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Montréal

Abstract. We introduce specular sets. These are subsets of groups which
form a natural generalization of free groups. These sets are an abstract
generalization of the natural codings of interval exchanges and of linear
involutions. We prove several results concerning the subgroups generated
by return words and by maximal bifix codes in these sets.

1 Introduction

We have studied in a series of papers initiated in [3] the links between minimal
sets, subgroups of free groups and bifix codes. In this paper, we continue this
investigation in a situation which involves groups which are not free anymore.
These groups, named here specular, are free products of a free group and of a
finite number of cyclic groups of order two. These groups are close to free groups
and, in particular, the notion of a basis in such groups is clearly defined. It
follows from Kurosh’s theorem that any subgroup of a specular group is specular.
A specular set is a subset of such a group which generalizes the natural codings
of linear involutions studied in [9].

The main results of this paper are Theorem 5.1, referred to as the Return
Theorem and Theorem 5.2, referred to as the Finite Index Basis Theorem. The
first one asserts that the set of return words to a given word in a uniformly
recurrent specular set is a basis of a subgroup of index 2 called the even subgroup.
The second one characterizes the monoidal bases of subgroups of finite index of
specular groups contained in a specular set S as the finite S-maximal symmetric
bifix codes contained in S. This generalizes the analogous results proved initially
in [3] for Sturmian sets and extended in [7] to the class of tree sets (this class
contains both Sturmian sets and interval exchange sets).

There are two interesting features of the subject of this paper.
In the first place, some of the statements concerning the natural codings of

interval exchanges and of linear involutions can be proved using geometric meth-
ods, as shown in a separate paper [9]. This provides an interesting interpretation
of the groups playing a role in these natural codings (these groups are generated
either by return words or by maximal bifix codes) as fundamental groups of some
surfaces. The methods used here are purely combinatorial.

In the second place, the abstract notion of a specular set gives rise to groups
called here specular. These groups are natural generalizations of free groups, and



are free products of Z and Z/2Z. They are called free-like in [2] and appear at
several places in [12].

The idea of considering recurrent sets of reduced words invariant by taking
inverses is connected, as we shall see, with the notion of G-rich words of [18].

The paper is organized as follows. In Section 2, we recall some notions con-
cerning words, extension graphs and bifix codes. In Section 3, we introduce spec-
ular groups, which form a family with properties very close to free groups. We
prove properties of these groups extending those of free groups, like a Schreier’s
Formula (Formula (3.1)). In Section 4, we introduce specular sets. This family
contains the natural codings of linear involutions without connection studied
in [5]. We prove a result connecting specular sets with the family of tree sets
introduced in [6] (Theorem 4.6). In Section 5, we prove several results concern-
ing subgroups generated by subsets of specular groups. We first prove that the
set of return words to a given word forms a basis of the even subgroup (Theo-
rem 5.1 referred to as the Return Theorem). This is a subgroup defined in terms
of particular letters, called even letters, that play a special role with respect to
the extension graph of the empty word. We next prove the Finite Index Basis
Theorem (Theorem 5.2).
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2 Preliminaries

A set of words on the alphabet A and containing A is said to be factorial if it
contains the factors of its elements. An internal factor of a word x is a word v
such that x = uvw with u,w nonempty.

Let S be a set of words on the alphabet A. For w ∈ S, we denote LS(w) =
{a ∈ A | aw ∈ S}, RS(w) = {a ∈ A | wa ∈ S} and ES(w) = {(a, b) ∈ A × A |
awb ∈ S}. Further ℓS(w) = Card(LS(w)), rS(w) = Card(RS(w)), eS(w) =
Card(ES(w)). We omit the subscript S when it is clear from the context. A word
w is right-extendable if r(w) > 0, left-extendable if ℓ(w) > 0 and biextendable if
e(w) > 0. A factorial set S is called right-extendable (resp. left-extendable, resp.
biextendable) if every word in S is right-extendable (resp. left-extendable, resp.
biextendable).

A word w is called right-special if r(w) ≥ 2. It is called left-special if ℓ(w) ≥ 2.
It is called bispecial if it is both left-special and right-special.

For w ∈ S, we denote

mS(w) = eS(w) − ℓS(w)− rS(w) + 1.

The word w is called weak if mS(w) < 0, neutral if mS(w) = 0 and strong if
mS(w) > 0.

We say that a factorial set S is neutral if every nonempty word in S is
neutral. The characteristic of S is the integer 1 −mS(ε). Thus a neutral set of



characteristic 1 is such that all words (including the empty word) are neutral.
This is what is called a neutral set in [6].

A set of words S 6= {ε} is recurrent if it is factorial and if for any u,w ∈ S,
there is a v ∈ S such that uvw ∈ S. An infinite factorial set is said to be
uniformly recurrent if for any word u ∈ S there is an integer n ≥ 1 such that u
is a factor of any word of S of length n. A uniformly recurrent set is recurrent.

The factor complexity of a factorial set S of words on an alphabet A is the
sequence pn = Card(S ∩ An). Let sn = pn+1 − pn and bn = sn+1 − sn be
respectively the first and second order differences sequences of the sequence pn.

The following result is from [11] (see also [10], Theorem 4.5.4).

Proposition 2.1 Let S be a factorial set on the alphabet A. One has bn =∑
w∈S∩An m(w) and sn =

∑
w∈S∩An(r(w) − 1) for all n ≥ 0.

Let S be a biextendable set of words. For w ∈ S, we consider the set E(w)
as an undirected graph on the set of vertices which is the disjoint union of L(w)
and R(w) with edges the pairs (a, b) ∈ E(w). This graph is called the extension
graph of w. We sometimes denote 1⊗L(w) and R(w)⊗ 1 the copies of L(w) and
R(w) used to define the set of vertices of E(w).

If the extension graph E(w) is acyclic, then m(w) = 1 − c, where c is the
number of connected components of the graph E(w). Thus w is weak or neutral.

A biextendable set S is called acyclic if for every w ∈ S, the graph E(w)
is acyclic. A biextendable set S is called a tree set of characteristic c if for any
nonempty w ∈ S, the graph E(w) is a tree and if E(ε) is a union of c trees (the
definition of tree set in [6] corresponds to a tree set of characteristic 1). Note
that a tree set of characteristic c is a neutral set of characteristic c.

As an example, a Sturmian set is a tree set of characteristic 1 (by a Sturmian
set, we mean the set of factors of a strict episturmian word, see [3]).

Let S be a factorial set of words and x ∈ S. A return word to x in S is a
nonempty word u such that the word xu is in S and ends with x, but has no
internal factor equal to x. We denote by RS(x) the set of return words to x in
S. The set of complete return words to x ∈ S is the set xRS(x).

Bifix codes. A prefix code is a set of nonempty words which does not contain
any proper prefix of its elements. A suffix code is defined symmetrically. A bifix
code is a set which is both a prefix code and a suffix code (see [4] for a more
detailed introduction).

Let S be a recurrent set. A prefix (resp. bifix) code X ⊂ S is S-maximal
if it is not properly contained in a prefix (resp. bifix) code Y ⊂ S. Since S is
recurrent, a finite S-maximal bifix code is also an S-maximal prefix code (see [3],
Theorem 4.2.2). For example, for any n ≥ 1, the set X = S∩An is an S-maximal
bifix code.

Let X be a bifix code. Let Q be the set of words without any suffix in X and
let P be the set of words without any prefix in X . A parse of a word w with
respect to a bifix code X is a triple (q, x, p) ∈ Q ×X∗ × P such that w = qxp.
We denote by dX(w) the number of parses of a word w with respect to X . The



S-degree of X , denoted dX(S), is the maximal number of parses with respect to
X of a word of S. For example, the set X = S ∩ An has S-degree n.

Let S be a recurrent set and let X be a finite bifix code. By Theorem 4.2.8
in [3], X is S-maximal if and only if its S-degree is finite. Moreover, in this case,
a word w ∈ S is such that dX(w) < dX(S) if and only if it is an internal factor
of a word of X .

3 Specular groups

We consider an alphabet A with an involution θ : A → A, possibly with some
fixed points. We also consider the group Gθ generated by A with the relations
aθ(a) = 1 for every a ∈ A. Thus θ(a) = a−1 for a ∈ A. The set A is called a
natural set of generators of Gθ.

When θ has no fixed point, we can set A = B ∪ B−1 by choosing a set of
representatives of the orbits of θ for the set B. The group Gθ is then the free
group on B. In general, the group Gθ is a free product of a free group and a
finite number of copies of Z/2Z, that is, Gθ = Z

∗i ∗ (Z/2Z)∗j where i is the
number of orbits of θ with two elements and j the number of its fixed points.
Such a group will be called a specular group of type (i, j). These groups are
very close to free groups, as we will see. The integer Card(A) = 2i + j is called
the symmetric rank of the specular group Z

∗i ∗ (Z/2Z)∗j . Two specular groups
are isomorphic if and only if they have the same type. Indeed, the commutative
image of a group of type (i, j) is Zi × (Z/2Z)j and the uniqueness of i, j follows
from the fundamental theorem of finitely generated Abelian groups.

Example 3.1. Let A = {a, b, c, d} and let θ be the involution which exchanges
b, d and fixes a, c. Then Gθ = Z ∗ (Z/2Z)2 is a specular group of symmetric rank
4.

By Kurosh’s Theorem, any subgroup of a free product G1 ∗ G2 ∗ · · · ∗ Gn

is itself a free product of a free group and of groups conjugate to subgroups of
the Gi (see [17]). Thus, we have, replacing the Nielsen-Schreier Theorem of free
groups, the following result.

Theorem 3.1. Any subgroup of a specular group is specular.

It also follows from Kurosh’s theorem that the elements of order 2 in a specular
group Gθ are the conjugates of the j fixed points of θ and this number is thus
the number of conjugacy classes of elements of order 2.

A word on the alphabet A is θ-reduced (or simply reduced) if it has no factor
of the form aθ(a) for a ∈ A. It is clear that any element of a specular group is
represented by a unique reduced word.

A subset of a group G is called symmetric if it is closed under taking inverses.
A set X in a specular group G is called a monoidal basis of G if it is symmetric,
if the monoid that it generates is G and if any product x1x2 · · ·xm of elements
of X such that xkxk+1 6= 1 for 1 ≤ k ≤ m − 1 is distinct of 1. The alphabet
A is a monoidal basis of Gθ and the symmetric rank of a specular group is the



cardinality of any monoidal basis (two monoidal bases have the same cardinality
since the type is invariant by isomorphism).

If H is a subgroup of index n of a specular group G of symmetric rank r, the
symmetric rank s of H is

s = n(r − 2) + 2. (3.1)

This formula replaces Schreier’s Formula (which corresponds to the case j = 0).
It can be proved as follows. Let Q be a Schreier transversal for H , that is, a
set of reduced words which is a prefix-closed set of representatives of the right
cosets Hg of H . Let X be the corresponding Schreier basis, formed of the paq−1

for a ∈ A, p, q ∈ Q with pa 6∈ Q and pa ∈ Hq. The number of elements of X
is nr − 2(n − 1). Indeed, this is the number of pairs (p, a) ∈ Q × A minus the
2(n − 1) pairs (p, a) such that pa ∈ Q with pa reduced or pa ∈ Q with pa not
reduced. This gives Formula (3.1).

Any specular group G = Gθ has a free subgroup of index 2. Indeed, let H be
the subgroup formed of the reduced words of even length. It has clearly index 2.
It is free because it does not contain any element of order 2 (such an element is
conjugate to a fixed point of θ and thus is of odd length).

A group G is called residually finite if for every element g 6= 1 of G, there is
a morphism ϕ from G onto a finite group such that ϕ(g) 6= 1.

It follows easily by considering a free subgroup of index 2 of a specular group
that any specular group is residually finite. A group G is said to be Hopfian if
any surjective morphism from G onto G is also injective. By a result of Malcev,
any finitely generated residually finite group is Hopfian (see [16], p. 197). Thus
any specular group is Hopfian.

As a consequence, one has the following result, which can be obtained by
considering the commutative image of a specular group.

Proposition 3.2 Let G be a specular group of type (i, j) and let X ⊂ G be a
symmetric set with 2i+ j elements. If X generates G, it is a monoidal basis of
G.

4 Specular sets

We assume given an involution θ on the alphabet A generating the specular
group Gθ. A specular set on A is a biextendable symmetric set of θ-reduced
words on A which is a tree set of characteristic 2. Thus, in a specular set, the
extension graph of every nonempty word is a tree and the extension graph of
the empty word is a union of two disjoint trees.

The following is a very simple example of a specular set.

Example 4.1. Let A = {a, b} and let θ be the identity on A. Then the set of
factors of (ab)ω is a specular set (we denote by xω the word x infinitely repeated).

The following result shows in particular that in a specular set the two trees
forming E(ε) are isomorphic since they are exchanged by the bijection (a, b) 7→
(b−1, a−1).



Proposition 4.1 Let S be a specular set. Let T0, T1 be the two trees such that
E(ε) = T0 ∪ T1. For any a, b ∈ A and i = 0, 1, one has (1 ⊗ a, b⊗ 1) ∈ Ti if and
only if (1⊗ b−1, a−1 ⊗ 1) ∈ T1−i

Proof. Assume that (1 ⊗ a, b ⊗ 1) and (1 ⊗ b−1, a−1 ⊗ 1) are both in T0. Since
T0 is a tree, there is a path from 1 ⊗ a to a−1 ⊗ 1. We may assume that this
path is reduced, that is, does not use consecutively twice the same edge. Since
this path is of odd length, it has the form (u0, v0, u1, . . . , up, vp) with u0 =
1 ⊗ a and vp = a−1 ⊗ 1. Since S is symmetric, we also have a reduced path
(v−1

p , u−1
p , · · · , u−1

1 , v−1
0 , u−1

0 ) which is in T0 (for ui = 1 ⊗ ai, we denote u−1

i =

a−1

i ⊗ 1 and similarly for v−1

i ). Since v−1
p = u0, these two paths have the same

origin and end. But if a path of odd length is its own inverse, its central edge
has the form (x, y) with x = y−1 a contradiction with the fact that the words
of S are reduced. Thus the two paths are distinct. This implies that E(ε) has a
cycle, a contradiction.

The next result follows easily from Proposition 2.1.

Proposition 4.2 The factor complexity of a specular set on the alphabet A is
pn = n(k − 2) + 2 for n ≥ 1 with k = Card(A).

Doubling maps. We now introduce a construction which allows one to build
specular sets.

A transducer is a graph on a set Q of vertices with edges labeled in Σ × A.
The set Q is called the set of states, the set Σ is called the input alphabet and
A is called the output alphabet. The graph obtained by erasing the ouput letters
is called the input automaton (with an unspecified initial state). Similarly, the
ouput automaton is obtained by erasing the input letters.

Let A be a transducer with set of states Q = {0, 1} on the input alphabet Σ
and the output alphabet A. We assume that

1. the input automaton is a group automaton, that is, every letter of Σ acts
on Q as a permutation,

2. the output labels of the edges are all distinct.

We define two maps δ0, δ1 : Σ∗ → A∗ corresponding to initial states 0 and 1
respectively. Thus δ0(u) = v (resp. δ1(u) = v) if the path starting at state 0
(resp. 1) with input label u has output label v. The pair δ = (δ0, δ1) is called a
doubling map on Σ ×A and the transducer A a doubling transducer. The image
of a set T on the alphabet Σ by the doubling map δ is the set S = δ0(T )∪δ1(T ).

If A is a doubling transducer, we define an involution θA as follows. For any
a ∈ A, let (i, α, a, j) be the edge with input label α and output label a. We define
θA(a) as the output label of the edge starting at 1− j with input label α. Thus,
θA(a) = δi(α) = a if i+ j = 1 and θA(a) = δ1−i(α) 6= a if i = j.

The reversal of a word w = a1a2 · · ·an is the word w̃ = an · · ·a2a1. A set S
of words is closed under reversal if w ∈ S implies w̃ ∈ S for every w ∈ S. As is
well known, any Sturmian set is closed under reversal (see [3]). The proof of the
following result can found in [5].



Proposition 4.3 For any tree set T of characteristic 1 on the alphabet Σ, closed
under reversal and for any doubling map δ, the image of T by δ is a specular set
relative to the involution θA.

We now give an example of a specular set obtained by a doubling map.

Example 4.2. Let Σ = {α, β} and let T be the Fibonacci set, which is the
Sturmian set formed of the factors of the fixed point of the morphism α 7→
αβ, β 7→ α. Let δ be the doubling map given by the transducer A of Figure 4.1
on the left.

0 1β | d

α | a

α | c

β | b

b

a

c

b

d

c

a

d

Fig. 4.1. A doubling transducer and the extension graph ES(ε).

Then θA is the involution θ of Example 3.1 and the image of T by δ is a
specular set S on the alphabet A = {a, b, c, d}. The graph ES(ε) is represented
in Figure 4.1 on the right.

Note that S is the set of factors of the fixed point gω(a) of the morphism
g : a 7→ abcab, b 7→ cda, c 7→ cdacd, d 7→ abc. The morphism g is obtained by
applying the doubling map to the cube f3 of the Fibonacci morphism f in such
a way that gω(a) = δ0(f

ω(α)).

Odd and even words. We introduce a notion which plays, as we shall see, an
important role in the study of specular sets. Let S be a specular set. Since a
specular set is biextendable, any letter a ∈ A occurs exactly twice as a vertex of
E(ε), one as an element of L(ε) and one as an element of R(ε). A letter a ∈ A
is said to be even if its two occurrences appear in the same tree. Otherwise, it
is said to be odd. Observe that if S is recurrent, there is at least one odd letter.

Example 4.3. Let S be the specular set of Example 4.2. The letters a, c are odd
and b, d are even.

A word w ∈ S is said to be even if it has an even number of odd letters. Otherwise
it is said to be odd. The set of even words has the form X∗ ∩ S where X ⊂ S is
a bifix code, called the even code. The set X is the set of even words without a
nonempty even prefix (or suffix).

Proposition 4.4 Let S be a recurrent specular set. The even code is an S-
maximal bifix code of S-degree 2.

Proof. Let us verify that any w ∈ S is comparable for the prefix order with
an element of the even code X . If w is even, it is in X∗. Otherwise, since S is
recurrent, there is a word u such that wuw ∈ S. If u is even, then wuw is even
and thus wuw ∈ X∗. Otherwise wu is even and thus wu ∈ X∗. This shows that



X is S-maximal. The fact that it has S-degree 2 follows from the fact that any
product of two odd letters is a word of X which is not an internal factor of X
and has two parses.

Example 4.4. Let S be the specular set of Example 4.2. The even code is X =
{abc, ac, b, ca, cda, d}.

Denote by T0, T1 the two trees such that E(ε) = T0 ∪ T1. We consider the
directed graph G with vertices 0, 1 and edges all the triples (i, a, j) for 0 ≤ i, j ≤ 1
and a ∈ A such that (1⊗ b, a⊗ 1) ∈ Ti and (1⊗ a, c⊗ 1) ∈ Tj for some b, c ∈ A.
The graph G is called the parity graph of S. Observe that for every letter a ∈ A
there is exactly one edge labeled a because a appears exactly once as a left (resp.
right) vertex in E(ε).

Note that, when S is a specular set obtained by a doubling map using a
transducer A, the parity graph of S is the output automaton of A.

Example 4.5. The parity graph of the specular set of Example 4.2 is the output
automaton of the doubling transducer of Figure 4.1.

The proof of the following result can be found in [5].

Proposition 4.5 Let S be a specular set and let G be its parity graph. Let Si,j

be the set of words in S which are the label of a path from i to j in the graph
G.

(1) The family (Si,j \ {ε})0≤i,j≤1 is a partition of S \ {ε}.
(2) For u ∈ Si,j \ {ε} and v ∈ Sk,ℓ \ {ε}, if uv ∈ S, then j = k.
(3) S0,0 ∪ S1,1 is the set of even words.
(4) S−1

i,j = S1−j,1−i.

A coding morphism for a prefix code X on the alphabet A is a morphism
f : B∗ → A∗ which maps bijectively B onto X . Let S be a recurrent set and let
f be a coding morphism for an S-maximal bifix code. The set f−1(S) is called
a maximal bifix decoding of S.

The following result is the counterpart for uniformly recurrent specular sets
of the main result of [8, Theorem 6.1] asserting that the family of uniformly
recurrent tree sets of characteristic 1 is closed under maximal bifix decoding.
The proof can be found in [5].

Theorem 4.6. The decoding of a uniformly recurrent specular set by the even
code is a union of two uniformly recurrent tree sets of characteristic 1.

Palindromes. The notion of palindromic complexity originates in [14] where it
is proved that a word of length n has at most n+ 1 palindrome factors. A word
of length n is full if it has n + 1 palindrome factors and a factorial set is full
(or rich) if all its elements are full. By a result of [15], a recurrent set S closed
under reversal is full if and only if every complete return word to a palindrome
in S is a palindrome. It is known that all Sturmian sets are full [14] and also



all natural codings of interval exchange defined by a symmetric permutation [1].
In [18], this notion was extended to that of H-fullness, where H is a finite group
of morphisms and antimorphisms of A∗ (an antimorphism is the composition
of a morphism and reversal) containing at least one antimorphism. As one of
the equivalent definitions of H-full, a set S closed under H is H-full if for every
x ∈ S, every complete return word to the H-orbit of x is fixed by a nontrivial
element ofH (a complete return word to a set X is a word of S which has exactly
two factors in X , one as a proper prefix and one as a proper suffix).

The following result connects these notions with ours. If δ is a doubling map,
we denote by H the group generated by the antimorphism u 7→ u−1 for u ∈ Gθ

and the morphism obtained by replacing each letter a ∈ A by τ(a) if there are
edges (i, b, a, j) and (1− i, b, τ(a), 1− j) in the doubling transducer. Actually, we
have H = Z/2Z × Z/2Z. The proof of the following result can be found in [5].
The fact that T is full generalizes the results of [14, 1].

Proposition 4.7 Let T be a recurrent tree set of characteristic 1 on the alphabet
Σ, closed under reversal and let S be the image of T under a doubling map. Then
T is full and S is H-full.

Example 4.6. Let S be the specular set of Example 4.2. Since it is a doubling
of the Fibonacci set (which is Sturmian and thus full), it is H-full with respect
to the group H generated by the map σ taking the inverse and the morphism
τ which exchanges a, c and b, d respectively. The H-orbit of x = a is the set
X = {a, c} and CRS(X) = {ac, abc, ca, cda}.

All four words are fixed by στ . As another example, consider x = ab. Then
X = {ab, bc, cd, da} and CRS(X) = {abc, bcab, bcd, cda, dab, dacd}. Each of them
is fixed by some nontrivial element of H .

5 Subgroup Theorems

In this section, we prove several results concerning the subgroups generated by
subsets of a specular set.

The Return Theorem. By [6, Theorem 4.5], the set of return words to a given
word in a uniformly recurrent tree set of characteristic 1 containing the alphabet
A is a basis of the free group on A. We will see a counterpart of this result for
uniformly recurrent specular sets.

Let S be a specular set. The even subgroup is the group generated by the
even code. It is a subgroup of index 2 of Gθ with symmetric rank 2(Card(A)−1)
by (3.1). Since no even word is its own inverse (see Proposition 4.5), it is a free
group. Thus its rank is Card(A)− 1. The proof can be found in [5].

Theorem 5.1. Let S be a uniformly recurrent specular set on the alphabet A.
For any w ∈ S, the set of return words to w is a basis of the even subgroup.

Note that this implies that Card(RS(x)) = Card(A)− 1.

Example 5.1. Let S be the specular set of Example 4.2. The set of return words
to a is RS(a) = {bca, bcda, cda}. It is a basis of the even subgroup.



Finite Index Basis Theorem. The following result is the counterpart for specular
sets of the result holding for uniformly recurrent tree sets of characteristic 1
(see [7, Theorem 4.4]). The proof can be found in [5].

Theorem 5.2. Let S be a uniformly recurrent specular set and let X ⊂ S be a
finite symmetric bifix code. Then X is an S-maximal bifix code of S-degree d if
and only if it is a monoidal basis of a subgroup of index d.

Note that when X is not symmetric, the index of the subgroup generated by
X may be different of dX(S).

Note also that Theorem 5.2 implies that for any uniformly recurrent specular
set and for any finite symmetric S-maximal bifix code X , one has Card(X) =
dX(S)(Card(A)−2)+2. This follows actually also (under more general hypothe-
ses) from Theorem 2 in [13].

The proof of the Finite Index Basis Theorem needs preliminary results which
involve concepts like that of incidence graph which are interesting in themselves.

Saturation Theorem. The incidence graph of a set X , is the undirected graph
GX defined as follows. Let P be the set of proper prefixes of X and let Q be the
set of its proper suffixes. Set P ′ = P \ {1} and Q′ = Q \ {1}. The set of vertices
of GX is the disjoint union of P ′ and Q′. The edges of GX are the pairs (p, q) for
p ∈ P ′ and q ∈ Q′ such that pq ∈ X . As for the extension graph, we sometimes
denote 1⊗P ′, Q′⊗ 1 the copies of P ′, Q′ used to define the set of vertices of GX .

Example 5.2. Let S be a factorial set and let X = S ∩ A2 be the bifix code
formed of the words of S of length 2. The incidence graph of X is identical with
the extension graph E(ε).

LetX be a symmetric set. We use the incidence graph to define an equivalence
relation γX on the set P of proper prefixes of X , called the coset equivalence of
X , as follows. It is the relation defined by p ≡ q mod γX if there is a path (of
even length) from 1⊗ p to 1⊗ q or a path (of odd length) from 1⊗ p to q−1 ⊗ 1
in the incidence graph GX . It is easy to verify that, since X is symmetric, γX is
indeed an equivalence. The class of the empty word ε is reduced to ε.

The following statement is the generalization to symmetric bifix codes of
Proposition 6.3.5 in [3]. We denote by 〈X〉 the subgroup generated by X .

Proposition 5.3 Let X be a symmetric bifix code and let P be the set of its
proper prefixes. Let γX be the coset equivalence of X and let H = 〈X〉. For any
p, q ∈ P , if p ≡ q mod γX , then Hp = Hq.

We now use the coset equivalence γX to define the coset automaton CX of a
symmetric bifix code X as follows. The vertices of CX are the equivalence classes
of γX . We denote by p̂ the class of p. There is an edge labeled a ∈ A from s to
t if for some p ∈ s and q ∈ t (that is s = p̂ and t = q̂), one of the following cases
occurs (see Figure 5.1):

(i) pa ∈ P and pa ≡ q mod γX



ε̂ p̂ p̂a
p a

(i)

p̂ ε̂
a

(ii)

Fig. 5.1. The edges of the coset automaton.

(ii) or pa ∈ X and q = ε.

The proof of the following statement can be found in [5].

Proposition 5.4 Let X be a symmetric bifix code, let P be its set of proper
prefixes and let H = 〈X〉. If for p, q ∈ P and a word w ∈ A∗ there is a path
labeled w from the class p̂ to the class q̂, then Hpw = Hq.

Let A be an alphabet with an involution θ. A directed graph with edges
labeled in A is called symmetric if there is an edge from p to q labeled a if and
only if there is an edge from q to p labeled a−1. If G is a symmetric graph and
v is a vertex of G, the set of reductions of the labels of paths from v to v is a
subgroup of Gθ called the subgroup described by G with respect to v.

A symmetric graph is called reversible if for every pair of edges of the form
(v, a, w), (v, a, w′), one has w = w′ (and the symmetric implication since the
graph is symmetric).

Proposition 5.5 Let S be a specular set and let X ⊂ S be a finite symmetric
bifix code. The coset automaton CX is reversible. Moreover the subgroup described
by CX with respect to the class of the empty word is the group generated by X.

Prime words with respect to a subgroup. Let H be a subgroup of the specular
group Gθ and let S be a specular set on A relative to θ. The set of prime words
in S with respect to H is the set of nonempty words in H ∩ S without a proper
nonempty prefix in H ∩S. Note that the set of prime words with respect to H is
a symmetric bifix code. One may verify that it is actually the unique bifix code
X such that X ⊂ S ∩H ⊂ X∗.

The following statement is a generalization of Theorem 5.2 in [6] (Saturation
Theorem). The proof can be found in [5].

Theorem 5.6. Let S be a specular set. Any finite symmetric bifix code X ⊂
S is the set of prime words in S with respect to the subgroup 〈X〉. Moreover
〈X〉 ∩ S = X∗ ∩ S.

A converse of the Finite Index Basis Theorem. The following is a converse of
Theorem 5.2. For the proof, see [5].

Theorem 5.7. Let S be a recurrent and symmetric set of reduced words of factor
complexity pn = n(Card(A)−2)+2. If S∩An is a monoidal basis of the subgroup
〈An〉 for all n ≥ 1, then S is a specular set.
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