

Bifix codes and interval exchanges

Valérie Berthé, Clelia de Felice, Francesco Dolce, Julien Leroy, Dominique Perrin, Christophe Reutenauer, Giuseppina Rindone

To cite this version:

Valérie Berthé, Clelia de Felice, Francesco Dolce, Julien Leroy, Dominique Perrin, et al.. Bifix codes and interval exchanges. Journal of Pure and Applied Algebra, 2015 , $10.1016/j.jpaa.2014.09.028$. hal-01367685

HAL Id: hal-01367685 <https://hal.science/hal-01367685v1>

Submitted on 16 Sep 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Bifix codes and interval exchanges Valérie Berthé¹, Clelia De Felice², Francesco Dolce³, Julien Leroy⁴,

Dominique Perrin³, Christophe Reutenauer⁵, Giuseppina Rindone³

¹CNRS, Université Paris 7, ²Università degli Studi di Salerno, 3 Université Paris Est, LIGM, 4 Université du Luxembourg, 5 Université du Québec à Montréal

³ July 22, 2014 18 h 45

Abstract

Contents

²⁴ 1 Introduction

 This paper is part of a research initiated in [\[2](#page-23-0)] which studies the connections between the three subjects formed by symbolic dynamics, the theory of codes and combinatorial group theory. The initial focus was placed on the classical case of Sturmian systems and progressively extended to more general cases.

 The starting point of the present research is the observation that the family of Sturmian sets is not closed under decoding by a maximal bifix code, even in ³¹ the more simple case of the code formed of all words of fixed length n. Actually, the decoding of the Fibonacci word (which corresponds to a rotation of angle $\alpha = (3 - \sqrt{5})/2$) by blocks of length *n* is an interval exchange transformation 34 corresponding to a rotation of angle $n\alpha$ coded on $n+1$ intervals. This has lead us to consider the set of factors of interval exchange transformations, called interval exchange sets. Interval exchange transformations were introduced by Oseledec[[15\]](#page-23-0) following an earlier idea of Arnold [\[1](#page-23-0)]. These transformations form a generalization of rotations of the circle.

 The main result in this paper is that the family of regular interval exchange sets is closed under decoding by a maximal bifix code (Theorem [3.13](#page-14-0)). This result invited us to try to extend to regular interval exchange transformations the results relating bifix codes and Sturmian words. This lead us to generalize $\frac{43}{10}$ in [[5\]](#page-23-0) to a large class of sets the main result of [\[2](#page-23-0)], namely the Finite Index Basis Theorem relating maximal bifix codes and bases of subgroups of finite index of the free group.

 Theorem [3.13](#page-14-0) reveals a close connection between maximal bifix codes and interval exchange transformations. Indeed, given an interval exchange trans-⁴⁸ formation T each maximal bifix code X defines a new interval exchange trans-⁴⁹ formation T_X . We show at the end of the paper, using the Finite Index Basis Theorem, that this transformation is actually an interval exchange transforma- $_{51}$ tion on a stack, as defined in [[7\]](#page-23-0) (see also [\[19\]](#page-24-0)).

The paper is organized as follows.

 In Section [2,](#page-3-0) we recall some notions concerning interval exchange transfor- mations. We state the result of Keane[[12\]](#page-23-0) which proves that regularity is a sufficient condition for the minimality of such a transformation (Theorem [2.3\)](#page-5-0). We study in Section [3](#page-9-0) the relation between interval exchange transforma- tions and bifix codes. We prove that the transformation associated with a finite S-maximal bifix code is an interval exchange transformation (Proposition [3.8\)](#page-12-0). We also prove a result concerning the regularity of this transformation (Theo-rem [3.12\)](#page-13-0).

 We discuss the relation with bifix codes and we show that the class of regular interval exchange sets is closed under decoding by a maximal bifix code, that is, under inverse images by coding morphisms of finite maximal bifix codes (Theorem [3.13\)](#page-14-0).

 In Section [4](#page-16-0) we introduce tree sets and planar tree sets. We show, reformu- lating a theorem of[[9\]](#page-23-0), that uniformly recurrent planar tree sets are the regular σ interval exchange sets (Theorem [4.3\)](#page-18-0).We show in another paper [[4\]](#page-23-0) that, in the same way as regular interval exchange sets, the class of uniformly recurrent

⁶⁹ tree sets is closed under maximal bifix decoding.

 In Section [4.3,](#page-18-0) we explore a new direction, extending the results of this paper to a more general case. We introduce exchange of pieces, a notable example being given by the Rauzy fractal. We indicate how the decoding of the natural codings of exchange of pieces by maximal bifix codes are again natural codings of exchange of pieces. We finally give in Section [4.4](#page-21-0) an alternative proof of Theorem [3.13](#page-14-0) using a skew product of a regular interval exchange transformation with a finite permutation group.

 π **Acknowledgements** This work was supported by grants from Région Ile-de- France, the ANR projects Eqinocs and Dyna3S, the Labex Bezout, the FARB Project "Aspetti algebrici e computazionali nella teoria dei codici, degli automi e dei linguaggi formali" (University of Salerno, 2013) and the MIUR PRIN 2010- 2011 grant "Automata and Formal Languages: Mathematical and Applicative Aspects". We thank the referee for his useful remarks on the first version of the paper which lead us to separate it in two parts.

⁸⁴ 2 Interval exchange transformations

⁸⁵Let us recall the definition of an interval exchange transformation (see [[8\]](#page-23-0) or [\[6](#page-23-0)]). 86 A semi-interval is a nonempty subset of the real line of the form $[\alpha, \beta] =$ $s\tau \{z \in \mathbb{R} \mid \alpha \leq z \leq \beta\}.$ Thus it is a left-closed and right-open interval. For two 88 semi-intervals Δ, Γ , we denote $\Delta < \Gamma$ if $x < y$ for any $x \in \Delta$ and $y \in \Gamma$.

89 Let (A, \leq) be an ordered set. A partition $(I_a)_{a \in A}$ of [0, 1] in semi-intervals 90 is ordered if $a < b$ implies $I_a < I_b$.

91 Let A be a finite set ordered by two total orders \lt_1 and \lt_2 . Let $(I_a)_{a \in A}$ 92 be a partition of [0, 1] in semi-intervals ordered for \lt_1 . Let λ_a be the length of 93 I_a . Let $\mu_a = \sum_{b \leq 1} a_b \lambda_b$ and $\nu_a = \sum_{b \leq 2} a_b \lambda_b$. Set $\alpha_a = \nu_a - \mu_a$. The interval 94 exchange transformation relative to $(I_a)_{a \in A}$ is the map $T : [0,1] \rightarrow [0,1]$ defined ⁹⁵ by

$$
T(z) = z + \alpha_a \quad \text{if } z \in I_a.
$$

96 Observe that the restriction of T to I_a is a translation onto $J_a = T(I_a)$, that ⁹⁷ μ_a is the right boundary of I_a and that ν_a is the right boundary of J_a . We 98 additionally denote by γ_a the left boundary of I_a and by δ_a the left boundary 99 of J_a . Thus

$$
I_a = [\gamma_a, \mu_a], \quad J_a = [\delta_a, \nu_a].
$$

100 Note that $a \leq_2 b$ implies $\nu_a \leq \nu_b$ and thus $J_a \leq J_b$. This shows that 101 the family $(J_a)_{a\in A}$ is a partition of [0, 1] ordered for \lt_2 . In particular, the $_{102}$ transformation T defines a bijection from [0, 1] onto itself.

103 An interval exchange transformation relative to $(I_a)_{a \in A}$ is also said to be ¹⁰⁴ on the alphabet A. The values $(\alpha_a)_{a \in A}$ are called the *translation values* of the $_{105}$ transformation T.

106 Example 2.1 Let R be the interval exchange transformation corresponding to 107 $A = \{a, b\}, a \le b, b \le a, I_a = [0, 1-\alpha], I_b = [1-\alpha, 1].$ The transformation R is 108 the rotation of angle α on the semi-interval [0, 1] defined by $R(z) = z + \alpha \mod 1$.

109 Since \leq_1 and \leq_2 are total orders, there exists a unique permutation π of A such 110 that $a \leq_1 b$ if and only if $\pi(a) \leq_2 \pi(b)$. Conversely, \leq_2 is determined by \leq_1 111 and π and \lt_1 is determined by \lt_2 and π . The permutation π is said to be 112 associated with T.

113 If we set $A = \{a_1, a_2, ..., a_s\}$ with $a_1 < a_2 < a_1 \cdots < a_s$, the pair (λ, π)

114 formed by the family $\lambda = (\lambda_a)_{a \in A}$ and the permutation π determines the map ¹¹⁵ T. We will also denote T as $T_{\lambda,\pi}$. The transformation T is also said to be an

¹¹⁶ s-interval exchange transformation.

 I It is easy to verify that if T is an interval exchange transformation, then T^n ¹¹⁸ is also an interval exchange transformation for any $n \in \mathbb{Z}$.

¹¹⁹ Example 2.2 A 3-interval exchange transformation is represented in Figure [3.2](#page-12-0).

120 One has $A = \{a, b, c\}$ with $a \leq b \leq c$ and $b \leq c \leq a$. The associated permutation is the cycle $\pi = (abc)$.

Figure 2.1: A 3-interval exchange transformation

121

122 2.1 Regular interval exchange transformations

123 The *orbit* of a point $z \in [0,1]$ is the set $\{T^n(z) \mid n \in \mathbb{Z}\}$. The transformation T ¹²⁴ is said to be *minimal* if, for any $z \in [0, 1]$, the orbit of z is dense in [0, 1].

125 Set $A = \{a_1, a_2, \ldots, a_s\}$ with $a_1 <_1 a_2 <_1 \ldots <_1 a_s$, $\mu_i = \mu_{a_i}$ and $\delta_i =$ ¹²⁶ δ_{a_i} . The points $0, \mu_1, \ldots, \mu_{s-1}$ form the set of *separation points* of T, denoted 127 Sep(T). Note that the singular points of the transformation T (that is the points $128 \t z \in [0,1]$ at which T is not continuous) are among the separation points but ¹²⁹ that the converse is not true in general (see Example [3.9](#page-12-0)).

130 An interval exchange transformation $T_{\lambda,\pi}$ is called *regular* if the orbits of 131 the nonzero separation points μ_1, \ldots, μ_{s-1} are infinite and disjoint. Note that ¹³² the orbit of 0 cannot be disjoint of the others since one has $T(\mu_i) = 0$ for some 133*i* with $1 \leq i \leq s-1$. The term regular was introduced by Rauzy in [[17\]](#page-24-0). A ¹³⁴ regular interval exchange transformation is also said to be without connections ¹³⁵ or satisfying the idoc condition (where idoc stands for infinite disjoint orbit ¹³⁶ condition).

137 Note that since $\delta_2 = T(\mu_1), \ldots, \delta_s = T(\mu_{s-1}),$ T is regular if and only if the 138 orbits of $\delta_2, \ldots, \delta_s$ are infinite and disjoint.

¹³⁹ As an example, the 2-interval exchange transformation of Example [2.1](#page-3-0) which 140 is the rotation of angle α is regular if and only if α is irrational.

141 Note that if T is a regular s-interval exchange transformation, then for any $n \geq 1$, the transformation T^n is an $n(s-1)+1$ -interval exchange transformation. 143 Indeed, the points $T^i(\mu_j)$ for $0 \leq i \leq n-1$ and $1 \leq j \leq s-1$ are distinct and 144 define a partition in $n(s-1) + 1$ intervals.

¹⁴⁵ The following result is due to Keane [\[12](#page-23-0)].

146 Theorem 2.3 (Keane) A regular interval exchange transformation is mini- $_{147}$ mal.

148 The converse is not true. Indeed, consider the rotation of angle α with α 149 irrational, as a 3-interval exchange transformation with $\lambda = (1 - 2\alpha, \alpha, \alpha)$ and $\pi = (132)$. The transformation is minimal as any rotation of irrational angle 151 but it is not regular since $\mu_1 = 1 - 2\alpha$, $\mu_2 = 1 - \alpha$ and thus $\mu_2 = T(\mu_1)$.

¹⁵² The following necessary condition for minimality of an interval exchange 153 transformation is useful. A permutation π of an ordered set A is called de-¹⁵⁴ composable if there exists an element $b \in A$ such that the set B of elements 155 strictly less than b is nonempty and such that $\pi(B) = B$. Otherwise it is called 156 *indecomposable*. If an interval exchange transformation $T = T_{\lambda,\pi}$ is minimal, 157 the permutation π is indecomposable. Indeed, if B is a set as above, the set ¹⁵⁸ $S = \bigcup_{a \in B} I_a$ is closed under T and strictly included in [0, 1].

159 The following example shows that the indecomposability of π is not sufficient $_{160}$ for T to be minimal.

161 **Example 2.4** Let $A = \{a, b, c\}$ and λ be such that $\lambda_a = \lambda_c$. Let π be the 162 transposition (ac). Then π is indecomposable but $T_{\lambda,\pi}$ is not minimal since it $_{163}$ is the identity on I_b .

¹⁶⁴ 2.2 Natural coding

 Let A be a finite nonempty alphabet. All words considered below, unless stated $_{166}$ explicitly, are supposed to be on the alphabet A. We denote by A^* the set of all words on A. We denote by 1 or by ε the empty word. We refer to [[3\]](#page-23-0) for the notions of prefix, suffix, factor of a word.

169 Let T be an interval exchange transformation relative to $(I_a)_{a\in A}$. For a 170 given real number $z \in [0,1]$, the natural coding of T relative to z is the infinite ¹⁷¹ word $\Sigma_T(z) = a_0 a_1 \cdots$ on the alphabet A defined by

$$
a_n = a \quad \text{if} \quad T^n(z) \in I_a.
$$

172 For a word $w = b_0b_1 \cdots b_{m-1}$, let I_w be the set

$$
I_w = I_{b_0} \cap T^{-1}(I_{b_1}) \cap \ldots \cap T^{-m+1}(I_{b_{m-1}}). \tag{2.1}
$$

173 Note that each I_w is a semi-interval. Indeed, this is true if w is a letter. Next, 174 assume that I_w is a semi-interval. Then for any $a \in A$, $T(I_{aw}) = T(I_a) \cap I_w$ is a 175 semi-interval since $T(I_a)$ is a semi-interval by definition of an interval exchange 176 transformation. Since $I_{aw} \subset I_a$, $T(I_{aw})$ is a translate of I_{aw} , which is therefore also a semi-interval. This proves the property by induction on the length. also a semi-interval. This proves the property by induction on the length.

¹⁷⁸ Set $J_w = T^m(I_w)$. Thus

$$
J_w = T^m(I_{b_0}) \cap T^{m-1}(I_{b_1}) \cap \ldots \cap T(I_{b_{m-1}}).
$$
\n(2.2)

179 In particular, we have $J_a = T(I_a)$ for $a \in A$. Note that each J_w is a semi-
180 interval. Indeed, this is true if w is a letter. Next, for any $a \in A$, we have 180 interval. Indeed, this is true if w is a letter. Next, for any $a \in A$, we have $T^{-1}(J_{\text{max}}) = J_{\text{max}} \cap I_{\text{max}}$. This implies as above that J_{max} is a semi-interval and $T^{-1}(J_{wa}) = J_w \cap I_a$. This implies as above that J_{wa} is a semi-interval and ¹⁸² proves the property by induction. We set by convention $I_{\varepsilon} = J_{\varepsilon} = [0, 1]$. Then 183 one has for any $n \geq 0$

$$
a_n a_{n+1} \cdots a_{n+m-1} = w \Longleftrightarrow T^n(z) \in I_w \tag{2.3}
$$

¹⁸⁴ and

$$
a_{n-m}a_{n-m+1}\cdots a_{n-1} = w \Longleftrightarrow T^n(z) \in J_w.
$$
 (2.4)

185 Let $(\alpha_a)_{a \in A}$ be the translation values of T. Note that for any word w,

$$
J_w = I_w + \alpha_w \tag{2.5}
$$

¹⁸⁶ with $\alpha_w = \sum_{j=0}^{m-1} \alpha_{b_j}$ as one may verify by induction on $|w| = m$. Indeed 187 it is true for $m = 1$. For $m \geq 2$, set $w = ua$ with $a = b_{m-1}$. One has ¹⁸⁸ $T^m(I_w) = T^{m-1}(I_w) + \alpha_a$ and $T^{m-1}(I_w) = I_w + \alpha_u$ by the induction hypothesis and the fact that I_w is included in I_u . Thus $J_w = T^m(I_w) = I_w + \alpha_u + \alpha_a =$ ¹⁹⁰ $I_w + \alpha_w$. Equation (2.5) shows in particular that the restriction of $T^{|w|}$ to I_w ¹⁹¹ is a translation.

¹⁹² 2.3 Uniformly recurrent sets

 Λ set S of words on the alphabet A is said to be *factorial* if it contains the ¹⁹⁴ factors of its elements.

195 A factorial set is said to be *right-extendable* if for every $w \in S$ there is some 196 $a \in A$ such that $wa \in S$. It is *biextendable* if for any $w \in S$, there are $a, b \in A$ 197 such that $awb \in S$.

198 A set of words $S \neq \{\varepsilon\}$ is recurrent if it is factorial and if for every $u, w \in S$ there is a $v \in S$ such that $uvw \in S$. A recurrent set is biextendable. It is said 200 to be uniformly recurrent if it is right-extendable and if, for any word $u \in S$, 201 there exists an integer $n \geq 1$ such that u is a factor of every word of S of length ²⁰² n. A uniformly recurrent set is recurrent.

²⁰³ We denote by $A^{\mathbb{N}}$ the set of infinite words on the alphabet A. For a set 204 $X \subset A^{\mathbb{N}}$, we denote by $F(X)$ the set of factors of the words of X.

Let S be a set of words on the alphabet A. For $w \in S$, set.

Let S be a set of words on the alphabet A. For $w \in S$, set $R(w) = \{a \in$ 206 A | wa $\in S$ } and $L(w = \{a \in A \mid aw \in S\})$. A word w is called right-special if $207 \text{ Card}(R(w)) \geq 2$ and left-special if $\text{Card}(L(w)) \geq 2$. It is bispecial if it is both ²⁰⁸ right and left-special.

²⁰⁹ An infinite word on a binary alphabet is *Sturmian* if its set of factors is 210 closed under reversal and if for each n there is exactly one right-special word of $_{211}$ length n.

²¹² An infinite word is a strict episturmian word if its set of factors is closed 213 under reversal and for each n there is exactly one right-special word w of length ²¹⁴ *n*, which is moreover such that $Card(R(w)) = Card(A)$.

215 A morphism $f: A^* \to A^*$ is called *primitive* if there is an integer k such that ²¹⁶ for all $a, b \in A$, the letter b appears in $f^k(a)$. If f is a primitive morphism, the $_{217}$ set of factors of any fixpoint of f is uniformly recurrent (see [[10\]](#page-23-0), Proposition ²¹⁸ 1.2.3 for example).

Example 2.5 Let $A = \{a, b\}$. The Fibonacci word is the fixpoint $x = f^{\omega}(a) =$ abaababa ... of the morphism $f : A^* \to A^*$ defined by $f(a) = ab$ and $f(b) = a$. 221 It is a Sturmian word (see [\[13](#page-23-0)]). The set $F(x)$ of factors of x is the Fibonacci ²²² set.

223 Example 2.6 Let $A = \{a, b, c\}$. The Tribonacci word is the fixpoint $x =$ ²²⁴ $f^{\omega}(a) = abacaba \cdots$ of the morphism $f : A^* \to A^*$ defined by $f(a) = ab$, $f(b) = ac$, $f(c) = a$. It is a strict episturmian word (see [\[11](#page-23-0)]). The set $F(x)$ of 226 factors of x is the Tribonacci set.

227 2.4 Interval exchange sets

228 Let T be an interval exchange set. The set $F(\Sigma_T(z))$ is called an *interval* ²²⁹ exchange set. It is biextendable.

230 If T is a minimal interval exchange transformation, one has $w \in F(\Sigma_T(z))$ 231 if and only if $I_w \neq \emptyset$. Thus the set $F(\Sigma_T(z))$ does not depend on z. Since it 232 depends only on T, we denote it by $F(T)$. When T is regular (resp. minimal), ²³³ such a set is called a regular interval exchange set (resp. a minimal interval ²³⁴ exchange set).

235 Let T be an interval exchange transformation. Let M be the closure in $A^{\mathbb{N}}$ 236 of the set of all $\Sigma_T(z)$ for $z \in [0,1]$ and let σ be the shift on M. The pair $_{237}$ (M, σ) is a symbolic dynamical system, formed of a topological space M and a 238 continuous transformation σ . Such a system is said to be minimal if the only closed subsets invariant by σ are \emptyset or M (that is, every orbit is dense). It is 240 well-known that (M, σ) is minimal if and only if $F(T)$ is uniformly recurrent $_{241}$ (see for example [[13\]](#page-23-0) Theorem 1.5.9).

We have the following commutative diagram (Figure 2.2).

$$
[0,1\left[\begin{array}{c}\nT\n\end{array}\right][0,1\left[\begin{array}{c}\n\sum_{T}\n\end{array}\right][\sum_{T}\n\end{array})
$$
\n
$$
M \xrightarrow{\sigma} M
$$

Figure 2.2: The transformations T and σ .

²⁴³ The map Σ_T is neither continuous nor surjective. This can be corrected by ²⁴⁴ embedding the interval [0, 1] into a larger space on which T is a homeomophism ²⁴⁵(see [[12\]](#page-23-0) or [[6\]](#page-23-0) page 349). However, if the transformation T is minimal, the ²⁴⁶ symbolic dynamical system (M, S) is minimal (see [\[6](#page-23-0)] page 392). Thus, we ²⁴⁷ obtain the following statement.

Proposition 2.7 For any minimal interval exchange transformation T , the set $F(T)$ is uniformly recurrent.

250 Note that for a minimal interval exchange transformation T, the map Σ_T is $_{251}$ injective (see [\[12](#page-23-0)] page 30).

²⁵² The following is an elementary property of the intervals I_u which will be 253 used below. We denote by \lt_1 the lexicographic order on A^* induced by the 254 order \lt_1 on A.

255 Proposition 2.8 One has $I_u < I_v$ if and only if $u <_1 v$ and u is not a prefix 256 of v.

*Proof.*For a word u and a letter a, it results from ([2.1\)](#page-5-0) that $I_{ua} = I_u \cap T^{-|u|}(I_a)$. Since $(I_a)_{a \in A}$ is an ordered partition, this implies that $(T^{|u|}(I_u) \cap I_a)_{a \in A}$ is an ²⁵⁹ ordered partition of $T^{|u|}(I_u)$. Since the restriction of $T^{|u|}$ to I_u is a translation, ²⁶⁰ this implies that $(I_{ua})_{a \in A}$ is an ordered partition of I_u . Moreover, for two words ²⁶¹ u, v, it results also from [\(2.1](#page-5-0)) that $I_{uv} = I_u \cap T^{-|u|}(I_v)$. Thus $I_{uv} \subset I_u$.

262 Assume that $u \leq_1 v$ and that u is not a prefix of v. Then $u = \ell as$ and ²⁶³ v = ℓbt with a, b two letters such that $a <_1 b$. Then we have $I_{\ell a} < I_{\ell b}$, with ²⁶⁴ $I_u \subset I_{\ell a}$ and $I_v \subset I_{\ell b}$ whence $I_u < I_v$.

265 Conversely, assume that $I_u < I_v$. Since $I_u \cap I_v = \emptyset$, the words u, v cannot be ²⁶⁶ comparable for the prefix order. Set $u = \ell as$ and $v = \ell bt$ with a, b two distinct 267 letters. If $b \leq_1 a$, then $I_v \leq I_u$ as we have shown above. Thus $a \leq_1 b$ which ²⁶⁸ implies $u \leq_1 v$.

We denote by \lt_2 the order on A^* defined by $u \lt_2 v$ if u is a proper suffix ²⁷⁰ of v or if $u = waz$ and $v = tbz$ with $a <_2 b$. Thus $a <_2$ is the lexicographic order ₂₇₁ on the reversal of the words induced by the order \lt_2 on the alphabet.

 272 We denote by π the morphism from A^* onto itself which extends to A^* the 273 permutation π on A. Then $u ₂ v$ if and only if $\pi^{-1}(\tilde{u}) ₁ \pi^{-1}(\tilde{v})$, where \tilde{u} 274 denotes the reversal of the word u.

²⁷⁵ The following statement is the analogue of Proposition 2.8.

276 Proposition 2.9 Let $T_{\lambda,\pi}$ be an interval exchange transformation. One has ²⁷⁷ $J_u < J_v$ if and only if $u ₂ v$ and u is not a suffix of v.

²⁷⁸ Proof. Let $(I'_a)_{a \in A}$ be the family of semi-intervals defined by $I'_a = J_{\pi(a)}$. Then ²⁷⁹ the interval exchange transformation T' relative to (I'_a) with translation values $\begin{bmatrix} -\alpha_a \end{bmatrix}$ is the inverse of the transformation T. The semi-intervals I'_w defined by 281 Equation [\(2.1\)](#page-5-0) with respect to T' satisfy $I'_w = J_{\pi(\tilde{w})}$ or equivalently $J_w =$

242

²⁸² $I'_{\pi^{-1}(\tilde{w})}$. Thus, $J_u < J_v$ if and only if $I'_{\pi^{-1}(\tilde{u})} < I'_{\pi^{-1}(\tilde{v})}$ if and only if (by Proposition [2.8](#page-8-0)) $\pi^{-1}(\tilde{u}) <_1 \pi^{-1}(\tilde{v})$ or equivalently $u <_2 v$.

$_{284}$ 3 Bifix codes and interval exchange

²⁸⁵ In this section, we first introduce prefix codes and bifix codes. For a more de-²⁸⁶ tailed exposition, see [\[3](#page-23-0)]. We describe the link between maximal bifix codes and ²⁸⁷ interval exchange transformations and we prove our main result (Theorem [3.13\)](#page-14-0).

288 3.1 Prefix codes and bifix codes

²⁸⁹ A prefix code is a set of nonempty words which does not contain any proper ²⁹⁰ prefix of its elements. A suffix code is defined symmetrically. A bifix code is a ²⁹¹ set which is both a prefix code and a suffix code.

A coding morphism for a prefix code $X \subset A^+$ is a morphism $f : B^* \to A^*$ 292 293 which maps bijectively B onto X.

294 Let S be a set of words. A prefix code $X \subset S$ is S-maximal if it is not 295 properly contained in any prefix code $Y \subset S$. Note that if $X \subset S$ is an S-296 maximal prefix code, any word of S is comparable for the prefix order with a 297 word of X.

298 A map $\lambda : A^* \to [0, 1]$ such that $\lambda(\varepsilon) = 1$ and, for any word w

$$
\sum_{a \in A} \lambda(aw) = \sum_{a \in A} \lambda(wa) = \lambda(w),\tag{3.1}
$$

 $\text{is called an } invariant \text{ probability distribution on } A^*.$

1300 Let $T_{\lambda,\pi}$ be an interval exchange transformation. For any word $w \in A^*$, 301denote by $|I_w|$ the length of the semi-interval I_w defined by Equation ([2.1\)](#page-5-0). Set 302 $\lambda(w) = |I_w|$. Then $\lambda(\varepsilon) = 1$ and for any word w, Equation (3.1) holds and thus λ is an invariant probability distribution. λ is an invariant probability distribution.

³⁰⁴ The fact that λ is an invariant probability measure is equivalent to the fact ³⁰⁵ that the Lebesgue measure on [0, 1] is invariant by T. It is known that almost ³⁰⁶ all regular interval exchange transformations have no other invariant probability ³⁰⁷ measure (and thus are uniquely ergodic, see [\[6\]](#page-23-0) for references).

 \sum_{308} Example 3.1 Let S be the set of factors of the Fibonacci word (see Exam-ple [2.5\)](#page-7-0). It is the natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$ with 310respect to α (see [[13\]](#page-23-0), Chapter 2). The values of the map λ on the words of $_{311}$ length at most 4 in S are indicated in Figure [3.1](#page-10-0).

³¹² The following result is a particular case of a result from[[2](#page-23-0)] (Proposition $3.3.4$).

 314 Proposition 3.2 Let T be a minimal interval exchange transformation, let $S =$ 315 $F(T)$ and let λ be an invariant probability distribution on S. For any finite S-

316 maximal prefix code X, one has $\sum_{x \in X} \lambda(x) = 1$.

Figure 3.1: The invariant probability distribution on the Fibonacci set.

³¹⁷ The following statement is connected with Proposition [3.2](#page-9-0).

 318 **Proposition 3.3** Let T be a minimal interval exchange transformation relative 319 to $(I_a)_{a \in A}$, let $S = F(T)$ and let X be a finite S-maximal prefix code ordered 320 by \lt_1 . The family $(I_w)_{w \in X}$ is an ordered partition of [0, 1].

321 Proof. By Proposition [2.8](#page-8-0), the sets (I_w) for $w \in X$ are pairwise disjoint. Let 322 π be the invariant probability distribution on S defined by $\pi(w) = |I_w|$. By Proposition [3.2](#page-9-0), we have $\sum_{w\in X} \pi(w) = 1$. Thus the family $(I_w)_{w\in X}$ is a parti-³²⁴ tion of [0, 1[. By Proposition [2.8](#page-8-0) it is an ordered partition.

Example 3.4 Let T be the rotation of angle $\alpha = (3 - \sqrt{5})/2$. The set $S = F(T)$ ³²⁶ is the Fibonacci set. The set $X = \{aa, ab, b\}$ is an S-maximal prefix code (see
³²⁷ the grev nodes in Figure 3.1). The partition of [0, 1] corresponding to X is the grey nodes in Figure 3.1). The partition of $[0, 1]$ corresponding to X is

 $I_{aa} = [0, 1 - 2\alpha], \quad I_{ab} = [1 - 2\alpha, 1 - \alpha], \quad I_b = [1 - \alpha, 1].$

³²⁸ The values of the lengths of the semi-intervals (the invariant probability distri-³²⁹ bution) can also be read on Figure 3.1.

³³⁰ A symmetric statement holds for an S-maximal suffix code, namely that the 331 family $(J_w)_{w \in X}$ is an ordered partition of [0, 1] for the order \lt_2 on X.

³³² 3.2 Maximal bifix codes

333 Let S be a set of words. A bifix code $X \subset S$ is S-maximal if it is not properly 334 contained in a bifix code $Y \subset S$. For a recurrent set S, a finite bifix code is 335 S-maximal as a bifix code if and only if it is an S-maximal prefix code (see [[2\]](#page-23-0), ³³⁶ Theorem 4.2.2).

 Δ parse of a word w with respect to a bifix code X is a triple (v, x, u) such that $w = v x u$ where v has no suffix in X, u has no prefix in X and $x \in X^*$. We 339 denote by $\delta_X(w)$ the number of parses of w with respect to X.

³⁴⁰ The number of parses of a word w is also equal to the number of suffixes of $341 \quad w$ which have no prefix in X and the number of prefixes of w which have no $_{342}$ suffix in X (see Proposition 6.1.6 in [[3\]](#page-23-0)).

³⁴³ By definition, the S-degree of a bifix code X, denoted $d_X(S)$, is the maximal ³⁴⁴ number of parses of a word in S. It can be finite or infinite.

345 The set of internal factors of a set of words X , denoted $I(X)$, is the set of 346 words w such that there exist nonempty words u, v with $uwv \in X$.
Let S be a recurrent set and let X be a finite S-maximal bifix

Let S be a recurrent set and let X be a finite S-maximal bifix code of S-348 degree d. A word $w \in S$ is such that $\delta_X(w) < d$ if and only if it is an internal 349 factor of X, that is

$$
I(X) = \{w \in S \mid \delta_X(w) < d\}
$$

350(Theorem 4.2.8 in [[2\]](#page-23-0)). Thus any word of S which is not a factor of X has d 351 parses. This implies that the S-degree d is finite.

Example 3.5 Let S be a recurrent set. For any integer $n \geq 1$, the set $S \cap A^n$ 353 is an S-maximal bifix code of S-degree n.

354 The kernel of a bifix code X is the set $K(X) = I(X) \cap X$. Thus it is the set 355of words of X which are also internal factors of X. By Theorem 4.3.11 of [[2\]](#page-23-0), a ³⁵⁶ finite S-maximal bifix code is determined by its S-degree and its kernel.

357 Example 3.6 Let S be the Fibonacci set. The set $X = \{a, baab, bab\}$ is the 358 unique S-maximal bifix code of S-degree 2 with kernel $\{a\}$. Indeed, the word
359 bab is not an internal factor and has two parses, namely $(1, bab, 1)$ and (b, a, b) . bab is not an internal factor and has two parses, namely $(1, bab, 1)$ and (b, a, b) .

³⁶⁰ The following result shows that bifix codes have a natural connection with ³⁶¹ interval exchange transformations.

 352 Proposition 3.7 If X is a finite S-maximal bifix code, with S as in Propo-363 sition [3.3](#page-10-0), the families $(I_w)_{w \in X}$ and $(J_w)_{w \in X}$ are ordered partitions of [0, 1], 364 relatively to the orders \lt_1 and \lt_2 respectively.

³⁶⁵ Proof. This results from Proposition [3.3](#page-10-0) and its symmetric and from the fact 366 that, since S is recurrent, a finite S-maximal bifix code is both an S-maximal ³⁶⁷ prefix code and an S-maximal suffix code.

368 Let T be a regular interval exchange transformation relative to $(I_a)_{a \in A}$. Let 369 $(\alpha_a)_{a\in A}$ be the translation values of T. Set $S = F(T)$. Let X be a finite ³⁷⁰ S-maximal bifix code on the alphabet A.

 1371 Let T_X be the transformation on [0, 1] defined by

$$
T_X(z) = T^{|u|}(z) \quad \text{if} \quad z \in I_u
$$

 372 with $u \in X$. The transformation is well-defined since, by Proposition 3.7, the 373 family $(I_u)_{u \in X}$ is a partition of [0, 1[.

Let $f : B^* \to A^*$ be a coding morphism for X. Let $(K_b)_{b \in B}$ be the family ³⁷⁵ of semi-intervals indexed by the alphabet B with $K_b = I_{f(b)}$. We consider B as ³⁷⁶ ordered by the orders \lt_1 and \lt_2 induced by f . Let T_f be the interval exchange transformation relative to $(K_b)_{b \in B}$. Its translation values are $\beta_b = \sum_{j=0}^{m-1} \alpha_{a_j}$ 377 378 for $f(b) = a_0 a_1 \cdots a_{m-1}$. The transformation T_f is called the transformation associated with f. associated with f.

380 Proposition 3.8 Let T be a regular interval exchange transformation relative $\begin{array}{lll} \text{and} & \text{for } (I_a)_{a \in A} \text{ and let } S = F(T) \text{.} & \text{if } f : B^* \to A^* \text{ is a coding morphism for a finite} \end{array}$ 382 S-maximal bifix code X, one has $T_f = T_X$.

383 Proof. By Proposition [3.7](#page-11-0), the family $(K_b)_{b\in B}$ is a partition of [0, 1] ordered 384by \lt_1 . For any $w \in X$, we have by Equation ([2.5\)](#page-6-0) $J_w = I_w + \alpha_w$ and thus ³⁸⁵ T_X is the interval exchange transformation relative to $(K_b)_{b \in B}$ with translation 386 values β_b .

387 In the sequel, under the hypotheses of Proposition 3.8, we consider T_f as an 388 interval exchange transformation. In particular, the natural coding of T_f relative 389 to $z \in [0,1]$ is well-defined.

 390 Example 3.9 Let S be the Fibonacci set. It is the set of factors of the Fibonacci word, which is a natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$ 392 relative to α (see Example [3.1](#page-9-0)). Let $X = \{aa, ab, ba\}$ and let f be the coding 393 morphism defined by $f(u) = aa, f(v) = ab, f(w) = ba$. The two partitions of ³⁹⁴ [0, 1] corresponding to T_f are

$$
I_u = [0, 1 - 2\alpha], \quad I_v = [1 - 2\alpha, 1 - \alpha[\quad I_w = [1 - \alpha, 1[
$$

³⁹⁵ and

$$
J_v=[0,\alpha[,\quad J_w=[\alpha,2\alpha[\quad J_u=[2\alpha,1[
$$

The transformation T_f is represented in Figure 3.2. It is actually a representa-

Figure 3.2: The transformation T_f .

396

397 tion on 3 intervals of the rotation of angle 2 α . Note that the point $z = 1 - \alpha$ is 398 a separation point which is not a singularity of T_f . The first row of Table [3.1](#page-13-0) 399 gives the two orders on X. The next two rows give the two orders for each of ⁴⁰⁰ the two other S-maximal bifix codes of S-degree 2 (there are actually exactly μ_{401} three S-maximal bifix codes of S-degree 2 in the Fibonacci set, see [\[2](#page-23-0)].

⁴⁰² Let T be a minimal interval exchange transformation on the alphabet A. 403 Let x be the natural coding of T relative to some $z \in [0,1]$. Set $S = F(x)$. Let 404 X be a finite S-maximal bifix code. Let $f : B^* \to A^*$ be a morphism which μ ₄₀₅ maps bijectively B onto X. Since S is recurrent, the set X is an S-maximal

$(X, <_1)$	$(X, <_2)$
aa, ab, ba	ab, ba, aa
a, baab, bab	bab, baab, a
aa, aba, b	b, aba, aa

Table 3.1: The two orders on the three S-maximal bifix codes of S-degree 2.

prefix code. Thus x has a prefix $x_0 \in X$. Set $x = x_0 x'$. In the same way x' 406 407 has a prefix x_1 in X. Iterating this argument, we see that $x = x_0 x_1 \cdots$ with $x_i \in X$. Consequently, there exists an infinite word y on the alphabet B such 409 that $x = f(y)$. The word y is the *decoding* of the infinite word x with respect 410 to f .

411 **Proposition 3.10** The decoding of x with respect to f is the natural coding of ⁴¹² the transformation associated with f relative to z: $\Sigma_T(z) = f(\Sigma_{T_f}(z)).$

⁴¹³ Proof. Let $y = b_0 b_1 \cdots$ be the decoding of x with respect to f. Set $x_i = f(b_i)$
⁴¹⁴ for $i > 0$. Then, for any $n > 0$, we have for $i \geq 0$. Then, for any $n \geq 0$, we have

$$
T_f^n(z) = T^{|u_n|}(z)
$$
\n(3.2)

415 with $u_n = x_0 \cdots x_{n-1}$ (note that $|u_n|$ denotes the length of u_n with respect to the alphabet A). Indeed, this is is true for $n = 0$. Next $T^{n+1}_s(z) = T_f(t)$ with $t =$ ⁴¹⁶ the alphabet A). Indeed, this is is true for $n = 0$. Next $T_f^{n+1}(z) = T_f(t)$ with $t =$ ⁴¹⁷ $T_f^n(z)$. Arguing by induction, we have $t = T^{|u_n|}(z)$. Since $x = u_n x_n x_{n+1} \cdots$, ⁴¹⁸t is in I_{x_n} by ([2.3](#page-6-0)). Thus by Proposition [3.8](#page-12-0), $T_f(t) = T^{|x_n|}(t)$ and we obtain $T_f^{n+1}(z) = T^{|x_n|}(T^{|u_n|}(z)) = T^{|u_{n+1}|}(z)$ proving (3.2). Finally, for $u = f(b)$ 420 with $b \in B$,

$$
b_n = b \Longleftrightarrow x_n = u \Longleftrightarrow T^{|u_n|}(z) \in I_u \Longleftrightarrow T_f^n(z) \in I_u = K_b
$$

421 showing that y is the natural coding of T_f relative to z. 422

423 Example 3.11 Let T, α, X and f be as in Example [3.9](#page-12-0). Let $x = abaababa \cdots$ ⁴²⁴ be the Fibonacci word. We have $x = \Sigma_T(\alpha)$. The decoding of x with respect to f is $y = vuww \cdots$.

426 3.3 Bifix codes and regular transformations

 427 The following result shows that for the coding morphism f of a finite S-maximal 428 bifix code, the map $T \mapsto T_f$ preserves the regularity of the transformation.

 429 Theorem 3.12 Let T be a regular interval exchange transformation and let 430 $S = F(T)$. For any finite S-maximal bifix code X with coding morphism f, the 431 transformation T_f is regular.

432 *Proof.* Set $A = \{a_1, a_2, ..., a_s\}$ with $a_1 <_1 a_2 <_1 \cdots <_1 a_s$. We denote ⁴³³ $\delta_i = \delta_{a_i}$. By hypothesis, the orbits of $\delta_2, \ldots, \delta_s$ are infinite and disjoint. Set ⁴³⁴ $X = \{x_1, x_2, \ldots, x_t\}$ with $x_1 <_1 x_2 <_1 \cdots <_1 x_t$. Let d be the S-degree of X.
⁴³⁵ For $x \in X$, denote by δ_x the left boundary of the semi-interval J_x . For each

For $x \in X$, denote by δ_x the left boundary of the semi-interval J_x . For each 436 $x \in X$, it follows from Equation [\(2.2](#page-6-0)) that there is an $i \in \{1, ..., s\}$ such that $\delta_x = T^k(\delta_i)$ with $0 \le k \le |x|$. Moreover, we have $i = 1$ if and only if $x = x_1$. 437 $\delta_x = T^k(\delta_i)$ with $0 \leq k < |x|$. Moreover, we have $i = 1$ if and only if $x = x_1$. 438 Since T is regular, the index $i \neq 1$ and the integer k are unique for each $x \neq x_1$.
And for such x and i, by (2.4), we have $\Sigma_T(\delta_i) = u \Sigma_T(\delta_x)$ with u a proper suffix Andfor such x and i, by ([2.4\)](#page-6-0), we have $\Sigma_T(\delta_i) = u \Sigma_T(\delta_x)$ with u a proper suffix 440 of x .

⁴⁴¹ We now show that the orbits of $\delta_{x_2}, \ldots, \delta_{x_t}$ for the transformation T_f are 442 infinite and disjoint. Assume that $\delta_{x_p} = T_f^n(\delta_{x_q})$ for some $p, q \in \{2, ..., t\}$ and 443 $n \in \mathbb{Z}$. Interchanging p, q if necessary, we may assume that $n \geq 0$. Let $i, j \in \mathbb{Z}$ 444 $\{2,\ldots,s\}$ be such that $\delta_{x_p} = T^k(\delta_i)$ with $0 \leq k \leq |x_p|$ and $\delta_{x_q} = T^{\ell}(\delta_i)$ with 445 $0 \leq \ell < |x_q|$. Since $T^k(\delta_i) = T_f^n(T^{\ell}(\delta_j)) = T^{m+\ell}(\delta_j)$ for some $m \geq 0$, we cannot h_{446} have $i \neq j$ since otherwise the orbits of δ_i , δ_j for the transformation T intersect. 447 Thus $i = j$. Since $\delta_{x_p} = T^k(\delta_i)$, we have $\Sigma_T(\delta_i) = u \Sigma_T(\delta_{x_p})$ with $|u| = k$, u 448 proper suffix of x_p . And since $\delta_{x_p} = T_f^n(\delta_{x_q})$, we have $\Sigma_T(\delta_{x_q}) = x \Sigma_T(\delta_{x_p})$ with 449 $x \in X^*$. Since on the other hand $\delta_{x_q} = T^{\ell}(\delta_i)$, we have $\Sigma_T(\delta_i) = v \Sigma_T(\delta_{x_q})$ with 450 $|v| = \ell$ and v a proper suffix of x_q . We obtain

$$
\Sigma_T(\delta_i) = u \Sigma_T(\delta_{x_p})
$$

= $v \Sigma_T(\delta_{x_q}) = v x \Sigma_T(\delta_{x_p})$

⁴⁵¹ Since $|u| = |vx|$, this implies $u = vx$. But since u cannot have a suffix in X, $u = vx$ implies $x = 1$ and thus $n = 0$ and $p = q$. This concludes the proof.

453 Let f be a coding morphism for a finite S-maximal bifix code $X \subset S$. The set ⁴⁵⁴ $f^{-1}(S)$ is called a maximal bifix decoding of S.

⁴⁵⁵ Theorem 3.13 The family of regular interval exchange sets is closed under ⁴⁵⁶ maximal bifix decoding.

 457 Proof. Let T be a regular interval exchange transformation such that $S = F(T)$. 458 By Theorem [3.12](#page-13-0), T_f is a regular interval exchange transformation. We show ⁴⁵⁹ that $f^{-1}(S) = F(T_f)$, which implies the conclusion.

460 Let $x = \sum_{T} (z)$ for some $z \in [0,1]$ and let $y = f^{-1}(x)$. Then $S = F(x)$ and 461 $F(T_f) = F(y)$. For any $w \in F(y)$, we have $f(w) \in F(x)$ and thus $w \in f^{-1}(S)$. ⁴⁶² This shows that $F(T_f) \subset f^{-1}(S)$. Conversely, let $w \in f^{-1}(S)$ and let $v = f(w)$. 463 Since $S = F(x)$, there is a word u such that uv is a prefix of x. Set $z' = T^{|u|}(z)$ ⁴⁶⁴ and $x' = \Sigma_T(z')$. Then v is a prefix of x' and w is a prefix of $y' = f^{-1}(x')$. 465 Since T_f is regular, it is minimal and thus $F(y') = F(T_f)$. This implies that 466 $w \in F(T_f)$.

⁴⁶⁷ Since a regular interval exchange set is uniformly recurrent, Theorem 3.13 $\frac{468}{468}$ implies in particular that if S is a regular interval exchange set and f a coding 469 morphism of a finite S-maximal bifix code, then $f^{-1}(S)$ is uniformly recurrent.

 470 This is not true for an arbitrary uniformly recurrent set S, as shown by the ⁴⁷¹ following example.

472 Example 3.14 Set $A = \{a, b\}$ and $B = \{u, v\}$. Let S be the set of factors ⁴⁷³ of $(ab)^*$ and let $f : B^* \to A^*$ be defined by $f(u) = ab$ and $f(v) = ba$. Then ⁴⁷⁴ $f^{-1}(S) = u^* \cup v^*$ which is not recurrent.

475 We illustrate the proof of Theorem [3.12](#page-13-0) in the following example.

Example 3.15 Let T be the rotation of angle $\alpha = (3 - \sqrt{5})/2$. The set $S =$ $F(T)$ is the Fibonacci set. Let $X = \{a, baab, babaabab, babaabab\}$. The set X is an S-maximal bifix code of S-degree 3 (see [\[2](#page-23-0)]). The values of the μ_{x_i} 478 ⁴⁷⁹ (which are the right boundaries of the intervals I_{x_i}) and δ_{x_i} are represented in Figure 3.3.

Figure 3.3: The transformation associated with a bifix code of S-degree 3.

⁴⁸¹ The infinite word $\Sigma_T(0)$ is represented in Figure 3.4. The value indicated on the word $\Sigma_T(0)$ after a prefix u is $T^{|u|}(0)$. The three values $\delta_{x_4}, \delta_{x_2}, \delta_{x_3}$ 482 correspond to the three prefixes of $\Sigma_T(0)$ which are proper suffixes of X.

$$
\Sigma_T(0) = \begin{bmatrix} \delta_{x_4} & \delta_{x_2} & \delta_{x_3} \\ a & a & b & a & b & a \end{bmatrix} \begin{bmatrix} \delta_{x_4} & \delta_{x_5} & \delta_{x_6} & \delta_{x_7} & \delta_{x_8} \\ a & a & b & a & b \end{bmatrix} \begin{bmatrix} \delta_{x_6} & \delta_{x_7} & \delta_{x_8} & \delta_{x_9} & \delta_{x_9} & \delta_{x_1} & \delta_{x_1} & \delta_{x_2} & \delta_{x_3} \\ \delta_{x_1} & \delta_{x_2} & \delta_{x_3} & \delta_{x_4} & \delta_{x_5} & \delta_{x_6} & \delta_{x_7} & \delta_{x_8} & \delta_{x_9} \end{bmatrix}.
$$

Figure 3.4: The infinite word $\Sigma_T(0)$.

483

480

484 The following example shows that Theorem [3.13](#page-14-0) is not true when X is not bifix. 485

486 Example 3.16 Let S be the Fibonacci set and let $X = \{aa, ab, b\}$. The set X is ⁴⁸⁷ an S-maximal prefix code. Let $B = \{u, v, w\}$ and let f be the coding morphism 488 for X defined by $f(u) = aa$, $f(v) = ab$, $f(w) = b$. The set $W = f^{-1}(S)$ is 489 not an interval exchange set. Indeed, we have $vu, vv, wu, wv \in W$. This implies 490 that both J_v and J_w meet I_u and I_v , which is impossible in an interval exchange ⁴⁹¹ transformation.

 492 Tree sets

⁴⁹³ We introduce in this section the notions of tree sets and planar tree sets. We first ⁴⁹⁴ introduce the notion of extension graph which describes the possible two-sided ⁴⁹⁵ extensions of a word.

⁴⁹⁶ 4.1 Extension graphs

 497 Let S be a biextendable set of words. For $w \in S$, we denote

$$
L(w) = \{ a \in A \mid aw \in S \}, \quad R(w) = \{ a \in A \mid wa \in S \}
$$

⁴⁹⁸ and

$$
E(w) = \{(a, b) \in A \times A \mid awb \in S\}.
$$

499 For $w \in S$, the extension graph of w is the undirected bipartite graph $G(w)$ on $\frac{1}{500}$ the set of vertices which is the disjoint union of two copies of $L(w)$ and $R(w)$ 501 with edges the pairs $(a, b) \in E(w)$.
502 Recall that an undirected graph

Recall that an undirected graph is a tree if it is connected and acyclic.

 503 Let S be a biextendable set. We say that S is a tree set if the graph $G(w)$ $_{504}$ is a tree for all $w \in S$.

505 Let \leq_1 and \leq_2 be two orders on A. For a set S and a word $w \in S$, we 506 say that the graph $G(w)$ is *compatible* with the orders \lt_1 and \lt_2 if for any 507 $(a, b), (c, d) \in E(w)$, one has

$$
a <_1 c \Longrightarrow b \leq_2 d.
$$

 $\frac{1}{508}$ Thus, placing the vertices of $L(w)$ ordered by \lt_1 on a line and those of $R(w)$ 509 ordered by \leq on a parallel line, the edges of the graph may be drawn as straight ⁵¹⁰ noncrossing segments, resulting in a planar graph.

 511 We say that a biextendable set S is a planar tree set with respect to two 512 orders \leq_1 and \leq_2 on A if for any $w \in S$, the graph $G(w)$ is a tree compatible 513 with \leq_1 , \leq_2 . Obviously, a planar tree set is a tree set. with $\langle 1, \langle 2, \rangle$. Obviously, a planar tree set is a tree set.

⁵¹⁴ The following example shows that the Tribonacci set is not a planar tree set. 515

 $_{516}$ Example 4.1 Let S be the Tribonacci set (see example [2.6\)](#page-7-0). The words a, aba

 $_{517}$ and abacaba are bispecial. Thus the words ba, caba are right-special and the 518 words ab, abac are left-special. The graphs $G(\varepsilon)$, $G(a)$ and $G(aba)$ are shown in

Figure 4.1. One sees easily that it not possible to find two orders on A making

Figure 4.1: The graphs $G(\varepsilon)$, $G(a)$ and $G(aba)$ in the Tribonacci set.

⁵²⁰ the three graphs planar.

519

⁵²¹ 4.2 Interval exchange sets and planar tree sets

⁵²² The following result is proved in[[9\]](#page-23-0) with a converse (see below).

 523 Proposition 4.2 Let T be an interval exchange transformation on A ordered 524 by \lt_1 and \lt_2 . If T is regular, the set $F(T)$ is a planar tree set with respect to $525 \leq 2$ and ≤ 1 .

- 526 Proof. Assume that T is a regular interval exchange transformation relative to \mathfrak{g}_{27} $(I_a, \alpha_a)_{a \in A}$ and let $S = F(T)$.
- 528 Since T is minimal, w is in S if and only if $I_w \neq \emptyset$. Thus, one has
- ⁵²⁹ (i) $b \in R(w)$ if and only if $I_w \cap T^{-|w|}(I_b) \neq \emptyset$ and
- 530 (ii) $a \in L(w)$ if and only if $J_a \cap I_w \neq \emptyset$.

531 Condition (i) holds because $I_{wb} = I_w \cap T^{-|w|}(I_b)$ and condition (ii) because $I_{aw} = I_a \cap T^{-1}(I_w)$, which implies $T(I_{aw}) = J_a \cap I_w$. In particular, (i) implies ⁵³³ that $(I_{wb})_{b \in R(w)}$ is an ordered partition of I_w with respect to \lt_1 .

⁵³⁴ We say that a path in a graph is reduced if does not use consecutively the 535 same edge. For $a, a' \in L(w)$ with $a \leq_2 a'$, there is a unique reduced path in $G(w)$ from a to a' which is the sequence $a_1, b_1, \ldots a_n$ with $a_1 = a$ and $a_n = a'$ 536 537 with $a_1 <_2 a_2 <_2 \cdots <_2 a_n$, $b_1 <_1 b_2 <_1 \cdots <_1 b_{n-1}$ and $J_{a_i} \cap I_{wb_i} \neq \emptyset$, 538 $J_{a_{i+1}} \cap I_{wb_i} \neq \emptyset$ for $1 \leq i \leq n-1$ (see Figure 4.2). Note that the hypothesis $_{539}$ that T is regular is needed here since otherwise the right boundary of J_{a_i} could ⁵⁴⁰ be the left boundary of I_{wb_i} . Thus $G(w)$ is a tree. It is compatible with \lt_2, \lt_1 ⁵⁴¹ since the above shows that $a \leq_2 a'$ implies that the letters b_1, b_{n-1} such that $(a, b_1), (a', b_{n-1}) \in E(w)$ satisfy $b_1 \leq_1 b_{n-1}$.

Figure 4.2: A path from a_1 to a_n in $G(w)$.

⁵⁴³ By Proposition 4.2, a regular interval exchange set is a planar tree set, and ⁵⁴⁴ thus in particular a tree set. Note that the analogue of Theorem [3.13](#page-14-0) holds for ⁵⁴⁵ the class of uniformly recurrent tree sets [\[4](#page-23-0)].

 $\frac{546}{100}$ The main result of [[9\]](#page-23-0) states that a uniformly recurrent set S on an alphabet 547 A is a regular interval exchange set if and only if $A \subset S$ and there exist two $_{548}$ orders \lt_1 and \lt_2 on A such that the following conditions are satisfied for any 549 word $w \in S$.

- $_{550}$ (i) The set $L(w)$ (resp. $R(w)$) is formed of consecutive elements for the order \leq_2 (resp. \leq_1).
- 552 (ii) For $(a, b), (c, d) \in E(w)$, if $a <_2 c$, then $b \leq_1 d$.
- 553 (iii) If $a, b \in L(w)$ are consecutive for the order \lt_2 , then the set $R(aw) \cap R(bw)$ ⁵⁵⁴ is a singleton.

 It is easy to see that a biextendable set S containing A satisfies (ii) and (iii) if and only if it is a planar tree set. Actually, in this case, it automatically 557 satisfies also condition (i). Indeed, let us consider a word w and $a, b, c \in A$ with 558 $a \leq_1 b \leq_1 c$ such that $wa, wc \in S$ but $wb \notin S$. Since $b \in S$ there is a (possibly 559 empty) suffix v of w such that $vb \in S$. We choose v of maximal length. Since 560 wb $\notin S$, we have $w = uv$ with u nonempty. Let d be the last letter of u. Then 561 we have $dva, dvc \in S$ and $dvb \notin S$. Since $G(v)$ is a tree and $b \in R(v)$, there is a letter $e \in L(v)$ such that $evb \in S$. But $e \leq d$ and $d \leq e$ are both impossible letter $e \in L(v)$ such that $evb \in S$. But $e \leq_2 d$ and $d \leq_2 e$ are both impossible 563 since $G(v)$ is compatible with \lt_2 and \lt_1 . Thus we reach a contradiction.

 This shows that the following reformulation of the main result of [\[9](#page-23-0)] is equiv-alent to the original one.

566 Theorem 4.3 (Ferenczi, Zamboni) A set S is a regular interval exchange set on the alphabet A if and only if it is a uniformly recurrent planar tree set containing A.

 We have already seen that the Tribonacci set is a tree set which is not a planar tree set (Example [4.1](#page-16-0)). The next example shows that there are uniformly recurrent tree sets which are neither Sturmian nor regular interval exchange sets.

573 Example 4.4 Let S be the Tribonacci set on the alphabet $A = \{a, b, c\}$ and ⁵⁷⁴ let $f: \{x, y, z, t, u\}^* \to A^*$ be the coding morphism for $X = S \cap A^2$ defined by $f(x) = aa, f(y) = ab, f(z) = ac, f(t) = ba, f(u) = ca$ $f(x) = aa, f(y) = ab, f(z) = ac, f(t) = ba, f(u) = ca$ $f(x) = aa, f(y) = ab, f(z) = ac, f(t) = ba, f(u) = ca$. By Theorem 7.1 in [[4\]](#page-23-0), \mathfrak{so} the set $W = f^{-1}(S)$ is a uniformly recurrent tree set. It is not Sturmian since $577 \, y$ and t are two right-special words. It is not either a regular interval exchange set. Indeed, for any right-special word w of W, one has $Card(R(w))=3$. This is not possible in a regular interval exchange set T since, Σ_T being injective, $\frac{580}{100}$ the length of the interval J_w tends to 0 as $|w|$ tends to infinity and it cannot contain several separation points. It can of course also be verified directly that W is not a planar tree set.

4.3 Exchange of pieces

 In this section, we show how one can define a generalization of interval exchange transformations called exchange of pieces. In the same way as interval exchange is a generalization of rotations on the circle, exchange of pieces is a generalization of rotations of the torus. We begin by studying this direction starting from the Tribonacci word. For more on the Tribonacci word, see [\[17\]](#page-24-0) and also[[14,](#page-23-0) Chap. 10].

 The Tribonacci shift The Tribonacci set S is not an interval exchange set but it is however the natural coding of another type of geometric transformation, namely an exchange of pieces in the plane, which is also a translation acting on \mathbb{S}_{93} the two-dimensional torus \mathbb{T}^2 . This will allow us to show that the decoding of

⁵⁹⁴ the Tribonacci word with respect to a coding morphism for a finite S-maximal ⁵⁹⁵ bifix code is again a natural coding of an exchange of pieces.

The Tribonacci shift is the symbolic dynamical system (M_x, σ) , where M_x = ⁵⁹⁷ $\overline{\{\sigma^n(x) : n \in \mathbb{N}\}}$ is the closure of the σ -orbit of x where x is the Tribonacci word. 598 By uniform recurrence of the Tribonacci word, (M_x, σ) is minimal and $M_x = M_y$ 599 for each $y \in M_x$ ([\[16](#page-23-0), Proposition 4.7]). The Tribonacci set is the set of factors 600 of the Tribonacci shift (M_x, σ) .

⁶⁰¹ **Natural coding** Let Λ be a full-rank lattice in \mathbb{R}^d . We say that an infinite ⁶⁰² word *x* is a *natural coding* of a toral translation T **t** : $\mathbb{R}^d/\Lambda \to \mathbb{R}^d/\Lambda$, **x** → **x** + **t** 603 if there exists a fundamental domain R for Λ together with a partition $R =$ ⁶⁰⁴ $R_1 \cup \cdots \cup R_k$ such that on each R_i ($1 \leq i \leq k$), there exists a vector \mathbf{t}_i such that ϵ_{605} the map T_{t} is given by the translation along \mathbf{t}_i , and x is the coding of a point 606 $\mathbf{x} \in R$ with respect to this partition. A symbolic dynamical system (M, σ) is ⁶⁰⁷ a natural coding of $(\mathbb{R}^d/\Lambda, T_t)$ if every element of M is a natural coding of the ⁶⁰⁸ orbit of some point of the d-dimensional torus \mathbb{R}^d/Λ (with respect to the same ⁶⁰⁹ partition) and if, furthermore, (M, σ) and $(\mathbb{R}^d/\Lambda, T_t)$ are measurably conjugate.

610 **Definition of the Rauzy fractal** Let β stand for the Perron-Frobenius eigen-⁶¹¹ value of the Tribonacci substitution. It is the largest root of $z^3 - z^2 - z - 1$. 612 Consider the translation $R_\beta: \mathbb{T}^2 \to \mathbb{T}^2$, $x \mapsto x + (1/\beta, 1/\beta^2)$. Rauzy introduces ⁶¹³ in[[18\]](#page-24-0) a fundamental domain for a two-dimensional lattice, called the Rauzy ⁶¹⁴ fractal (it has indeed fractal boundary), which provides a partition for the sym-615 bolic dynamical system (M_x, σ) to be a natural coding for R_β . The Tribonacci ⁶¹⁶ word is a natural coding of the orbit of the point 0 under the action of the ⁶¹⁷ toral translation in \mathbb{T}^2 : $x \mapsto x + (\frac{1}{\beta}, \frac{1}{\beta^2})$. Similarly as in the case of interval ⁶¹⁸ exchanges, we have the following commutative diagram

$$
\begin{array}{ccc}\n\mathbb{T}^2 & \xrightarrow{R_\beta} & \mathbb{T}^2 \\
\downarrow & & \downarrow \\
M_x & \xrightarrow{\sigma} & M_x\n\end{array}
$$

 $\sum_{n=1}^{\infty}$ The *Abelianization map* **f** of the free monoid $\{1, 2, 3\}^*$ is defined by **f** : ⁶²⁰ $\{1,2,3\}^*$ → \mathbb{Z}^3 , $f(w) = |w|_1e_1 + |w|_2e_2 + |w|_3e_3$, where $|w|_i$ denotes the number ϵ_{21} of occurrences of the letter i in the word w, and (e_1, e_2, e_3) stands for the ϵ_{22} canonical basis of \mathbb{R}^3 .

 ϵ_{623} Let f be the morphism $a \mapsto ab, b \mapsto ac, c \mapsto a$ such that the Tribonacci word 624 is the fixpoint of f (see Example [2.6\)](#page-7-0). The incidence matrix F of f is defined ⁶²⁵ by $F = (|f(j)|_i)_{(i,j)\in\mathcal{A}^2}$, where $|f(j)|_i$ counts the number of occurrences of the $\sqrt{ }$ 1 1 1 1

letter *i* in $f(j)$. One has $F =$ $\overline{1}$ 1 0 0 0 1 0 ⁶²⁶ letter *i* in $f(j)$. One has $F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. The incidence matrix F admits as

 ϵ_{27} eigenspaces in \mathbb{R}^3 one expanding eigenline (generated by the eigenvector with

⁶²⁸ positive coordinates $v_\beta = (1/\beta, 1/\beta^2, 1/\beta^3)$ associated with the eigenvalue β).

629 We consider the projection π onto the antidiagonal plane $x + y + z = 0$ along ϵ_{630} the expanding direction of the matrix F .

631 One associates with the Tribonacci word $x = (x_n)_{n>0}$ a broken line starting ϵ_{32} from 0 in \mathbb{Z}^3 and approximating the expanding line v_β as follows. The Tribonacci ⁶³³ broken line is defined as the broken line which joins with segments of length 1 634 the points $f(x_0x_1 \cdots x_{n-1}), n \in \mathbb{N}$. In other words we describe this broken line ⁶³⁵ by starting from the origin, and then by reading successively the letters of the ϵ_{36} Tribonacci word x, going one step in direction e_i if one reads the letter i. The 637 vectors $f(x_0x_1 \cdots x_n)$, $n \in \mathbb{N}$, stay within bounded distance of the expanding 638 line (this comes from the fact that β is a Pisot number). The closure of the ₆₃₉ set of projected vertices of the broken line is called the Rauzy fractal and is ϵ_{40} represented on Figure 4.3. We thus define the Rauzy fractal R as

$$
\mathcal{R} := \overline{\{\pi(\mathbf{f}(x_0 \cdots x_{n-1}))\}}; \; n \in \mathbb{N}\},
$$

where $x_0 \dots x_{n-1}$ stands for the empty word when $n = 0$.

Figure 4.3: The Rauzy fractal

⁶⁴² The Rauzy fractal is divided into three pieces, for $i = \{1, 2, 3\}$

$$
\mathcal{R}(i) := \overline{\{\pi(\mathbf{f}(x_0 \cdots x_{n-1})); x_n = i, n \in \mathbb{N}\}},
$$

$$
\mathcal{R}'(i) := \overline{\{\pi(\mathbf{f}(x_0 \cdots x_n)); x_n = i, n \in \mathbb{N}\}}.
$$

⁶⁴³ It has been proved in [\[18](#page-24-0)] that these pieces have non-empty interior and are $\frac{644}{644}$ disjoint up to a set of zero measure. The following exchange of pieces E is thus ⁶⁴⁵ well-defined

$$
E: \text{Int } \mathcal{R}_1 \cup \text{Int } \mathcal{R}_2 \cup \text{Int } \mathcal{R}_3 \to \mathcal{R}, \ x \mapsto x + \pi(e_i), \text{ when } x \in \text{Int } \mathcal{R}_i.
$$

646 One has $E(\mathcal{R}_i) = \mathcal{R}'_i$, for all *i*.

647 We consider the lattice Λ generated by the vectors $\pi(e_i) - \pi(e_j)$, for $i \neq j$.

The Rauzy fractal tiles periodically the plane, that is, $\bigcup_{\gamma \in \Lambda} \gamma + \mathcal{R}$ is equal to The Rauzy fractal tiles periodically the plane, that is, $\bigcup_{\gamma\in\Lambda}\gamma+\mathcal{R}$ is equal to ⁶⁴⁹ the plane $x + y + z = 0$, and for $\gamma \neq \gamma' \in \Lambda$, $\gamma + \mathcal{R}$ and $\gamma' + \mathcal{R}$ do not intersect ⁶⁵⁰ (except on a set of zero measure). This is why the exchange of pieces is in fact 651 measurably conjugate to the translation R_β . Indeed the vector of coordinates 652 of $\pi(f(x_0x_1 \cdots x_{n-1}))$ in the basis $(\pi(e_3) - \pi(e_1), \pi(e_3) - \pi(e_2))$ of the plane 653 $x + y + z = 0$ is $n \cdot (1/\beta, 1/\beta^2) - (|x_0 x_1 \cdots x_{n-1}|_1, |x_0 x_1 \cdots x_{n-1}|_2)$. Hence the ⁶⁵⁴ coordinates of $E^n(0)$ in the basis $(e_3 - e_1, e_3 - e_2)$ are equal to $R_\beta^n(0)$ modulo 655 \mathbb{Z}^2 .

656 Bifix codes and exchange of pieces Let $(\mathcal{R}_a)_{a \in A}$ and $(\mathcal{R}'_a)_{a \in A}$ be two ⁶⁵⁷ families of subsets of a compact set $\mathcal R$ incuded in $\mathbb R^d$. We assume that the 658 families $(\mathcal{R}_a)_{a \in A}$ and the $(\mathcal{R}'_a)_{a \in A}$ both form a partition of $\mathcal R$ up to a set of ⁶⁵⁹ zero measure. We assume that there exist vectors e_a such that $\mathcal{R}'_a = \mathcal{R}_a + e_a$ 660 for any $a \in A$. The exchange of pieces associated with these data is the map E
661 defined on R (except a set of measure zero) by $E(z) = z + e_a$ if $z \in \mathcal{R}_a$. The defined on R (except a set of measure zero) by $E(z) = z + e_a$ if $z \in \mathcal{R}_a$. The ⁶⁶² notion of natural coding of an exchange of pieces extends here in a natural way. 663 Assume that E is an exchange of pieces as defined above. Let S be the set 664 of factors of the natural codings of E. We assume that S is uniformly recurrent. 665 By analogy with the case of interval exchanges, let $I_a = \mathcal{R}_a$ and let $J_a =$ ⁶⁶⁶ $E(\mathcal{R}_a)$. For a word $w \in A^*$, one defines similarly as for interval exchanges I_w $_{667}$ and J_w .

668 Let X be a finite S-maximal prefix code. The family I_w , $w \in X$, is a 669 partition (up to sets of zero measure) of \mathcal{R} . If X is a finite S -maximal suffix \cos code, then the family J_m is a partition (up to sets of zero measure) of \mathcal{R} . Let code, then the family J_w is a partition (up to sets of zero measure) of R. Let 671 f be a coding morphism for X. If X is a finite S-maximal bifix code, then E_X is the exchange of pieces E_f (defined as for interval exchanges), hence the σ ₆₇₃ decoding of x with respect to f is the natural coding of the exchange of pieces 674 associated with f. In particular, S being the Tribonacci set, the decoding of S ϵ_{675} by a finite S-maximal bifix code is again the natural coding of an exchange of pieces. If X is the set of factors of length n of S, then E_f is in fact equal to R_{β}^n 676 677 (otherwise, there is no reason for this exchange of pieces to be a translation). ⁶⁷⁸ The analogues of Proposition [3.8](#page-12-0) and [3.10](#page-13-0) thus hold here also.

679 4.4 Subgroups of finite index

680 We denote by $FG(A)$ the free group on the set A.

 ϵ_{681} Let S be a recurrent set containing the alphabet A. We say that S has the 682 finite index basis property if the following holds: a finite bifix code $X \subset S$ is an 683 S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup of $_{684}$ index d of $FG(A)$.

⁶⁸⁵ The following is a consequence of the main result of [\[5](#page-23-0)].

 686 Theorem 4.5 A regular interval exchange set has the finite index basis prop-⁶⁸⁷ erty.

⁶⁸⁸ Proof. Let T be a regular interval exchange transformation and let $S = F(T)$. $\sin \theta$ Since T is regular, S is uniformly recurrent and by Proposition [4.2](#page-17-0), it is a tree ⁶⁹⁰ set. By Theorem 4.4 in[[5\]](#page-23-0), a uniformly recurrent tree set has the finite index ⁶⁹¹ basis property, and thus the conclusion follows.

 692 Note that Theorem 4.5 implies in particular that if T is a regular s-interval ϵ_{693} exchange set and if X is a finite S-maximal bifix code of S-degree d, then 694 Card $(X) = d(s-1) + 1$. Indeed, by Schreier's Formula a basis of a subgroup of 695 index d in a free group of rank s has $d(s-1) + 1$ elements.

⁶⁹⁶ We use Theorem [4.5](#page-21-0) to give another proof of Theorem [3.12](#page-13-0). For this, we ⁶⁹⁷ recall the following notion.

⁶⁹⁸ Let T be an interval exchange transformation on $I = [0,1]$ relative to ⁶⁹⁹ $(I_a)_{a \in A}$. Let G be a transitive permutation group on a finite set Q. Let ⁷⁰⁰ $\varphi : A^* \to G$ be a morphism and let ψ be the map from *I* into *G* defined
⁷⁰¹ by $\psi(z) = \varphi(a)$ if $z \in I_a$. The *skew product* of *T* and *G* is the transformation by $\psi(z) = \varphi(a)$ if $z \in I_a$. The skew product of T and G is the transformation 702 U on $I \times Q$ defined by

$$
U(z,q) = (T(z), q\psi(z))
$$

 τ_{03} (where $q\psi(z)$ is the result of the action of the permutation $\psi(z)$ on $q \in Q$). ⁷⁰⁴ Such a transformation is equivalent to an interval exchange transformation via τ_{705} the identification of $I \times Q$ with an interval obtained by placing the $d = \text{Card}(Q)$ τ_{06} copies of I in sequence. This is called an *interval exchange transformation on a* τ_{107} stack in [\[7](#page-23-0)](see also [[19\]](#page-24-0)). If T is regular, then U is also regular.

 708 Let T be a regular interval exchange transformation and let $S = F(T)$. Let γ_{09} X be a finite S-maximal bifix code of S-degree $d = d_X(S)$. By Theorem [4.5,](#page-21-0) X $_{710}$ is a basis of a subgroup H of index d of $FG(A)$. Let G be the representation of $_{711}$ $FG(A)$ on the right cosets of H and let φ be the natural morphism from $FG(A)$ $_{712}$ onto G. We identify the right cosets of H with the set $Q = \{1, 2, \ldots, d\}$ with 1 713 identified to H. Thus G is a transitive permutation group on Q and H is the $_{714}$ inverse image by φ of the permutations fixing 1.

⁷¹⁵ The transformation induced by the skew product U on $I \times \{1\}$ is clearly
⁷¹⁶ equivalent to the transformation $T_f = T_X$ where f is a coding morphism for the equivalent to the transformation $T_f = T_X$ where f is a coding morphism for the 717 S-maximal bifix code X. Thus T_X is a regular interval exchange transformation.

718 Example 4.6 Let T be the rotation of Example [3.1.](#page-9-0) Let $Q = \{1, 2, 3\}$ and let φ ψ_{719} be the morphism from A^* into the symmetric group on Q defined by $\varphi(a) = (23)$ 720 and $\varphi(b) = (12)$. The transformation induced by the skew product of T and G 721 on $I \times \{1\}$ corresponds to the bifix code X of Example [3.15](#page-15-0). For example, we 722 have $U : (1 - \alpha, 1) \rightarrow (0, 2) \rightarrow (\alpha, 3) \rightarrow (2\alpha, 2) \rightarrow (3\alpha - 1, 1)$ (see Figure 4.4) and the corresponding word of X is baab.

Figure 4.4: The transformation U.

723

References

- [1] Vladimir I. Arnold. Small denominators and problems of stability of motion $_{726}$ in classical and celestial mechanics. Uspehi Mat. Nauk, $18(6 (114))$:91-192. 1963. [2](#page-2-0)
- [2] Jean Berstel, Clelia De Felice, Dominique Perrin, Christophe Reutenauer, and Giuseppina Rindone. Bifix codes and Sturmian words. J. Algebra, 369:146–202, 2012. [2](#page-2-0), [9](#page-9-0), [10](#page-10-0), [11](#page-11-0), [12](#page-12-0), [15](#page-15-0)
- [3] Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and Automata. Cambridge University Press, 2009. [5,](#page-5-0) [9,](#page-9-0) [11](#page-11-0)
- [4] Val´erie Berth´e, Clelia De Felice, Francesco Dolce, Julien Leroy, Dominique Perrin, Christophe Reutenauer, and Giuseppina Rindone. Maximal bifix decoding. 2013. <http://arxiv.org/abs/1308.5396>. [2](#page-2-0), [17](#page-17-0), [18](#page-18-0)
- [5] Val´erie Berth´e, Clelia De Felice, Francesco Dolce, Julien Leroy, Dominique Perrin, Christophe Reutenauer, and Giuseppina Rindone. The finite index basis property. 2014. <http://arxiv.org/abs/1305.0127>. [2,](#page-2-0) [21](#page-21-0)
- [6] Val´erie Berth´e and Michel Rigo, editors. Combinatorics, automata and number theory, volume 135 of Encyclopedia of Mathematics and its Appli-cations. Cambridge University Press, Cambridge, 2010. [3,](#page-3-0) [8](#page-8-0), [9](#page-9-0)
- [7] Michael D. Boshernitzan and C. R. Carroll. An extension of Lagrange's theorem to interval exchange transformations over quadratic fields. J. Anal. Math., 72:21–44, 1997. [2,](#page-2-0) [22](#page-22-0)
- 745 [8] Isaac P. Cornfeld, Sergei V. Fomin, and Yakov G. Sinaĭ. Ergodic theory, volume 245 of Grundlehren der Mathematischen Wissenschaften [Funda- mental Principles of Mathematical Sciences]. Springer-Verlag, New York, ⁷⁴⁸ 1982. Translated from the Russian by A. B. Sosinskiı̈. [3](#page-3-0)
- $[9]$ Sébastien Ferenczi and Luca Q. Zamboni. Languages of k-interval exchange transformations. Bull. Lond. Math. Soc., 40(4):705–714, 2008. [2](#page-2-0), [17](#page-17-0), [18](#page-18-0)
- [10] N. Pytheas Fogg. Substitutions in dynamics, arithmetics and combina- torics, volume 1794 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002. Edited by V. Berth´e, S. Ferenczi, C. Mauduit and A. Siegel. [7](#page-7-0)
- [11] Jacques Justin and Laurent Vuillon. Return words in Sturmian and epis-turmian words. Theor. Inform. Appl., 34(5):343–356, 2000. [7](#page-7-0)
- [12] Michael Keane. Interval exchange transformations. Math. Z., 141:25–31, 1975. [2](#page-2-0), [5,](#page-5-0) [8](#page-8-0)
- [13] M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press, 2002. [7](#page-7-0), [9](#page-9-0)
- $_{761}$ [14] M. Lothaire. *Applied combinatorics on words*, volume 105 of *Encyclopedia* of Mathematics and its Applications. Cambridge University Press, Cam-bridge, 2005. [18](#page-18-0)
- $_{764}$ [15] V. I. Oseledec. The spectrum of ergodic automorphisms. *Dokl. Akad. Nauk* SSSR, 168:1009–1011, 1966. [2](#page-2-0)
- $_{766}$ [16] Martine Queffélec. Substitution dynamical systems—spectral analysis, vol-
- ume 1294 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, second edition, 2010. [19](#page-19-0)
- $_{769}$ [17] Gérard Rauzy. Échanges d'intervalles et transformations induites. Acta Arith., 34(4):315–328, 1979. [4,](#page-4-0) [18](#page-18-0)
- [18] Gérard Rauzy. Nombres algébriques et substitutions. Bull. Soc. Math. France, 110(2):147–178, 1982. [19,](#page-19-0) [20](#page-20-0)
- [19] William A. Veech. Finite group extensions of irrational rotations. Israel
- $J. Math., 21(2-3): 240-259, 1975.$ Conference on Ergodic Theory and Topo-logical Dynamics (Kibbutz Lavi, 1974). [2](#page-2-0), [22](#page-22-0)