
HAL Id: hal-01367650
https://hal.science/hal-01367650v2

Preprint submitted on 20 Sep 2016 (v2), last revised 26 Sep 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Output feedback stabilization of the Korteweg-de Vries
equation

Swann Marx, Eduardo Cerpa

To cite this version:
Swann Marx, Eduardo Cerpa. Output feedback stabilization of the Korteweg-de Vries equation. 2016.
�hal-01367650v2�

https://hal.science/hal-01367650v2
https://hal.archives-ouvertes.fr


Output feedback stabilization of the Korteweg-de Vries
equation

Swann Marx∗ and Eduardo Cerpa†

September 20, 2016

Abstract

This paper presents an output feedback control law for the Korteweg-de Vries equa-
tion. The control design is based on the backstepping method and the introduction of an
appropriate observer. The local exponential stability of the closed-loop system is proven.
Some numerical simulations are shown to illustrate this theoretical result.

1 Introduction

The Korteweg-de Vries (KdV) equation was introduced in 1895 to describe approximatively
the behavior of long waves in a water channel of relatively shallow depth. Since then, this
equation has attracted a lot of attention due to fascinating mathematical features and a
number of possible applications.

From a control viewpoint, the KdV system also presents amazing behaviors. Surprisingly,
by considering different boundary actuators on a bounded interval [0, L], we get control results
of different nature. Roughly speaking, the system is exactly controllable when the control acts
from the right endpoint x = L ([16, 5]), and null-controllable when the control acts from the
left endpoint x = 0 ([8, 9, 1]).

Due to this kind of phenomena, the control properties of this nonlinear dispersive partial
differential equation have been deeply studied. However, there still are many open questions.
See [2], [17], [13], and the references therein.

In this article we focus on the boundary stabilizability problem for the KdV equation with
a control acting on the left Dirichlet boundary condition. The studied system can be written
as follows 

ut + ux + uxxx + uux = 0,

u(t, 0) = κ(t), ux(t, L) = 0, uxx(t, L) = 0,

u(0, x) = u0(x),

(1)
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where κ = κ(t) denotes the boundary control input and u0 = u0(x) is the initial condition.
Concerning the stability when no control is applied (κ = 0), it is known that the linear system
is asymptotically stable (see [21, Lemma 3]). We aim here to design an output feedback control
in order to get the exponential stability of the closed-loop system.

Some full state feedback controls have already been designed in the literature for KdV
systems. When the control acts on the right endpoint, we find [4] where a Gramian-based
method is applied, and [6] where some suitable integral transforms are used. In [21], [3] and
[12], the authors use the backstepping method to design feedback controllers acting on the left
endpoint of the interval.

However, in most cases, we have no access to measure the full state of the system. Thus,
it is more realistic to design an output feedback control, i.e., a feedback law depending only
on some partial measurements of the state.

For autonomous linear finite-dimensional systems, the separation principle holds. Thus,
stabilizability and observability assumptions are sufficient to ensure the stability of the closed-
loop system. In other words, if there exists a controller, which asymptotically stabilizes the
origin of the system and an observer which converges asymptotically to the state system, the
output feedback built from this observer and this state feedback asymptotically stabilizes the
origin of the system. The case of autonomous nonlinear finite-dimensional systems depends
critically on the structure of the system. We can only hope having a semi-global result (see
e.g [22]). In a PDE framework, this principle, even for linear systems, is no longer true and
the stability of the closed-loop system is not guaranteed.

The basic question to state the problem is which kind of measurements we are going to
consider, being the boundary case the most challenging one. In [12] we consider the linear
KdV equation with boundary conditions

u(t, 0) = κ(t), u(t, L) = 0, ux(t, L) = 0. (2)

In that paper, we see that this system is not observable from the output y(t) = ux(t, 0) for
some values of L. However, we design an output feedback law exponentially stabilizing the
system for the output given by y(t) = uxx(t, L). Thus, we see that the choice of the output
is crucial. In [10], the same controller has been applied to the nonlinear Korteweg-de Vries
equation.

In this paper, we will consider the nonlinear KdV equation (1) with measurement

y(t) = u(t, L). (3)

Independently to [12] and to the present paper, Tang and Krstic have developed the same
program for similar linear KdV equations. Full state [21] and output state [20] feedback
controls are designed by using the backstepping method.

This paper is organized as follows. In Section 2, we state our main result. Section 3 is
devoted to recall the feedback control designed in [3]. The observer is built in Section 4. In
Section 5, the stability of the linear closed-loop controller-observer system is proven. In Section
6, we prove the local stability of the nonlinear closed loop controller-observer system. Some
numerical simulations are presented in Section 7. Finally, Section 8 states some conclusions.
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2 Main Result

Based on [11] and [19], we built an observer for (1). More precisely, we define, for some
appropriate function p1(x), the following copy of the plant with a term depending on the
observation error 

ût + ûx + ûxxx + ûûx + p1(x)[y(t)− û(t, L)] = 0,

û(t, 0) = κ(t), ûx(t, L) = ûxx(t, L) = 0,

û(0, x) = û0.

(4)

As mentioned in Section 1, our main result is the local stabilization of the KdV equation
by using the output (3), as stated in the following theorem whose proof is given in Section 6.

Theorem 1 For any λ > 0, there exist an output feedback law κ(t) := κ(û(t, x)), a function
p1 = p1(x), and two constants C > 0, r > 0 such that for any initial conditions u0, û0 ∈
L2(0, L) satisfying

‖u0‖L2(0,L) ≤ r, ‖û0‖L2(0,L) ≤ r, (5)

the solution of (1)-(3)-(4) satisfies

‖u(t, ·)− û(t, ·)‖L2(0,L) + ‖û(t, ·)‖L2(0,L) ≤ Ce−λt
(
‖u0 − û0‖L2(0,L) + ‖û0‖L2(0,L)

)
, ∀t ≥ 0.

(6)

Remark 1 Notice that from this theorem we get the exponential decreasing to 0 of the L2-
norm of the solution u = u(t, x) provided that the L2-norm of the initial conditions of the plant
and the observer are sufficiently small.

3 Control Design

The backstepping design applied here is based on the linear part of the equation. Thus, we
consider the control system linearized around the origin{

ut + ux + uxxx = 0,

u(t, 0) = κ(t), ux(t, L) = uxx(t, L) = 0,
(7)

and the linear observer {
ût + ûx + ûxxx + p1(x)[y(t)− ûxx(t, L)] = 0,

û(t, 0) = κ(t), ûx(t, L) = ûxx(t, L) = 0.
(8)

The standard method of output feedback design follows a three-step strategy. We first
design the full state feedback control. Next, we built the observer. Finally, we prove that
plugging the observer state into the feedback law stabilizes the closed loop system.
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In [3] the following Volterra transformation is introduced

w(x) = Π(u(x)) := u(x)−
∫ L

x

k(x, y)u(y)dy. (9)

The function k is chosen such that u = u(t, x), solution of (7) with control

κ(t) =

∫ L

0

k(0, y)u(t, y)dy, (10)

is mapped into the trajectory w = w(t, x), solution of the linear system{
wt + wx + wxxx + λw = 0,

w(t, 0) = wx(t, L) = wxx(t, L) = 0,
(11)

which is exponentially stable for λ > 0, with a decay rate at least equal to λ.
The kernel function k = k(x, y) is characterized by

kxxx + kyyy + kx + ky = −λk, in T ,
k(x, L) + kyy(x, L) = 0, in [0, L],

k(x, x) = 0, in [0, L],

kx(x, x) =
λ

3
(L− x), in [0, L],

(12)

where T := {(x, y)/x ∈ [0, L], y ∈ [x, L]}. The solution of (12) exists. This is proved in [3,
Section VI] by using the method of successive approximations. Unlikely the case of heat or
wave equations, we do not have an explicit solution.

In [3] it is proved that the transformation (9) linking (1) and (11) is invertible, continuous
and with a continuous inverse function. Therefore, the exponential decay for w, solution of
(11), implies the exponential decay for the solution u controlled by (10). Thus, with this
method, the following theorem is proven.

Theorem 2 ([3]) For any λ > 0, there exists C > 0 such that

‖u(t, ·)‖L2(0,L) ≤ Ce−λt‖u(0, ·)‖L2(0,L), ∀t ≥ 0, (13)

for any solution of (7)-(10).

We give later more details on the observer design. Let us remark that the output feedback
law is designed as

κ(t) :=

∫ L

0

k(0, y)û(t, y)dy, (14)

where û is the solution of (8).
Thus we get the following result, which can be compared to [12]. The proof is given in

Section 5.
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Theorem 3 For any λ > 0, there exists C > 0 such that for any solution of (7)-(8)-(14) we
have

‖u(t, ·) − û(t, ·)‖L2(0,L) + ‖û(t, ·)‖L2(0,L) ≤ Ce−λt‖u(0, ·)‖L2(0,L), ∀t ≥ 0. (15)

Remark 2 Notice that from this theorem, we get the exponential decreasing to 0 of the L2-
norm of the solution u = u(t, x). This result is different from [12], where the initial condition
has to be chosen in H3(0, L). This is due to the fact that the output and the boundary conditions
are different.

4 Observer design

The observer (4) is based on a Volterra transformation. It transforms the solution ũ := u− û
which fullfills the following PDE

ũt + ũx + ũxxx − p1(x)[ũ(t, L)] = 0,

ũ(t, 0) = ũx(t, L) = ũxx(t, L) = 0,

ũ(0, x) = u0(x)− û0(x) := ũ0(x),

(16)

into the following PDE 
w̃t + w̃x + w̃xxx + λw̃ = 0,

w̃(t, 0) = w̃x(t, L) = w̃xx(t, L) = 0,

w̃(0, x) = w̃0(x).

(17)

We choose the same λ than the one used to design the controller. The transformation is
given by

ũ(x) := Πo(w̃(x)) = w̃(x)−
∫ L

x

p(x, y)w̃(y)dy, (18)

where p is a kernel that satisfies a partial differential equation and will be defined in the
following.

In order to find the kernel, we find the relation between (16) and (17) through the trans-
formation (18). To do so, we derive the following

ũt(t, x) =w̃t(t, y)−
∫ L

x

p(x, y)w̃t(t, y)dy (19)

=w̃t(t, y) +

∫ L

x

p(x, y)[w̃y + w̃yyy + λw̃](t, y)dy

=p(x, L)w̃(t, L)− p(x, x)w̃(t, x)− p(x, x)w̃xx(t, x) + py(x, x)wx(t, x)

+ pyy(x, L)w̃(t, L)− pyy(x, x)w̃(t, x)−
∫ L

x

w̃(t, y)[pyyy(x, y) + py(x, y)− λp(x, y)]dy,

(20)

where the last line has been obtained performing some integrations by parts.
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In addition, we have

ũx(t, x) = w̃x(t, x) + p(x, x)w̃(t, x)−
∫ L

x

px(x, y)w̃(t, y)dy, (21)

ũxx(t, x) = w̃xx(t, x)+
d

dx
p(x, x)w̃(t, x)+p(x, x)w̃x(t, x)+px(x, x)w̃(t, x)−

∫ L

x

pxx(x, y)w̃(t, y)dy,

(22)

ũxxx(t, x) = w̃xxx(t, x)+
d2

dx2
p(x, x)w̃(t, x)+2

d

dx
p(x, x)w̃x(t, x)+p(x, x)w̃xx(t, x)+

d

dx
px(x, x)w̃(t, x)

+ px(x, x)w̃x(t, x) + pxx(x, x)w̃(t, x)−
∫ L

x

pxxx(x, y)w̃(t, y)dy, (23)

By adding (19), (21) and (23), we get

ũt(t, x) + ũx(t, x) + ũxxx(t, x)− p1(x)ũ(t, L) =w̃t(t, x) + w̃x(t, x) + w̃xxx(t, x) + λw̃(t, x)

−
∫ L

x

w̃(t, y)[pxxx + pyyy + px + py − λp](x, y)dy

+ w̃(t, L)[pyy(x, L) + p(x, L)− p1(x)]

+ w̃(t, x)

[
d2

dx2
p(x, x) + pxx(x, x)

− pyy(x, x) +
d

dx
px(x, x)− λ

]
+ w̃x(t, x)

[
2
d

dx
p(x, x) + py(x, x) + px(x, x)

]
.

(24)

From this equation, we get the following four conditions.

1. Equation for all (x, y) ∈ T :

pxxx(x, y) + pyyy(x, y) + px(x, y) + py(x, y) = λp(x, y). (25)

2. First boundary condition on (x, x) where x ∈ [0, L]:

d2

dx2
p(x, x) + pxx(x, x)− pyy(x, x) +

d

dx
px(x, x)− λ = 0. (26)

3. Second boundary condition on (x, x) where x ∈ [0, L]:

2
d

dx
p(x, x) + py(x, x) + px(x, x) = 0. (27)

4. Appropriate choice of p1:
p1(x) = pyy(x, L) + p(x, L). (28)
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Moreover, from the boundary conditions, we get two more restrictions.

5. To satisfy w̃(t, 0) = 0, transformation (18) imposes

p(0, y) = 0, (29)

which together with (27) implies that

p(x, x) = 0. (30)

6. To satisfy w̃xx(t, L) = 0, transformation (18) imposes

px(L,L) = 0. (31)

Finally, p solves the following equation

pxxx + pyyy + px + py = λp, ∀(x, y) ∈ T ,
p(x, x) = 0, ∀x ∈ [0, L],

px(x, x) =
λ

3
(x− L), ∀x ∈ [0, L],

p(0, y) = 0, ∀y ∈ [0, L].

(32)

Let us make the following change of variables

x̄ = L− y, ȳ = L− x, (33)

and define F (x̄, ȳ) := p(x, y). Hence, F satisfies

Fx̄x̄x̄(x̄, ȳ) + Fȳȳȳ(x̄, ȳ)

+ Fȳ(x̄, ȳ) + Fx̄(x̄, ȳ) = −λF (x̄, ȳ) (x̄, ȳ) ∈ T ,
F (x̄, x̄) = 0 x̄ ∈ [0, L],

Fx̄(x̄, x̄) =
λ

3
(L− x̄) x̄ ∈ [0, L],

F (x̄, L) = 0 ȳ ∈ [0, L].

(34)

This equation has already been studied in [3], where no explicit solution has been found, but
where the existence of a solution has been proved. Therefore, we can conclude that F = F (x, y)
and consequently the kernel p = p(x, y) both exist. Note that the function Πo defined by (18) is
linear (by definition) and continuous (because of the existence of p). Moreover, Πo is invertible
with continuous inverse given by

w̃(x) = Π−1
o (ũ(x)) = ũ(x) +

∫ L

x

m(x, y)ũ(y)dy (35)

where m = m(x, y) is also a solution of an equation like (32) in the triangular domain T .
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5 Asymptotic stability of the output feedback

The closed-loop system through the transformations (9) and (18) can be written as follows

ŵt + ŵx + ŵxxx + λŵ =

−
{
p1(x)−

∫ L

x

k(x, y)p1(y)dy

}
w̃(t, L)

ŵ(t, 0) = ŵx(t, L) = ŵxx(t, L) = 0

w̃t + w̃x + w̃xxx + λw̃ = 0

w̃(t, 0) = w̃x(t, L) = w̃xx(t, L) = 0.

(36)

Let us focus on the following Lyapunov function

V (t) := V1(t) + V2(t) (37)

where

V1(t) = A

∫ L

0

ŵ(t, x)2dx, (38)

and

V2(t) = B

∫ L

0

w̃(t, x)2dx. (39)

The positive values A and B are chosen later. After performing some integrations by parts,
we obtain

V̇1(t) ≤
(
−2λ+

D2

A

)
V1(t) + A2L|w̃(t, L)|2, (40)

where

D = max
x∈[0,L]

{
p1(x)−

∫ L

x

k(x, y)p1(y)dy

}
. (41)

We have also
V̇2(t) ≤ −2λV2(t)−B|w̃(t, L)|2. (42)

Therefore, by choosing

A ≥ D2

2λ
(43)

and
B ≥ A2L, (44)

we get
V̇ (t) ≤ −2µV (t), (45)

where

µ =

(
λ− D2

2A

)
> 0. (46)

This concludes the proof of Theorem 3 by getting an exponential decay rate equal to µ.
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6 Nonlinear system

The aim of this section is to prove Theorem 1, i.e., we have to prove the local exponential
stability of the nonlinear closed-loop system

ut + ux + uxxx + uxu = 0,

u(t, 0) = κ(t), ux(t, L) = uxx(t, L) = 0,

ût + ûx + ûxxx + ûxû+ p1(x)[y(t)− û(t, L)] = 0,

û(t, 0) = κ(t), ûx(t, L) = ûxx(t, L) = 0,

(47)

where

κ(t) =

∫ L

0

k(0, y)û(t, y)dy. (48)

As before, we consider the evolution of the couple (ũ, û) where ũ stands for the error
ũ = u − û. Using Πo and its inverse (see (18) and (35)), we define w̃ = Π−1

o (ũ). We denote
ŵ = Π(û), where Π is defined in (9). The inverse Π−1 is given by

û(x) = Π−1(ŵ(x)) = ŵ(x) +

∫ L

x

l(x, y)ŵ(y)dy, (49)

where l solves the following equation

lxxx + lyyy + lx + ly = λl, in T ,
l(x, L) + lyy(x, L) = 0, in [0, L],

l(x, x) = 0, in [0, L],

lx(x, x) =
λ

3
(L− x), in [0, L].

(50)

The existence of such a kernel l has been proven in [3, see sections IV and VI]. Thus, we can
see that (ũ, û) is mapped into (w̃, ŵ) solution of the coupled target system

ŵt(t,x) + ŵx(t, x) + ŵxxx(t, x) + λŵ(t, x)

=−
{
p1(x)−

∫ L

x

k(x, y)p1(y)dy

}
w̃(t, L)

−
(
ŵ(t, x) +

∫ L

x

l(x, y)ŵ(t, y)dy

)
·
(
ŵx(t, x) +

∫ L

x

lx(x, y)ŵ(t, y)dy

)
− 1

2

∫ L

x

|û(t, y)|2ky(x, y)dy,

(51)
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w̃t(t,x) + w̃x(t, x) + w̃xxx(t, x) + λw̃(t, x)

=−
(
w̃(t, x)−

∫ L

x

p(x, y)w̃(t, y)dy

)
·
(
w̃x(t, x)−

∫ L

x

px(x, y)w̃(t, y)dy

)
−
(
ŵ(t, x) +

∫ L

x

l(x, y)ŵ(t, y)dy

)
·
(
w̃x(t, x)−

∫ L

x

px(x, y)w̃(t, y)dy

)
−
(
w̃(t, x)−

∫ L

x

p(x, y)w̃(t, y)dy

)
·
(
ŵx(t, x) +

∫ L

x

lx(x, y)ŵ(t, y)dy

)
+

∫ L

x

[ |ũ(t, y)|2

2
+ ũ(t, y)û(t, y)

]
my(x, y)dy,

(52)

with boundary conditions

ŵ(t, 0) = ŵx(t, L) = ŵxx(t, L) = 0, (53)

w̃(t, 0) = w̃x(t, L) = w̃xx(t, L) = 0. (54)

As in previous section, we will prove the stability of this system by using the same Lyapunov
function (37). We derivate (38) with respect to time as follows

V̇1(t) = 2A

∫ L

0

ŵt(t, x)ŵ(t, x)dx ≤
(
−2λ+

D2

A

)
V1(t)+A2L|w̃(t, L)|2−2A

∫ L

0

ŵ(t, x)F (t, x)dx,

(55)
where

F (t, x) = ŵ(t, x)ŵx(t, x) + ŵ(t, x)

∫ L

x

lx(x, y)ŵ(t, y)dy + ŵx(t, x)

∫ L

x

l(x, y)ŵ(t, y)dy

+

(∫ L

x

l(x, y)ŵ(t, y)dy

)(∫ L

x

lx(x, y)ŵ(t, y)dy

)
+

1

2

∫ L

x

|û(t, y)|2ky(x, y)dy. (56)

By using the same argument as in [3, 6], we can prove the existence of a positive constant
K1 = K1(‖l‖C1(T ), ‖k‖C1(T )) such that∣∣∣∣A ∫ L

0

ŵ(t, x)F (t, x)dx

∣∣∣∣ ≤ K1

(∫ L

0

|ŵ(t, x)|2dx
) 3

2

. (57)

Then, we estimate V̇2(t) as follows

V̇2(t) ≤ −2λV2(t)− 2B

∫ L

0

w̃(t, x)G(t, x)dx−B|w̃(t, L)|2 (58)
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where G = G(t, x) is the right-hand side of (52). As before, we can prove the existence of a
positive constant K2 = K2(‖l‖C1(τ), ‖p‖C1(τ), ‖m‖C1(τ)) such that∣∣∣∣2B ∫ L

0

w̃(t, x)G(t, x)dx

∣∣∣∣ ≤ K2

(∫ L

0

|ŵ(t, x)|2dx
) 3

2

+K2

(∫ L

0

|w̃(t, x)|2dx
) 3

2

. (59)

Therefore, for A,B, µ satisfying (43)-(44)-(46), we have

V̇ (t) ≤− 2µV (t) +K1

(∫ L

0

|ŵ(t, x)|2dx
) 3

2

+K2

(∫ L

0

|ŵ(t, x)|2dx
) 3

2

+K2

(∫ L

0

|w̃(t, x)|2dx
) 3

2

.

(60)

If there exists t0 ≥ 0 such that

‖w̃(t0, .)‖L2(0,L) ≤
µ

K2

(61)

and
‖ŵ(t0, .)‖L2(0,L) ≤

µ

K1 +K2

(62)

we can conclude
V̇ (t) ≤ −µV (t), ∀t ≥ t0. (63)

Thus, we get

‖w̃(t, .)‖L2(0,L) + ‖ŵ(t, .)‖L2(0,L) ≤ e−
µ
2
t
(
‖w̃0‖L2(0,L) + ‖ŵ0‖L2(0,L)

)
, ∀t ≥ 0, (64)

provided that

‖ŵ0‖L2(0,L) ≤
µ

K1 +K2

,

‖w̃0‖L2(0,L) ≤
µ

K2

.
(65)

This concludes the proof of Theorem 1 by getting the exponential decay of the system with a
smallness condition on the L2-norm of the initial data u0, û0.

7 Numerical Simulations

In this section we provide some numerical simulations showing the effectiveness of our control
design. In order to discretize our KdV equation, we use a finite difference scheme inspired
from [15]. The final time for simulations is denoted by Tfinal. We choose (Nx + 1) points
to build a uniform spatial discretization of the interval [0, L] and (Nt + 1) points to build a
uniform time discretization of the interval [0, Tfinal]. Thus, the space step is ∆x = L/Nx and
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the time step ∆t = Tfinal/Nt. We approximate the solution with the notation u(t, x) ≈ U i
j ,

where i and j refer to time and space discrete variables, respectively.
Some used approximations of the derivative are given by

ux(t, x) ≈ ∇−(U i
j) =

U i
j − U i

j−1

∆x
(66)

or

ux(t, x) ≈ ∇+(U i
j) =

U i
j+1 − U i

j

∆x
. (67)

As in [15], we choose rather the following

ux(t, x) ≈ 1

2
(∇+ +∇−)(U i

j) = ∇(U i
j). (68)

For the other differentiation operator, we use

uxxx(t, x) ≈ ∇+∇+∇−(U i
j) (69)

and

ut(t, x) ≈
U i+1
j − U i

j

∆t
. (70)

Let us introduce a matrix notation. Let us consider D−, D+, D ∈ RNx×Nx given by

D− =
1

∆x


1 0 . . . . . . 0

−1 1
. . .

...

0 −1
. . . . . .

...
...

. . . . . . 1 0
0 . . . 0 −1 1

 , (71)

D+ =
1

∆x


−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0
... 0 −1 1
0 . . . . . . 0 −1

 , (72)

and D = (D+ +D−)/2. Let us define A := D+D+D−+D, and C := A+ ∆tId where Id is the
identity matrix. Moreover, we will denote, for each discrete time i,

U i :=
[
U i

1 U i
2 . . . U i

Nx+1

]T
the plant state, and

Oi :=
[
Oi

1 Oi
2 . . . Oi

Nx+1

]T
the observer state. The state output will be denoted by YU and YO stands for the observer
output. The discretized controller gain K and observer gain P , respectively, are defined by

K =
[
K1 K2 . . . KNx+1

]T
12



and
P =

[
P1 P2 . . . PNx+1

]T
.

We compute them from a successive approximations method (see [3]). Since we have the
nonlinearity uux, we use an iterative fixed point method to solve the nonlinear system

CU i+1 = U i − 1

2
D(U i+1)2.

With Niter = 5, which denotes the number of iterations of the fixed point method, we get
good approximations of the solutions.

Given U0, O0 = 0, K, and P , the following is the structure of the algorithm used in our
simulations.

While i < Nt

• U i+1
1 = Oi+1

1 =
∑Nx

j=1 ∆x
Oij+1Kj+1+OijKj

2

U i+1
Nx

= U i+1
Nx+1 = U i+1

Nx−1, O
i+1
Nx

= Oi+1
Nx+1 = Oi+1

Nx+1;

• YU := U i(Nx + 1), YO := Oi(Nx + 1);

• Setting J(1) = Oi, for all k ∈ {1, . . . , Niter}, solve

J(k + 1) = C−1(Oi − 1

2
D(J(k))2 + P (YU − YO))

Set Oi+1 = J(Niter);

• Setting J̃(1) = U i, for all k ∈ {1, . . . , Niter}, solve

J̃(k + 1) = C−1(U i − 1

2
D(J̃(k))2)

Set U i+1 = J(Niter);

• t = t+ dt;

End

In order to illustrate our theoretical results, we perform some simulations on the domain
[0, 2π]. We take Nx = 30, Nt = 167, Tfinal = 10, λ = 2, u0(x) = sin(x) and û0(x) = 0. Figure
1 illustrates the convergence to the origin of the solution of the closed-loop system (1)-(3)-
(4)-(14). Figure 2 illustrates the L2-norm of this solution and the L2-norm of the solution of
the observer (4). Finally, Figure 3 shows that the observation error (u− û) converges to 0 in
L2-norm. From the simulations, this convergence seems to be exponential as expected.
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Figure 1: Solution of the closed-loop system (1)-(3)-(4)-(14)
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Figure 2: Time evolution of the L2-norm for the state (blue line) and the observer (red line).
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Figure 3: Time evolution of the L2-norm for the observation error u− û.

8 Conclusion

In this paper, an output feedback control has been designed for the Korteweg-de Vries equation.
This controller uses an observer and gives the local exponential stability of the closed-loop
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system. Numerical simulations have been provided to illustrate the efficiency of the output
feedback design.

In order to go to a global feedback control for the nonlinear KdV equation, a first step
should be to build some nonlinear boundary controls giving a semi-global exponential stability.
That means that for any fixed r > 0 we can find a feedback law exponentially stabilizing to the
origin any solution with initial data u0 whose L2-norm is smaller than r. The term semi-global
comes from the fact that the decay rate can depend on r. Some internal feedback controls are
given for KdV in [14], [18] and [13]. The latter considers saturated controls.

The second step, in order to deal with the output case, is to design an observer for the
nonlinear KdV equation to obtain a global asymptotic stability. We could for instance follow
the same approach than in the finite-dimensional case performed in [7].
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