they are
tree sets.

Let I =]ℓ, r[ be a nonempty open interval of the real line and A a finite
ordered alphabet. For two intervals ∆,Γ, we write ∆ < Γ if x < y for any
x ∈ ∆ and y ∈ Γ. A partition (Ia)a∈A of I (minus Card(A)− 1 points) in open
intervals is ordered if a < b implies Ia < Ib.

We consider now two total orders<1 and <2 on A and two partitions (Ia)a∈A

and (Ja)a∈A of I in open intervals ordered respectively by <1 and <2 and such
that for every a, Ia and Ja have the same length λa. Let γa =

∑

b<1a
λb and

δa =
∑

b<2a
λa.

An interval exchange transformation (with flips) relative to (Ia)a∈A and
(Ja)a∈A is a map T : I → I such that for every a ∈ A, its restriction to Ia is
either a translation or a symmetry from Ia to Ja (see for example [5] and [16]
for interval exchanges with flips).

Observe that γa is the left boundary of Ia and that δa is the left boundary
of Ja. If Card(A) = s, we say that T is an s-interval exchange transformation.

Example 8.1 Let A = {a, b, c}. Consider the rotation of angle α with α ir-
rational as a 3-transformation relative to the partition (Ia)a∈A of the interval
]0, 1[, where Ia =]0, 1−2α[, Ib =]1−2α, 1−α[ and Ic =]1−α, 1[, while Jc =]0, α[,
Ja =]α, 1 − α[ and Jb =]1 − α, 1[ (see Figure 5). Then, for each letter a, the
restriction to Ia is a translation to Ja. Note that one has a <1 b <1 c and
c <2 a <2 b.

0 1− 2α 1− α 1

a b c

0 α 1− α 1

c a b
Figure 5: A 3-interval exchange transformation.

For a word w = b0b1 · · · bm let Iw be the set

Iw = Ib0 ∩ T−1 (Ib1) ∩ · · · ∩ T−m (Ibm) .
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Set Jw = T |w| (Iw). We set by convention Iε = Jε =]ℓ, r[. Note that each Iw is
an open interval and so is each Jw (see [5]).

Let T be an interval exchange transformation on I =]ℓ, r[. For a given z ∈ I,
the natural coding of T relative to z is the infinite word ΣT (z) = a0a1 · · · on
the alphabet A defined by an = a if T n(z) ∈ Ia. We denote by L(T ) the set
of factors of the natural codings of T . We also say that L(T ) is the natural
coding of T or the interval exchange set arising from T . Note that, for every
w ∈ L(T ), the interval Iw is the set of points z such that ΣT (z) starts with w,
while the interval Jw is the set of points z such that ΣT

(

T−|w|(z)
)

starts with
w. Moreover, it is easy to prove that a word u is in L(T ) if and only if Iu 6= ∅
(and thus if and only if Ju 6= ∅).

Example 8.2 Let T be the interval exchange transformation of Example 8.1.
The first element of L(T ) are represented in Figure 6 (right-special words are
colored).

a
b

c

b

c

a

b

c

a

b

b

c
Figure 6: The words of length ≤ 3 of L(T ).

A connection of an interval exchange transformation T is a triple (x, y, n)
where x is a singularity of T−1, y is a singularity of T , n ≥ 0 and T n(x) = y.
We also say that (x, y, n) is a connection of length n ending in y. When n = 0,
we say that x = y is a connection.

Interval exchange transformations without connections, also called regu-
lar interval exchange transformations, are well studied (see, for example, [15]
and [5]).

Example 8.3 Let T be the transformation of Example 8.1. The point γc is
a connection of length 0. This connection is represented with a dotted line in
Figure 5.

Let T be an interval exchange transformation with exactly c connections all
of length 0. Denote by γk0

= ℓ and γk1
, . . . , γkc

the c connections of T . For
every 0 ≤ i < c the interval ]γki

, γki+1
[ is called a component of I.

Example 8.4 Consider again the transformation T of Example 8.1. The two
components of ]0, 1[ are the two intervals ]0, 1− α[ and ]1− α, 1[.

In the next statement we generalize a result of [4] and show that the natural
coding of an interval exchange is acyclic. This result generalizes the correspond-
ing result for regular interval exchange (see [4]).
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Theorem 8.5 Let T be an interval exchange transformation with exactly c con-
nections, all of length 0. Then L(T ) is a tree set of characteristic c+ 1.

In order to prove Theorem 8.5 we need some preliminary result.

Lemma 8.6 Let T be an interval exchange transformation. For every nonempty
word w and letter a ∈ A, one has

(i) a ∈ L(w) ⇐⇒ Iw ∩ Ja 6= ∅,
(ii) a ∈ R(w) ⇐⇒ Ia ∩ Jw 6= ∅.

Proof. A letter a is in the set L(w) if and only if aw ∈ L(T ). As we have seen
before, this is equivalent to Jaw 6= ∅. One has Jaw = T (Iaw) = T (Ia) ∩ Iw =
Ja ∩ Iw, whence point (i). Point (ii) is proved symmetrically.

We say that a path in a graph is reduced if it does not use twice consecutively
the same edge.

Lemma 8.7 Let T be an interval exchange transformation over I without con-
nection of length ≥ 1. Let w ∈ L(T ) and a, b ∈ L(w) (resp. a, b ∈ R(w)). Then
1⊗ a, 1⊗ b (resp. a⊗ 1, b⊗ 1) are in the same connected component of E(w) if
and only if Ja, Jb (resp. Ia, Ib) are in the same component of I.

Proof. Let a ∈ L(w). Since the set L(T ) is biextendable, there exists a letter c
such that (1⊗a, c⊗1) ∈ E(w). Using the same reasoning as that in Lemma 8.6,
one has Ja ∩ Iwc 6= ∅. Since Iwc ⊂ Iw, one has in particular Ja ∩ Iw 6= ∅. This
proves that Ja and Iw belong to the same component of I for every a ∈ L(w).

Conversely, suppose that a, b ∈ L(w) are such that Ja and Jb belong to the
same component of I. We may assume that a <2 b. Then, there is a reduced
path (1 ⊗ a1, b1 ⊗ 1, . . . , bn−1 ⊗ 1, 1 ⊗ an) in E(w) (see Figure 7) with a = a1,
b = an, a1 <2 · · · <2 an and wb1 <1 · · · <1 wbn1

. Indeed, by hypothesis,
we have no connection of length ≥ 1. Thus, for every 1 ≤ i < n, one has
Jai

∩ Iwbi 6= ∅ and Jai+1
∩ Iwbi 6= ∅. Therefore, a and b are in the same

connected component of E(w).
The symmetrical statement is proved similarly.

We can now prove the main result of this section.
Proof of Theorem 8.5. Let us first prove that for any w ∈ L(T ), the graph E(w)
is acyclic. Assume that (1 ⊗ a1, b1 ⊗ 1, . . . , 1 ⊗ an, bn ⊗ 1) is a reduced path in
E(w) with a1, . . . , an ∈ L(w) and b1, . . . , bn ∈ R(w). Suppose that n ≥ 2 and
that a1 <2 a2. Then one has a1 <2 · · · <2 an and wb1 <1 · · · <1 wbn (see
Figure 7). Thus one cannot have an edge (a1, bn) in the graph E(w).

Let us now prove that the extension graph of the empty word is a union of
c + 1 trees. Let a, b ∈ A. If Ja and Jb are in the same component of I, then
1⊗ a, 1⊗ b are in the same connected component of E(ε) by Lemma 8.7. Thus
E(ε) is a union of c+ 1 trees.
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· · ·

Iwb1 Iwb2
Iwbn−1 Iwbn

Ja1
Ja2

Jan−1
Jan

Figure 7: A path from a1 to an in E(w).

Finally, if w ∈ L(T ) is a nonempty word and a, b ∈ L(w), then Ja and Jb are
in the same component of I, by Lemma 8.6, and thus a and b are in the same
connected component of E(w) by Lemma 8.7. Thus E(w) is a tree.

Example 8.8 Let T be the interval exchange transformation of Example 8.1.
L(T ) is a tree set of characteristic 2. In Figure 8 are represented the extension
graphs of the empty word (left) and of the letters a (center) and b (right).

E(ε)

1⊗ a

1⊗ c

b⊗ 1

a⊗ 1

1⊗ b c⊗ 1

E(a)

1⊗ a b⊗ 1

E(b)

1⊗ a

1⊗ c

c⊗ 1

Figure 8: Some extension graphs.

9. Linear involutions

In this section, we define linear involutions, which are a generalization of
interval exchange transformations (see also [9]).

We consider two copies I × {0} and I × {1} of an open interval I of the
real line and set Î = I × {0, 1}. We call the sets I × {0} and I × {1} the two
components of Î. We consider each component as an open interval.

A generalized permutation on A of type (ℓ,m), with ℓ+m = k, is a bijection
π : {1, 2, . . . , k} → A. We represent it by a two line array

π =

(

π(1) π(2) . . . π(ℓ)
π(ℓ + 1) . . . π(ℓ+m)

)

A length data associated with (ℓ,m, π) is a nonnegative vector λ ∈ RA
+ = Rk

+

such that

λπ(1) + . . .+ λπ(ℓ) = λπ(ℓ+1) + . . .+ λπ(2k) and λa = λa−1 for all a ∈ A.

We consider a partition of I × {0} (minus ℓ − 1 points) in ℓ open intervals
Iπ(1), . . . , Iπ(ℓ) of lengths λπ(1), . . . , λπ(ℓ) and a partition of I×{1} (minus m−1
points) in m open intervals Iπ(ℓ+1), . . . , Iπ(ℓ+m) of lengths λπ(ℓ+1), . . . , λπ(ℓ+m).
Let Σ be the set of k − 2 division points separating the intervals Ia for a ∈ A.

The linear involution on I relative to these data is the map T = σ2 ◦ σ1

defined on the set Î \Σ, formed of Î minus the k− 2 division points, and which
is the composition of two involutions defined as follows.
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(i) The first involution σ1 is defined on Î \ Σ. It is such that for each a ∈
A ∪ A−1, its restriction to Ia is either a translation or a symmetry from
Ia onto Ia−1 .

(ii) The second involution exchanges the two components of Î. It is defined
for (x, δ) ∈ Î by σ2(x, δ) = (x, 1 − δ). The image of z by σ2 is called the
mirror image of z.

We also say that T is a linear involution on I and relative to the alphabet A
or that it is a k-linear involution to express the fact that the alphabet A has k
elements.

Example 9.1 Let A = {a, b, c, d, a−1, b−1, c−1, d−1} and

π =

(

a b a−1 c
c−1 d−1 b−1 d

)

Let T be the 8-linear involution corresponding to the length data represented
in Figure 10 (we represent I ×{0} above I ×{1}) with the assumption that the
restriction of σ1 to Ia and Id is a symmetry while its restriction to Ib, Ic is a
translation. We indicate on the figure the effect of the transformation T on a

I × {0}

I × {1}

z

T (z)T 2(z)

a b a−1 c

c−1 d−1 b−1 d

Figure 9: A linear involution.

point z located in the left part of the interval Ia. The point σ1(z) is located
in the right part of Ia−1 and the point T (z) = σ2σ1(z) is just below on the left
of Ib−1 . Next, the point σ1T (z) is located on the left part of Ib and the point
T 2(z) just below.

The notion of linear involution is an extension of the notion of interval ex-
change transformation in the following sense. Assume that ℓ = k and that
A = {π(1), . . . , π(k)}.

Then, the restriction of T to I × {0} is an interval exchange (and so is its
restriction to I × {1} which is the inverse of the first one). Thus, in this case,
T is a pair of mutually inverse interval exchange transformations.

A linear involution T is a bijection from Î \ Σ onto Î \ σ2(Σ). Since σ1, σ2

are involutions and T = σ2 ◦ σ1, the inverse of T is T−1 = σ1 ◦ σ2.
The set Σ of division points is also the set of singular points of T and their

mirror images are the singular points of T−1. Note that these singular points z
may be ‘false’ singularities, in the sense that T can have a continuous extension
to an open neighborhood of z.

As for interval exchanges, we define a connection of a linear involution T as
a triple (x, y, n) such that x is a singularity of T−1, y is a singularity of T , n ≥ 0
and T n(x) = y.
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Example 9.2 Let us consider the linear involution T which is the same as in
Example 9.1, but such that the restriction of σ1 to Ic is a symmetry. We assume
that I =]0, 1[, that λa = λd. Let x = (1− λd, 0) and y = (λa, 0).

Then x is a singularity of T−1 (σ2(x) is the left endpoint of Id), y is a
singularity of T (it is the right endpoint of Ia) and T (x) = y. Thus (x, 1, y) is
a connection (see Figure ??).

xy

a b a−1 c

c−1 d−1 b−1 d

Figure 10: A linear involution.

Example 9.3 Let T be the linear involution on I =]0, 1[ represented in Fig-
ure 11. We assume that the restriction of σ1 to Ia is a translation whereas the
restriction to Ib and Ic is a symmetry. We choose (3 −

√
5)/2 for the length of

the interval Ic (or Ib). With this choice, T has no connection.

a b b−1

c c−1 a−1

Figure 11: A linear involution on A = {a, b, c}.

Let T be a linear involution without connection. Let

O =
⋃

n≥0

T−n(Σ) and Ô = O ∪ σ2(O) (7)

be respectively the negative orbit of the singular points and its closure under
mirror image. Then T is a bijection from Î \ Ô onto itself. Indeed, assume
that T (z) ∈ Ô. If T (z) ∈ O then z ∈ O. Next if T (z) ∈ σ2(O), then T (z) ∈
σ2(T

−n(Σ)) = T n(σ2(Σ)) for some n ≥ 0. We cannot have n = 0 since σ2(Σ)
is not in the image of T . Thus z ∈ T n−1(σ2(Σ)) = σ2(T

−n+1(Σ)) ⊂ σ2(O).
Therefore in both cases z ∈ Ô. The converse implication is proved in the same
way.

Let T be a linear involution on I, let Î = I × {0, 1} and let Ô be the set
defined by Equation (7).

Given z ∈ Î \ Ô, the infinite natural coding of T relative to z is the infinite
word ΣT (z) = a0a1 . . . on the alphabet A defined by

an = a if T n(z) ∈ Ia.
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We first observe that the infinite word ΣT (z) is reduced, that is, there is no
factor of the form aa−1 or a−1a for a ∈ A. Indeed, assume that an = a and
an+1 = a−1 with a ∈ A. Set x = T n(z) and y = T (x) = T n+1(z). Then
x ∈ Ia and y ∈ Ia−1 . But y = σ2(u) with u = σ1(x). Since x ∈ Ia, we have
u ∈ Ia−1 . This implies that y = σ2(u) and u belong to the same component of
Î, a contradiction.

We denote by L(T ) the set of factors of the infinite natural codings of T .
We say that L(T ) is the natural coding of T .

Example 9.4 Let T be the linear involution of Example 9.3. The words of
length at most 3 of S = L(T ) are represented in Figure 12.

a

b

b−1

b−1

c−1

a−1

c

c−1

c

c−1

c

a

b

a
b

a−1

c

c−1

c

b

b−1

a

b

b

b−1

a−1

c−1

c−1

b−1

a−1

Figure 12: The words of length at most 3 of S.

The following theorem is proved in a similar way as Theorem 8.5.

Theorem 9.5 The natural coding of a linear involution without connection is
a tree set set of characteristic 2.

In order to prove Theorem 9.5 we need some preliminary results. The fol-
lowing one is proved in the same way as Lemma 8.6 (see also Figure 13).

Lemma 9.6 Let T be a linear involution. For every nonempty word w and
letter a ∈ A, one has

(i) a ∈ L(w) ⇔ σ2(Ia−1 ) ∩ Iw 6= ∅,
(ii) a ∈ R(w) ⇔ σ2(Ia) ∩ Iw−1 6= ∅.

Proof. By [9, Lemma 5.2], we have a ∈ L(w) if and only if Iaw 6= ∅ which is
also equivalent to T (Iaw) 6= ∅. As for interval exchanges, one has T (Iaw) =
T (Ia) ∩ Iw. Since T = σ2 ◦ σ1 and since σ1(Ia) = Ia−1 , a ∈ L(w) if and only
if σ2(Ia−1 ) ∩ Iw 6= ∅. Next, since L(T ) is closed under taking inverses (see [9,
Proposition 5.3]), aw ∈ S if and only if w−1a−1 ∈ S. Thus a ∈ R(w) if and
only if a−1 ∈ L(w−1), whence the second equivalence.

22



w

a−1

w−1

a

Figure 13: An illustration of a ∈ L(w) and a ∈ R(w).

For two subsets I, J of the real line, we write I < J if x < y for any x ∈ I
and y ∈ J .

Given a linear involution T on I, we introduce two orders on L(T ) as follows.
For any u, v ∈ L(T ), one has

(i) u <R v if and only if Iu < Iv,

(ii) u <L v if and only if Iu−1 < Iv−1 .

The following lemma is proved in the same way as Lemma 8.7.

Lemma 9.7 Let T be a linear involutions on I without connection. Let w ∈
L(T ) and a, a′ ∈ L(w) (resp. b, b′ ∈ R(w)). Then 1⊗a, 1⊗a′ (resp. b⊗1, b′⊗1)
are in the same connected component of E(w) if and only if Ia−1 , Ia′−1 (resp.
Ib, Ib′) are in the same component of I.

Proof. If (1⊗a, b⊗1) ∈ E(w), then σ2(Ia−1 )∩Iwb 6= ∅. Thus Ia−1 and Iwb belong
to distinct components of Î. Consequently, if a, a′ ∈ L(w) (resp. R(w)) belong
to the same connected component of E(w), then Ia−1 , Ia′−1 (resp. Iwa, Iwa′)
belong to the same component of Î.

Conversely, let a, a′ ∈ L(w) be such that a, a′ belong to the same component
of Î. We may assume that a <L a′. There is a reduced path (i.e., it does not use
twice consecutively the same edge) in E(w) from a to a′ which is the sequence
a1, b1, . . . , bn−1, an with a1 = a and an = a′ with a1 <L a2 <L · · · <L an,
wb1 <R wb2 <R · · · <R wbn−1 and σ2(Ia−1

i
) ∩ Iwbi 6= ∅, σ2(Ia−1

i+1

) ∩ Iwbi 6= ∅ for

1 ≤ i ≤ n− 1 (see Figure 14 for an illustration).
Note that the hypothesis that T is without connection is needed since oth-

erwise the right boundary of σ2(Ia−1

i
) could be the left boundary of Iwbi .

The assertion concerning b, b′ ∈ R(w) is a consequence of the first one since
b, b′ ∈ R(w) if and only if b−1, b′−1 ∈ L(w−1) (see [9, Proposition 5.3]).

wb1 wb2 wbn−1

a−1
1 a−1

2 a−1
n−1 a−1

n

Figure 14: A path from a1 to an in E(w).

We can now prove the main result of this section.
Proof.[of Theorem 9.5] Let T be a linear involution on I without connection
and let S = L(T ). Let us first prove that for any w ∈ L(T ), the graph E(w)
is acyclic. Assume that (1 ⊗ a1, b1 ⊗ 1, . . . , 1 ⊗ an, bn ⊗ 1) is a path in E(w)
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with a1, . . . , an ∈ L(w) and b1, . . . , bn ∈ R(w). We may assume that the path
is reduced, that n ≥ 2 and also that a1 <L a2. It follows that a1 <L . . . <L an
and wb1 <R . . . <R wbn (see Figure 14). Thus it is not possible to have an edge
(a1, bn), which shows that E(w) is acyclic.

Let a, a′ ∈ A. If Ia−1 and Ia′−1 are in the same component of Î, then
1⊗a, 1⊗a′ are in the same connected component of E(ε). Thus E(ε) is a union
of two trees with 2Card(A) vertices.

If w ∈ S is nonempty and 1 ⊗ a, 1 ⊗ a′ ∈ L(w), then Ia−1 and Ia′−1 are in
the same component of Î (by Lemma 9.6), and thus 1⊗a, 1⊗a′ are in the same
connected component of E(w). Thus E(w) is a tree.

Example 9.8 Let T be the linear involution of Example 9.4. L(T ) is a tree
set of characteristic 2 over the alphabet {a, b, c, a−1, b−1, c−1}. In Figure 15
are represented the extension graphs of the empty word (left) and of letters a
(center) and c−1 (right) (where we note ā instead of a−1).

E(ε)

1⊗ a

1⊗ c

1⊗ c̄

b̄⊗ 1

b⊗ 1

a⊗ 1

1⊗ ā

1⊗ b̄

1⊗ b

c⊗ 1

c̄⊗ 1

ā⊗ 1

E(a)

1⊗ c̄ b̄ ⊗ 1

E(c̄)

1⊗ b

1⊗ b̄

a⊗ 1

b⊗ 1

Figure 15: Some extension graphs.
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