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Output feedback stabilization of the Korteweg-de Vries equation *

This paper presents an output feedback control law for the Korteweg-de Vries equation. The control design is based on the backstepping method and the introduction of an appropriate observer. The local exponential stability of the closed-loop system is proven. Some numerical simulations are shown to illustrate this theoretical result.

Introduction

The Korteweg-de Vries (KdV) equation was introduced in 1895 to describe approximatively the behavior of long waves in a water channel of relatively shallow depth. Since then, this equation has attracted a lot of attention due to fascinating mathematical features and a number of possible applications.

From a control viewpoint, the KdV system also presents amazing behaviors. Surprisingly, by considering different boundary actuators on a bounded interval [0, L], we get control results of different nature. Roughly speaking, the system is exactly controllable when the control acts from the right endpoint x = L ( [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF][START_REF] Cerpa | Boundary controllability of the Korteweg-de Vries equation on a bounded domain[END_REF]), and null-controllable when the control acts from the left endpoint x = 0 ( [START_REF] Glass | Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit[END_REF][START_REF] Guilleron | Null controllability of a linear KdV equation on an interval with special boundary conditions[END_REF][START_REF] Carreño | On the non-uniform null controllability of a linear KdV equation[END_REF]).

Due to this kind of phenomena, the control properties of this nonlinear dispersive partial differential equation have been deeply studied. However, there still are many open questions. See [START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF], [START_REF] Rosier | Control and stabilization of the Korteweg-de Vries equation: recent progresses[END_REF], [START_REF] Marx | Global stabilization of a Korteweg-de Vries equation with saturating distributed control[END_REF], and the references therein.

In this article we focus on the boundary stabilizability problem for the KdV equation with a control acting on the left Dirichlet boundary condition. The studied system can be written as follows

     u t + u x + u xxx + uu x = 0, u(t, 0) = κ(t), u x (t, L) = 0, u xx (t, L) = 0, u(0, x) = u 0 (x), (1) 
where κ = κ(t) denotes the boundary control input and u 0 = u 0 (x) is the initial condition.

Concerning the stability when no control is applied (κ = 0), it is known that the linear system is asymptotically stable (see [START_REF] Tang | Stabilization of Linearized Korteweg-de Vries Systems with Antidiffusion[END_REF]Lemma 3]). We aim here to design an output feedback control in order to get the exponential stability of the closed-loop system. Some full state feedback controls have already been designed in the literature for KdV systems. When the control acts on the right endpoint, we find [START_REF] Cerpa | Rapid exponential stabilization for a linear Korteweg-de Vries equation[END_REF] where a Gramian-based method is applied, and [START_REF] Coron | Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right[END_REF] where some suitable integral transforms are used. In [START_REF] Tang | Stabilization of Linearized Korteweg-de Vries Systems with Antidiffusion[END_REF], [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF] and [START_REF] Marx | Output Feedback Control of the Linear Korteweg-de Vries Equation[END_REF], the authors use the backstepping method to design feedback controllers acting on the left endpoint of the interval.

However, in most cases, we have no access to measure the full state of the system. Thus, it is more realistic to design an output feedback control, i.e., a feedback law depending only on some partial measurements of the state.

For autonomous linear finite-dimensional systems, the separation principle holds. Thus, stabilizability and observability assumptions are sufficient to ensure the stability of the closedloop system. In other words, if there exists a controller, which asymptotically stabilizes the origin of the system and an observer which converges asymptotically to the state system, the output feedback built from this observer and this state feedback asymptotically stabilizes the origin of the system. The case of autonomous nonlinear finite-dimensional systems depends critically on the structure of the system. We can only hope having a semi-global result (see e.g [START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF]). In a PDE framework, this principle, even for linear systems, is no longer true and the stability of the closed-loop system is not guaranteed.

The basic question to state the problem is which kind of measurements we are going to consider, being the boundary case the most challenging one. In [START_REF] Marx | Output Feedback Control of the Linear Korteweg-de Vries Equation[END_REF] we consider the linear KdV equation with boundary conditions u(t, 0) = κ(t), u(t, L) = 0, u x (t, L) = 0.
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In that paper, we see that this system is not observable from the output y(t) = u x (t, 0) for some values of L. However, we design an output feedback law exponentially stabilizing the system for the output given by y(t) = u xx (t, L). Thus, we see that the choice of the output is crucial. In [START_REF] Hasan | Output-feedback stabilization of the Korteweg de-Vries equation[END_REF], the same controller has been applied to the nonlinear Korteweg-de Vries equation.

In this paper, we will consider the nonlinear KdV equation (1) with measurement

y(t) = u(t, L). (3) 
Independently to [START_REF] Marx | Output Feedback Control of the Linear Korteweg-de Vries Equation[END_REF] and to the present paper, Tang and Krstic have developed the same program for similar linear KdV equations. Full state [START_REF] Tang | Stabilization of Linearized Korteweg-de Vries Systems with Antidiffusion[END_REF] and output state [START_REF] Tang | Stabilization of Linearized Korteweg-de Vries with Anti-diffusion by Boundary Feedback with Non-collocated Observation[END_REF] feedback controls are designed by using the backstepping method. This paper is organized as follows. In Section 2, we state our main result. Section 3 is devoted to recall the feedback control designed in [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF]. The observer is built in Section 4. In Section 5, the stability of the linear closed-loop controller-observer system is proven. In Section 6, we prove the local stability of the nonlinear closed loop controller-observer system. Some numerical simulations are presented in Section 7. Finally, Section 8 states some conclusions.

Main Result

Based on [START_REF] Krstic | Boundary control of PDEs. A course on backstepping designs[END_REF] and [START_REF] Smyshlyaev | Backstepping observers for a class of parabolic PDEs[END_REF], we built an observer for [START_REF] Carreño | On the non-uniform null controllability of a linear KdV equation[END_REF]. More precisely, we define, for some appropriate function p 1 (x), the following copy of the plant with a term depending on the observation error

     ût + ûx + ûxxx + ûû x + p 1 (x)[y(t) -û(t, L)] = 0, û(t, 0) = κ(t), ûx (t, L) = ûxx (t, L) = 0, û(0, x) = û0 . (4)
As mentioned in Section 1, our main result is the local stabilization of the KdV equation by using the output (3), as stated in the following theorem whose proof is given in Section 6.

Theorem 1 For any λ > 0, there exist an output feedback law κ(t) := κ(û(t, x)), a function p 1 = p 1 (x), and two constants C > 0, r > 0 such that for any initial conditions u

0 , û0 ∈ L 2 (0, L) satisfying u 0 L 2 (0,L) ≤ r, û0 L 2 (0,L) ≤ r, (5) 
the solution of (1)-( 3)-( 4) satisfies

u(t, •) -û(t, •) L 2 (0,L) + û(t, •) L 2 (0,L) ≤ Ce -λt u 0 -û0 L 2 (0,L) + û0 L 2 (0,L) , ∀t ≥ 0. ( 6 
)
Remark 1 Notice that from this theorem we get the exponential decreasing to 0 of the L 2norm of the solution u = u(t, x) provided that the L 2 -norm of the initial conditions of the plant and the observer are sufficiently small.

Control Design

The backstepping design applied here is based on the linear part of the equation. Thus, we consider the control system linearized around the origin

u t + u x + u xxx = 0, u(t, 0) = κ(t), u x (t, L) = u xx (t, L) = 0, (7) 
and the linear observer

ût + ûx + ûxxx + p 1 (x)[y(t) -ûxx (t, L)] = 0, û(t, 0) = κ(t), ûx (t, L) = ûxx (t, L) = 0. ( 8 
)
The standard method of output feedback design follows a three-step strategy. We first design the full state feedback control. Next, we built the observer. Finally, we prove that plugging the observer state into the feedback law stabilizes the closed loop system.

In [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF] the following Volterra transformation is introduced

w(x) = Π(u(x)) := u(x) - L x k(x, y)u(y)dy. (9) 
The function k is chosen such that u = u(t, x), solution of ( 7) with control

κ(t) = L 0 k(0, y)u(t, y)dy, (10) 
is mapped into the trajectory w = w(t, x), solution of the linear system

w t + w x + w xxx + λw = 0, w(t, 0) = w x (t, L) = w xx (t, L) = 0, (11) 
which is exponentially stable for λ > 0, with a decay rate at least equal to λ.

The kernel function k = k(x, y) is characterized by

             k xxx + k yyy + k x + k y = -λk, in T , k(x, L) + k yy (x, L) = 0, in [0, L], k(x, x) = 0, in [0, L], k x (x, x) = λ 3 (L -x), in [0, L], (12) 
where

T := {(x, y)/x ∈ [0, L], y ∈ [x, L]}.
The solution of ( 12) exists. This is proved in [3, Section VI] by using the method of successive approximations. Unlikely the case of heat or wave equations, we do not have an explicit solution.

In [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF] it is proved that the transformation ( 9) linking ( 1) and ( 11) is invertible, continuous and with a continuous inverse function. Therefore, the exponential decay for w, solution of [START_REF] Krstic | Boundary control of PDEs. A course on backstepping designs[END_REF], implies the exponential decay for the solution u controlled by [START_REF] Hasan | Output-feedback stabilization of the Korteweg de-Vries equation[END_REF]. Thus, with this method, the following theorem is proven.

Theorem 2 ([3]) For any λ > 0, there exists C > 0 such that u(t, •) L 2 (0,L) ≤ Ce -λt u(0, •) L 2 (0,L) , ∀t ≥ 0, ( 13 
)
for any solution of (7)- [START_REF] Hasan | Output-feedback stabilization of the Korteweg de-Vries equation[END_REF].

We give later more details on the observer design. Let us remark that the output feedback law is designed as

κ(t) := L 0 k(0, y)û(t, y)dy, ( 14 
)
where û is the solution of ( 8). Thus we get the following result, which can be compared to [START_REF] Marx | Output Feedback Control of the Linear Korteweg-de Vries Equation[END_REF]. The proof is given in Section 5.

Theorem 3 For any λ > 0, there exists C > 0 such that for any solution of (7)-( 8)- [START_REF] Pazoto | Unique continuation and decay for the Korteweg-de Vries equation with localized damping[END_REF] we have

u(t, •) -û(t, •) L 2 (0,L) + û(t, •) L 2 (0,L) ≤ Ce -λt u(0, •) L 2 (0,L) , ∀t ≥ 0. ( 15 
)
Remark 2 Notice that from this theorem, we get the exponential decreasing to 0 of the L 2norm of the solution u = u(t, x). This result is different from [START_REF] Marx | Output Feedback Control of the Linear Korteweg-de Vries Equation[END_REF], where the initial condition has to be chosen in H 3 (0, L). This is due to the fact that the output and the boundary conditions are different.

Observer design

The observer ( 4) is based on a Volterra transformation. It transforms the solution ũ := u -û which fullfills the following PDE

     ũt + ũx + ũxxx -p 1 (x)[ũ(t, L)] = 0, ũ(t, 0) = ũx (t, L) = ũxx (t, L) = 0, ũ(0, x) = u 0 (x) -û0 (x) := ũ0 (x), ( 16 
) into the following PDE     
wt + wx + wxxx + λ w = 0, w(t, 0) = wx (t, L) = wxx (t, L) = 0, w(0, x) = w0 (x).
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We choose the same λ than the one used to design the controller. The transformation is given by ũ

(x) := Π o ( w(x)) = w(x) - L x p(x, y) w(y)dy, ( 18 
)
where p is a kernel that satisfies a partial differential equation and will be defined in the following.

In order to find the kernel, we find the relation between ( 16) and ( 17) through the transformation [START_REF] Rosier | Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain[END_REF]. To do so, we derive the following ũt (t, x) = wt (t, y) - 

L x p(x,
where the last line has been obtained performing some integrations by parts.

In 

From this equation, we get the following four conditions.

1. Equation for all (x, y) ∈ T :

p xxx (x, y) + p yyy (x, y) + p x (x, y) + p y (x, y) = λp(x, y). (25) 
2. First boundary condition on (x, x) where x ∈ [0, L]:

d 2 dx 2 p(x, x) + p xx (x, x) -p yy (x, x) + d dx p x (x, x) -λ = 0. ( 26 
)
3. Second boundary condition on (x, x) where x ∈ [0, L]:

2 d dx p(x, x) + p y (x, x) + p x (x, x) = 0. ( 27 
)
4. Appropriate choice of p 1 :

p 1 (x) = p yy (x, L) + p(x, L). ( 28 
)
Moreover, from the boundary conditions, we get two more restrictions.

5. To satisfy w(t, 0) = 0, transformation [START_REF] Rosier | Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain[END_REF] imposes

p(0, y) = 0, (29) 
which together with (27) implies that p(x, x) = 0.

(30) 6. To satisfy wxx (t, L) = 0, transformation [START_REF] Rosier | Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain[END_REF] imposes

p x (L, L) = 0. ( 31 
)
Finally, p solves the following equation

             p xxx + p yyy + p x + p y = λp, ∀(x, y) ∈ T , p(x, x) = 0, ∀x ∈ [0, L], p x (x, x) = λ 3 (x -L), ∀x ∈ [0, L], p(0, y) = 0, ∀y ∈ [0, L]. (32) 
Let us make the following change of variables

x = L -y, ȳ = L -x, (33) 
and define F (x, ȳ) := p(x, y). Hence, F satisfies

                 F xxx (x, ȳ) + F ȳ ȳ ȳ(x, ȳ) + F ȳ (x, ȳ) + F x(x, ȳ) = -λF (x, ȳ) (x, ȳ) ∈ T , F (x, x) = 0 x ∈ [0, L], F x(x, x) = λ 3 (L -x) x ∈ [0, L], F (x, L) = 0 ȳ ∈ [0, L]. (34) 
This equation has already been studied in [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF], where no explicit solution has been found, but where the existence of a solution has been proved. Therefore, we can conclude that F = F (x, y) and consequently the kernel p = p(x, y) both exist. Note that the function Π o defined by ( 18) is linear (by definition) and continuous (because of the existence of p). Moreover, Π o is invertible with continuous inverse given by

w(x) = Π -1 o (ũ(x)) = ũ(x) + L x m(x, y)ũ(y)dy (35) 
where m = m(x, y) is also a solution of an equation like (32) in the triangular domain T .

Asymptotic stability of the output feedback

The closed-loop system through the transformations ( 9) and ( 18) can be written as follows

                   ŵt + ŵx + ŵxxx + λ ŵ = -p 1 (x) - L x k(x, y)p 1 (y)dy w(t, L) ŵ(t, 0) = ŵx (t, L) = ŵxx (t, L) = 0 wt + wx + wxxx + λ w = 0 w(t, 0) = wx (t, L) = wxx (t, L) = 0. ( 36 
)
Let us focus on the following Lyapunov function

V (t) := V 1 (t) + V 2 (t) (37) 
where

V 1 (t) = A L 0 ŵ(t, x) 2 dx, (38) 
and

V 2 (t) = B L 0 w(t, x) 2 dx. (39) 
The positive values A and B are chosen later. After performing some integrations by parts, we obtain

V1 (t) ≤ -2λ + D 2 A V 1 (t) + A 2 L| w(t, L)| 2 , (40) 
where

D = max x∈[0,L] p 1 (x) - L x k(x, y)p 1 (y)dy . (41) 
We have also

V2 (t) ≤ -2λV 2 (t) -B| w(t, L)| 2 . (42) 
Therefore, by choosing

A ≥ D 2 2λ (43) and B ≥ A 2 L, (44) 
we get

V (t) ≤ -2µV (t), (45) 
where

µ = λ - D 2 2A > 0. ( 46 
)
This concludes the proof of Theorem 3 by getting an exponential decay rate equal to µ.

Nonlinear system

The aim of this section is to prove Theorem 1, i.e., we have to prove the local exponential stability of the nonlinear closed-loop system

         u t + u x + u xxx + u x u = 0, u(t, 0) = κ(t), u x (t, L) = u xx (t, L) = 0, ût + ûx + ûxxx + ûx û + p 1 (x)[y(t) -û(t, L)] = 0, û(t, 0) = κ(t), ûx (t, L) = ûxx (t, L) = 0, (47) 
where

κ(t) = L 0 k(0, y)û(t, y)dy. (48) 
As before, we consider the evolution of the couple (ũ, û) where ũ stands for the error ũ = u -û. Using Π o and its inverse (see [START_REF] Rosier | Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain[END_REF] and ( 35)), we define w = Π -1 o (ũ). We denote ŵ = Π(û), where Π is defined in [START_REF] Guilleron | Null controllability of a linear KdV equation on an interval with special boundary conditions[END_REF]. The inverse Π -1 is given by û

(x) = Π -1 ( ŵ(x)) = ŵ(x) + L x l(x, y) ŵ(y)dy, (49) 
where l solves the following equation

             l xxx + l yyy + l x + l y = λl, in T , l(x, L) + l yy (x, L) = 0, in [0, L], l(x, x) = 0, in [0, L], l x (x, x) = λ 3 (L -x), in [0, L]. (50) 
The existence of such a kernel l has been proven in [3, see sections IV and VI]. Thus, we can see that (ũ, û) is mapped into ( w, ŵ) solution of the coupled target system ŵt (t,x) + ŵx (t, x) + ŵxxx (t, x) + λ ŵ(t, x) 

= -p 1 (x) - L x k(x,
with boundary conditions

ŵ(t, 0) = ŵx (t, L) = ŵxx (t, L) = 0, (53) w 
(t, 0) = wx (t, L) = wxx (t, L) = 0. (54) 
As in previous section, we will prove the stability of this system by using the same Lyapunov function (37). We derivate (38) with respect to time as follows

V1 (t) = 2A L 0 ŵt (t, x) ŵ(t, x)dx ≤ -2λ + D 2 A V 1 (t)+A 2 L| w(t, L)| 2 -2A L 0 ŵ(t, x)F (t, x)dx, (55) where 
F (t, x) = ŵ(t, x) ŵx (t, x) + ŵ(t, x) L x l x (x, y) ŵ(t, y)dy + ŵx (t, x) L x l(x, y) ŵ(t, y)dy + L x l(x, y) ŵ(t, y)dy L x l x (x, y) ŵ(t, y)dy + 1 2 L x |û(t, y)| 2 k y (x, y)dy. ( 56 
)
By using the same argument as in [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF][START_REF] Coron | Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right[END_REF], we can prove the existence of a positive constant

K 1 = K 1 ( l C 1 (T ) , k C 1 (T ) ) such that A L 0 ŵ(t, x)F (t, x)dx ≤ K 1 L 0 | ŵ(t, x)| 2 dx 3 2 . ( 57 
)
Then, we estimate V2 (t) as follows

V2 (t) ≤ -2λV 2 (t) -2B L 0 w(t, x)G(t, x)dx -B| w(t, L)| 2 (58)
the time step ∆t = T f inal /N t . We approximate the solution with the notation u(t, x) ≈ U i j , where i and j refer to time and space discrete variables, respectively. Some used approximations of the derivative are given by

u x (t, x) ≈ ∇ -(U i j ) = U i j -U i j-1 ∆x (66) or u x (t, x) ≈ ∇ + (U i j ) = U i j+1 -U i j ∆x . (67) 
As in [START_REF] Pazoto | Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping[END_REF], we choose rather the following

u x (t, x) ≈ 1 2 (∇ + + ∇ -)(U i j ) = ∇(U i j ). ( 68 
)
For the other differentiation operator, we use

u xxx (t, x) ≈ ∇ + ∇ + ∇ -(U i j ) (69) 
and 

u t (t, x) ≈ U i+1 j -U i j ∆t . (70) 
. . . 0 -1 1         , (71) 
D + = 1 ∆x         -1 1 0 . . . 0 0 -1 1 . . . . . . . . . . . . . . . . . . 0 . . . 0 -1 1 0 . . . . . . 0 -1         , (72) 
U i := U i 1 U i 2 . . . U i Nx+1 T
the plant state, and

O i := O i 1 O i 2 . . . O i Nx+1 T
the observer state. The state output will be denoted by Y U and Y O stands for the observer output. The discretized controller gain K and observer gain P , respectively, are defined by

K = K 1 K 2 . . . K Nx+1 T
the observer (4). Finally, Figure 3 shows that the observation error (u -û) converges to 0 in L 2 -norm. From the simulations, this convergence seems to be exponential as expected. 3)-( 4)-( 14) 

Conclusion

In this paper, an output feedback control has been designed for the Korteweg-de Vries equation. This controller uses an observer and gives the local exponential stability of the closed-loop system. Numerical simulations have been provided to illustrate the efficiency of the output feedback design.

In order to go to a global feedback control for the nonlinear KdV equation, a first step should be to build some nonlinear boundary controls giving a semi-global exponential stability. That means that for any fixed r > 0 we can find a feedback law exponentially stabilizing to the origin any solution with initial data u 0 whose L 2 -norm is smaller than r. The term semi-global comes from the fact that the decay rate can depend on r. Some internal feedback controls are given for KdV in [START_REF] Pazoto | Unique continuation and decay for the Korteweg-de Vries equation with localized damping[END_REF], [START_REF] Rosier | Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain[END_REF] and [START_REF] Marx | Global stabilization of a Korteweg-de Vries equation with saturating distributed control[END_REF]. The latter considers saturated controls.

The second step, in order to deal with the output case, is to design an observer for the nonlinear KdV equation to obtain a global asymptotic stability. We could for instance follow the same approach than in the finite-dimensional case performed in [START_REF] Gauthier | A simple observer for nonlinear systems applications to bioreactors[END_REF].

  Let us introduce a matrix notation. Let us consider D -, D + , D ∈ R Nx×Nx given by D -

  and D = (D + + D -)/2. Let us define A := D + D + D -+ D, and C := A + ∆tI d where I d is the identity matrix. Moreover, we will denote, for each discrete time i,

Figure 1 :

 1 Figure 1: Solution of the closed-loop system (1)-(3)-(4)-[START_REF] Pazoto | Unique continuation and decay for the Korteweg-de Vries equation with localized damping[END_REF] 

Figure 2 :

 2 Figure 2: Time evolution of the L 2 -norm for the state (blue line) and the observer (red line).

Figure 3 :

 3 Figure 3: Time evolution of the L 2 -norm for the observation error u -û.

  addition, we have ũx (t, x) = wx (t, x) + p(x, x) w(t, x) -

						L
						p x (x, y) w(t, y)dy,	(21)
						x
	ũxx (t, x) = wxx (t, x)+	d dx	p(x, x) w(t, x)+p(x, x) wx (t, x)+p x (x, x) w(t, x)-	x	L	p xx (x, y) w(t, y)dy, (22)
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				+ p x (x, x) wx (t, x) + p xx (x, x) w(t, x) -	p xxx (x, y) w(t, y)dy, (23)
						x
	By adding (19), (21) and (23), we get		

ũt (t, x) + ũx (t, x) + ũxxx (t, x) -p 1 (x)ũ(t, L) = wt (t, x) + wx (t, x) + wxxx (t, x) + λ w(t, x) -L x w(t, y)[p xxx + p yyy + p x + p y -λp](x, y)dy + w(t, L)[p yy (x, L) + p(x, L) -p 1 (x)] + w(t, x) d 2 dx 2 p(x, x) + p xx (x,

x) -p yy (x, x) + d dx p x (x, x) -λ + wx (t, x) 2 d dx p(x, x) + p y (x, x) + p x (x, x) .
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where G = G(t, x) is the right-hand side of (52). As before, we can prove the existence of a positive constant

Therefore, for A, B, µ satisfying (43)-( 44)-( 46), we have

If there exists t 0 ≥ 0 such that w(t 0 , .)

and ŵ(t 0 , .)

we can conclude V (t) ≤ -µV (t), ∀t ≥ t 0 .

Thus, we get w(t, .) L 2 (0,L) + ŵ(t, .)

This concludes the proof of Theorem 1 by getting the exponential decay of the system with a smallness condition on the L 2 -norm of the initial data u 0 , û0 .

Numerical Simulations

In this section we provide some numerical simulations showing the effectiveness of our control design. In order to discretize our KdV equation, we use a finite difference scheme inspired from [START_REF] Pazoto | Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping[END_REF]. The final time for simulations is denoted by T f inal . We choose (N x + 1) points to build a uniform spatial discretization of the interval [0, L] and (N t + 1) points to build a uniform time discretization of the interval [0, T f inal ]. Thus, the space step is ∆x = L/N x and and P = P 1 P 2 . . . P Nx+1 T .

We compute them from a successive approximations method (see [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF]). Since we have the nonlinearity uu x , we use an iterative fixed point method to solve the nonlinear system

With N iter = 5, which denotes the number of iterations of the fixed point method, we get good approximations of the solutions. Given U 0 , O 0 = 0, K, and P , the following is the structure of the algorithm used in our simulations.

• Setting J(1) = O i , for all k ∈ {1, . . . , N iter }, solve

Set O i+1 = J(N iter );

• Setting J (1) = U i , for all k ∈ {1, . . . , N iter }, solve

Set U i+1 = J(N iter );

• t = t + dt;

End

In order to illustrate our theoretical results, we perform some simulations on the domain [0, 2π]. We take N x = 30, N t = 167, T f inal = 10, λ = 2, u 0 (x) = sin(x) and û0 (x) = 0. Figure 1 illustrates the convergence to the origin of the solution of the closed-loop system (1)-( 3)-( 4)- [START_REF] Pazoto | Unique continuation and decay for the Korteweg-de Vries equation with localized damping[END_REF]. Figure 2 illustrates the L 2 -norm of this solution and the L 2 -norm of the solution of