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Abstract

This paper presents an output feedback control law for the Korteweg-de Vries equation. The control design is based on the
backstepping method and the introduction of an appropriate observer. The local exponential stability of the closed-loop system
is proven. Some numerical simulations are shown to illustrate this theoretical result.
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1 Introduction

The Korteweg-de Vries (KdV) equation was introduced
in 1895 to describe approximatively the behavior of long
waves in a water channel of relatively shallow depth.
Since then, this equation has attracted a lot of attention
due to fascinating mathematical features and a number
of possible applications.

From a control viewpoint, the KdV system also presents
amazing behaviors. Surprisingly, by considering diffe-
rent boundary actuators on a bounded interval [0, L], we
get control results of different nature. Roughly speak-
ing, the system is exactly controllable when the control
acts from the right endpoint x = L ([16,5]), and null-
controllable when the control acts from the left endpoint
x = 0 ([8,9,1]).

Due to this kind of phenomena, the control properties
of this nonlinear dispersive partial differential equation
have been deeply studied. However, there still are many
open questions. See [2], [17], [13], and the references
therein.

In this article we focus on the boundary stabilizability
problem for the KdV equation with a control acting on
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1140741, and Conicyt-Basal Project FB0008 AC3E.
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the left Dirichlet boundary condition. The studied sys-
tem can be written as follows







ut + ux + uxxx + uux = 0,

u(t, 0) = κ(t), ux(t, L) = 0, uxx(t, L) = 0,

u(0, x) = u0(x),

(1)

where κ = κ(t) denotes the boundary control input and
u0 = u0(x) is the initial condition. Concerning the sta-
bility when no control is applied (κ = 0), it is known
that the linear system is asymptotically stable (see [21,
Lemma 3]). We aim here to design an output feedback
control in order to get the exponential stability of the
closed-loop system.

Some full state feedback controls have already been de-
signed in the literature for KdV systems. When the
control acts on the right endpoint, we find [4] where a
Gramian-based method is applied, and [6] where some
suitable integral transforms are used. In [21], [3] and
[12], the authors use the backstepping method to design
feedback controllers acting on the left endpoint of the
interval.

However, in most cases, we have no access to measure
the full state of the system. Thus, it is more realistic to
design an output feedback control, i.e., a feedback law
depending only on some partial measurements of the
state.

For autonomous linear finite-dimensional systems, the
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separation principle holds. Thus, stabilizability and ob-
servability assumptions are sufficient to ensure the sta-
bility of the closed-loop system. In other words, if there
exists a controller, which asymptotically stabilizes the
origin of the system and an observer which converges
asymptotically to the state system, the output feedback
built from this observer and this state feedback asymp-
totically stabilizes the origin of the system. The case
of autonomous nonlinear finite-dimensional systems de-
pends critically on the structure of the system. We can
only hope having a semi-global result (see e.g [22]). In a
PDE framework, this principle, even for linear systems,
is no longer true and the stability of the closed-loop sys-
tem is not guaranteed.

The basic question to state the problem is which kind of
measurementswe are going to consider, being the bound-
ary case the most challenging one. In [12] we consider
the linear KdV equation with boundary conditions

u(t, 0) = κ(t), u(t, L) = 0, ux(t, L) = 0. (2)

In that paper, we see that this system is not observa-
ble from the output y(t) = ux(t, 0) for some values of
L. However, we design an output feedback law expo-
nentially stabilizing the system for the output given by
y(t) = uxx(t, L). Thus, we see that the choice of the
output is crucial. In [10], the same controller has been
applied to the nonlinear Korteweg-de Vries equation.

In this paper, we will consider the nonlinear KdV equa-
tion (1) with measurement

y(t) = u(t, L). (3)

Independently to [12] and to the present paper, Tang
and Krstic have developed the same program for similar
linear KdV equations. Full state [21] and output state
[20] feedback controls are designed by using the back-
stepping method.

This paper is organized as follows. In Section 2, we
state our main result. Section 3 is devoted to recall the
feedback control designed in [3]. The observer is built in
Section 4. In Section 5, the stability of the linear closed-
loop controller-observer system is proven. In Section 6,
we prove the local stability of the nonlinear closed loop
controller-observer system. Some numerical simulations
are presented in Section 7. Finally, Section 8 states some
conclusions.

2 Main Result

Based on [11] and [19], we built an observer for (1). More
precisely, we define, for some appropriate function p1(x),

the following copy of the plant with a term depending
on the observation error






ût + ûx + ûxxx + ûûx + p1(x)[y(t)− û(t, L)] = 0,

û(t, 0) = κ(t), ûx(t, L) = ûxx(t, L) = 0,

û(0, x) = û0.
(4)

As mentioned in Section 1, our main result is the local
stabilization of the KdV equation by using the output
(3), as stated in the following theorem whose proof is
given in Section 6.

Theorem 1. For any λ > 0, there exist an output feed-
back law κ(t) := κ(û(t, x)), a function p1 = p1(x), and
two constants C > 0, r > 0 such that for any initial con-
ditions u0, û0 ∈ L2(0, L) satisfying

‖u0‖L2(0,L) ≤ r, ‖û0‖L2(0,L) ≤ r, (5)

the solution of (1)-(3)-(4) satisfies

‖u(t, ·)− û(t, ·)‖L2(0,L) + ‖û(t, ·)‖L2(0,L)

≤ Ce−λt
(

‖u0 − û0‖L2(0,L) + ‖û0‖L2(0,L)

)

, ∀t ≥ 0.

(6)

Remark 1. Notice that from this theorem we get the
exponential decreasing to 0 of the L2-norm of the solu-
tion u = u(t, x) provided that the L2-norm of the initial
conditions of the plant and the observer are sufficiently
small. ◦

3 Control Design

The backstepping design applied here is based on the
linear part of the equation. Thus, we consider the control
system linearized around the origin

{

ut + ux + uxxx = 0,

u(t, 0) = κ(t), ux(t, L) = uxx(t, L) = 0,
(7)

and the linear observer
{

ût + ûx + ûxxx + p1(x)[y(t) − ûxx(t, L)] = 0,

û(t, 0) = κ(t), ûx(t, L) = ûxx(t, L) = 0.
(8)

The standard method of output feedback design follows
a three-step strategy. We first design the full state feed-
back control. Next, we built the observer. Finally, we
prove that plugging the observer state into the feedback
law stabilizes the closed loop system.

In [3] the followingVolterra transformation is introduced

w(x) = Π(u(x)) := u(x)−

∫ L

x

k(x, y)u(y)dy. (9)
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The function k is chosen such that u = u(t, x), solution
of (7) with control

κ(t) =

∫ L

0

k(0, y)u(t, y)dy, (10)

is mapped into the trajectory w = w(t, x), solution of
the linear system

{

wt + wx + wxxx + λw = 0,

w(t, 0) = wx(t, L) = wxx(t, L) = 0,
(11)

which is exponentially stable for λ > 0, with a decay
rate at least equal to λ.

The kernel function k = k(x, y) is characterized by























kxxx + kyyy + kx + ky = −λk, in T ,

k(x, L) + kyy(x, L) = 0, in [0, L],

k(x, x) = 0, in [0, L],

kx(x, x) =
λ

3
(L − x), in [0, L],

(12)

where T := {(x, y)/x ∈ [0, L], y ∈ [x, L]}. The solution
of (12) exists. This is proved in [3, Section VI] by using
the method of successive approximations. Unlikely the
case of heat or wave equations, we do not have an explicit
solution.

In [3] it is proved that the transformation (9) linking
(1) and (11) is invertible, continuous and with a contin-
uous inverse function. Therefore, the exponential decay
for w, solution of (11), implies the exponential decay
for the solution u controlled by (10). Thus, with this
method, the following theorem is proven.

Theorem 2. ([3]) For any λ > 0, there exists C > 0
such that

‖u(t, ·)‖L2(0,L) ≤ Ce−λt‖u(0, ·)‖L2(0,L), ∀t ≥ 0, (13)

for any solution of (7)-(10).

We give later more details on the observer design. Let
us remark that the output feedback law is designed as

κ(t) :=

∫ L

0

k(0, y)û(t, y)dy, (14)

where û is the solution of (8).

Thus we get the following result, which can be com-
pared to [12]. The proof is given in Section 5.

Theorem 3. For any λ > 0, there exists C > 0 such
that for any solution of (7)-(8)-(14) we have

‖u(t, ·)− û(t, ·)‖L2(0,L) + ‖û(t, ·)‖L2(0,L)

≤ Ce−λt‖u(0, ·)‖L2(0,L), ∀t ≥ 0. (15)

Remark 2. Notice that from this theorem, we get the
exponential decreasing to 0 of the L2-norm of the solution
u = u(t, x). This result is different from [12], where the
initial condition has to be chosen inH3(0, L). This is due
to the fact that the output and the boundary conditions
are different. ◦

4 Observer design

The observer (4) is based on a Volterra transformation.
It transforms the solution ũ := u − û which fullfills the
following PDE







ũt + ũx + ũxxx − p1(x)[ũ(t, L)] = 0,

ũ(t, 0) = ũx(t, L) = ũxx(t, L) = 0,

ũ(0, x) = u0(x) − û0(x) := ũ0(x),

(16)

into the following PDE







w̃t + w̃x + w̃xxx + λw̃ = 0,

w̃(t, 0) = w̃x(t, L) = w̃xx(t, L) = 0,

w̃(0, x) = w̃0(x).

(17)

We choose the same λ than the one used to design the
controller. The transformation is given by

ũ(x) := Πo(w̃(x)) = w̃(x) −

∫ L

x

p(x, y)w̃(y)dy, (18)

where p is a kernel that satisfies a partial differential
equation and will be defined in the following.

In order to find the kernel, we find the relation between
(16) and (17) through the transformation (18). To do so,
we derive the following

ũt(t, x) =w̃t(t, y)−

∫ L

x

p(x, y)w̃t(t, y)dy (19)

=w̃t(t, y) +

∫ L

x

p(x, y)[w̃y + w̃yyy + λw̃](t, y)dy

=p(x, L)w̃(t, L)− p(x, x)w̃(t, x)

− p(x, x)w̃xx(t, x) + py(x, x)wx(t, x)

+ pyy(x, L)w̃(t, L)− pyy(x, x)w̃(t, x)

−

∫ L

x

w̃(t, y)[pyyy(x, y) + py(x, y)− λp(x, y)]dy,

(20)
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where the last line has been obtained performing some
integrations by parts.

In addition, we have

ũx(t, x) = w̃x(t, x) + p(x, x)w̃(t, x)

−

∫ L

x

px(x, y)w̃(t, y)dy, (21)

ũxx(t, x) = w̃xx(t, x) +
d

dx
p(x, x)w̃(t, x)

+ p(x, x)w̃x(t, x) + px(x, x)w̃(t, x)

−

∫ L

x

pxx(x, y)w̃(t, y)dy, (22)

ũxxx(t, x) = w̃xxx(t, x) +
d2

dx2
p(x, x)w̃(t, x)

+ 2
d

dx
p(x, x)w̃x(t, x) + p(x, x)w̃xx(t, x)

+
d

dx
px(x, x)w̃(t, x) + px(x, x)w̃x(t, x)

+ pxx(x, x)w̃(t, x)−

∫ L

x

pxxx(x, y)w̃(t, y)dy, (23)

By adding (19), (21) and (23), we get

ũt(t, x) + ũx(t, x) + ũxxx(t, x) − p1(x)ũ(t, L)

= w̃t(t, x) + w̃x(t, x) + w̃xxx(t, x) + λw̃(t, x)

−

∫ L

x

w̃(t, y)[pxxx + pyyy + px + py − λp](x, y)dy

+ w̃(t, L)[pyy(x, L) + p(x, L)− p1(x)]

+ w̃(t, x)

[

d2

dx2
p(x, x) + pxx(x, x)

− pyy(x, x) +
d

dx
px(x, x) − λ

]

+ w̃x(t, x)

[

2
d

dx
p(x, x) + py(x, x) + px(x, x)

]

. (24)

From this equation, we get the following four conditions.

1. Equation for all (x, y) ∈ T :

pxxx(x, y) + pyyy(x, y) + px(x, y)

+ py(x, y) = λp(x, y). (25)

2. First boundary condition on (x, x) where x ∈ [0, L]:

d2

dx2
p(x, x) + pxx(x, x) − pyy(x, x)

+
d

dx
px(x, x) − λ = 0. (26)

3. Second boundary condition on (x, x) where x ∈ [0, L]:

2
d

dx
p(x, x) + py(x, x) + px(x, x) = 0. (27)

4. Appropriate choice of p1:

p1(x) = pyy(x, L) + p(x, L). (28)

Moreover, from the boundary conditions, we get two
more restrictions.

5. To satisfy w̃(t, 0) = 0, transformation (18) imposes

p(0, y) = 0, (29)

which together with (27) implies that

p(x, x) = 0. (30)

6. To satisfy w̃xx(t, L) = 0, transformation (18) imposes

px(L,L) = 0. (31)

Finally, p solves the following equation























pxxx + pyyy + px + py = λp, ∀(x, y) ∈ T ,

p(x, x) = 0, ∀x ∈ [0, L],

px(x, x) =
λ

3
(x− L), ∀x ∈ [0, L],

p(0, y) = 0, ∀y ∈ [0, L].

(32)

Let us make the following change of variables

x̄ = L− y, ȳ = L− x, (33)

and define F (x̄, ȳ) := p(x, y). Hence, F satisfies































Fx̄x̄x̄(x̄, ȳ) + Fȳȳȳ(x̄, ȳ)

+ Fȳ(x̄, ȳ) + Fx̄(x̄, ȳ) = −λF (x̄, ȳ) (x̄, ȳ) ∈ T ,

F (x̄, x̄) = 0 x̄ ∈ [0, L],

Fx̄(x̄, x̄) =
λ

3
(L− x̄) x̄ ∈ [0, L],

F (x̄, L) = 0 ȳ ∈ [0, L].
(34)

This equation has already been studied in [3], where no
explicit solution has been found, but where the exis-
tence of a solution has been proved. Therefore, we can
conclude that F = F (x, y) and consequently the kernel
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p = p(x, y) both exist. Note that the function Πo defined
by (18) is linear (by definition) and continuous (because
of the existence of p). Moreover, Πo is invertible with
continuous inverse given by

w̃(x) = Π−1
o (ũ(x)) = ũ(x) +

∫ L

x

m(x, y)ũ(y)dy (35)

where m = m(x, y) is also a solution of an equation like
(32) in the triangular domain T .

5 Asymptotic stability of the output feedback

The closed-loop system through the transformations (9)
and (18) can be written as follows







































ŵt + ŵx + ŵxxx + λŵ =

−

{

p1(x) −

∫ L

x

k(x, y)p1(y)dy

}

w̃(t, L)

ŵ(t, 0) = ŵx(t, L) = ŵxx(t, L) = 0

w̃t + w̃x + w̃xxx + λw̃ = 0

w̃(t, 0) = w̃x(t, L) = w̃xx(t, L) = 0.

(36)

Let us focus on the following Lyapunov function

V (t) := V1(t) + V2(t) (37)

where

V1(t) = A

∫ L

0

ŵ(t, x)2dx, (38)

and

V2(t) = B

∫ L

0

w̃(t, x)2dx. (39)

The positive values A and B are chosen later. After per-
forming some integrations by parts, we obtain

V̇1(t) ≤

(

−2λ+
D2

A

)

V1(t) +A2L|w̃(t, L)|2, (40)

where

D = max
x∈[0,L]

{

p1(x)−

∫ L

x

k(x, y)p1(y)dy

}

. (41)

We have also

V̇2(t) ≤ −2λV2(t)−B|w̃(t, L)|2. (42)

Therefore, by choosing

A ≥
D2

2λ
(43)

and

B ≥ A2L, (44)

we get

V̇ (t) ≤ −2µV (t), (45)

where

µ =

(

λ−
D2

2A

)

> 0. (46)

This concludes the proof of Theorem 3 by getting an
exponential decay rate equal to µ.

6 Nonlinear system

The aim of this section is to prove Theorem 1, i.e., we
have to prove the local exponential stability of the non-
linear closed-loop system















ut + ux + uxxx + uxu = 0,

u(t, 0) = κ(t), ux(t, L) = uxx(t, L) = 0,

ût + ûx + ûxxx + ûxû+ p1(x)[y(t)− û(t, L)] = 0,

û(t, 0) = κ(t), ûx(t, L) = ûxx(t, L) = 0,
(47)

where

κ(t) =

∫ L

0

k(0, y)û(t, y)dy. (48)

As before, we consider the evolution of the couple (ũ, û)
where ũ stands for the error ũ = u− û. Using Πo and its
inverse (see (18) and (35)), we define w̃ = Π−1

o (ũ). We
denote ŵ = Π(û), where Π is defined in (9). The inverse
Π−1 is given by

û(x) = Π−1(ŵ(x)) = ŵ(x) +

∫ L

x

l(x, y)ŵ(y)dy, (49)

where l solves the following equation























lxxx + lyyy + lx + ly = λl, in T ,

l(x, L) + lyy(x, L) = 0, in [0, L],

l(x, x) = 0, in [0, L],

lx(x, x) =
λ

3
(L− x), in [0, L].

(50)

The existence of such a kernel l has been proven in [3,
see sections IV and VI]. Thus, we can see that (ũ, û) is
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mapped into (w̃, ŵ) solution of the coupled target system

ŵt(t,x) + ŵx(t, x) + ŵxxx(t, x) + λŵ(t, x)

= −

{

p1(x) −

∫ L

x

k(x, y)p1(y)dy

}

w̃(t, L)

−

(

ŵ(t, x) +

∫ L

x

l(x, y)ŵ(t, y)dy

)

·

(

ŵx(t, x) +

∫ L

x

lx(x, y)ŵ(t, y)dy

)

−
1

2

∫ L

x

|û(t, y)|2ky(x, y)dy,

(51)

w̃t(t,x) + w̃x(t, x) + w̃xxx(t, x) + λw̃(t, x)

=−

(

w̃(t, x)−

∫ L

x

p(x, y)w̃(t, y)dy

)

·

(

w̃x(t, x)−

∫ L

x

px(x, y)w̃(t, y)dy

)

−

(

ŵ(t, x) +

∫ L

x

l(x, y)ŵ(t, y)dy

)

·

(

w̃x(t, x)−

∫ L

x

px(x, y)w̃(t, y)dy

)

−

(

w̃(t, x)−

∫ L

x

p(x, y)w̃(t, y)dy

)

·

(

ŵx(t, x) +

∫ L

x

lx(x, y)ŵ(t, y)dy

)

+

∫ L

x

[ |ũ(t, y)|2

2
+ ũ(t, y)û(t, y)

]

my(x, y)dy,

(52)

with boundary conditions

ŵ(t, 0) = ŵx(t, L) = ŵxx(t, L) = 0, (53)

w̃(t, 0) = w̃x(t, L) = w̃xx(t, L) = 0. (54)

As in previous section, we will prove the stability of this
system by using the same Lyapunov function (37). We
derivate (38) with respect to time as follows

V̇1(t) = 2A

∫ L

0

ŵt(t, x)ŵ(t, x)dx

≤

(

−2λ+
D2

A

)

V1(t) +A2L|w̃(t, L)|2

− 2A

∫ L

0

ŵ(t, x)F (t, x)dx, (55)

where

F (t, x) = ŵ(t, x)ŵx(t, x)+ŵ(t, x)

∫ L

x

lx(x, y)ŵ(t, y)dy

+ ŵx(t, x)

∫ L

x

l(x, y)ŵ(t, y)dy

+

(

∫ L

x

l(x, y)ŵ(t, y)dy

)(

∫ L

x

lx(x, y)ŵ(t, y)dy

)

+
1

2

∫ L

x

|û(t, y)|2ky(x, y)dy. (56)

By using the same argument as in [3,6], we can
prove the existence of a positive constant K1 =
K1(‖l‖C1(T ), ‖k‖C1(T )) such that

∣

∣

∣

∣

∣

A

∫ L

0

ŵ(t, x)F (t, x)dx

∣

∣

∣

∣

∣

≤ K1

(

∫ L

0

|ŵ(t, x)|2dx

)
3
2

.

(57)

Then, we estimate V̇2(t) as follows

V̇2(t) ≤ −2λV2(t)

− 2B

∫ L

0

w̃(t, x)G(t, x)dx −B|w̃(t, L)|2 (58)

where G = G(t, x) is the right-hand side of (52). As
before, we can prove the existence of a positive constant
K2 = K2(‖l‖C1(τ), ‖p‖C1(τ), ‖m‖C1(τ)) such that

∣

∣

∣

∣

∣

2B

∫ L

0

w̃(t, x)G(t, x)dx

∣

∣

∣

∣

∣

≤ K2

(

∫ L

0

|ŵ(t, x)|2dx

)
3
2

+K2

(

∫ L

0

|w̃(t, x)|2dx

)
3
2

. (59)

Therefore, for A,B, µ satisfying (43)-(44)-(46), we have

V̇ (t) ≤− 2µV (t) +K1

(

∫ L

0

|ŵ(t, x)|2dx

)
3
2

+K2

(

∫ L

0

|ŵ(t, x)|2dx

)
3
2

+K2

(

∫ L

0

|w̃(t, x)|2dx

)
3
2

.

(60)

If there exists t0 ≥ 0 such that

‖w̃(t0, .)‖L2(0,L) ≤
µ

K2
(61)
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and

‖ŵ(t0, .)‖L2(0,L) ≤
µ

K1 +K2
(62)

we can conclude

V̇ (t) ≤ −µV (t), ∀t ≥ t0. (63)

Thus, we get

‖w̃(t, .)‖L2(0,L) + ‖ŵ(t, .)‖L2(0,L) ≤

e−
µ

2
t
(

‖w̃0‖L2(0,L) + ‖ŵ0‖L2(0,L)

)

, ∀t ≥ 0,
(64)

provided that

‖ŵ0‖L2(0,L) ≤
µ

K1 +K2
,

‖w̃0‖L2(0,L) ≤
µ

K2
.

(65)

This concludes the proof of Theorem 1 by getting the
exponential decay of the system with a smallness condi-
tion on the L2-norm of the initial data u0, û0.

7 Numerical Simulations

In this section we provide some numerical simulations
showing the effectiveness of our control design. In order
to discretize our KdV equation, we use a finite differ-
ence scheme inspired from [15]. The final time for simu-
lations is denoted by Tfinal. We choose (Nx + 1) points
to build a uniform spatial discretization of the interval
[0, L] and (Nt + 1) points to build a uniform time dis-
cretization of the interval [0, Tfinal]. Thus, the space step
is ∆x = L/Nx and the time step ∆t = Tfinal/Nt. We
approximate the solution with the notation u(t, x) ≈ U i

j ,
where i and j refer to time and space discrete variables,
respectively.

Some used approximations of the derivative are given by

ux(t, x) ≈ ∇−(U
i
j) =

U i
j − U i

j−1

∆x
(66)

or

ux(t, x) ≈ ∇+(U
i
j) =

U i
j+1 − U i

j

∆x
. (67)

As in [15], we choose rather the following

ux(t, x) ≈
1

2
(∇+ +∇−)(U

i
j) = ∇(U i

j). (68)

For the other differentiation operator, we use

uxxx(t, x) ≈ ∇+∇+∇−(U
i
j) (69)

and

ut(t, x) ≈
U i+1
j − U i

j

∆t
. (70)

Let us introduce a matrix notation. Let us consider
D−, D+, D ∈ R

Nx×Nx given by

D− =
1

∆x























1 0 . . . . . . 0

−1 1
. . .

...

0 −1
. . .

. . .
...

...
. . .

. . . 1 0

0 . . . 0 −1 1























, (71)

D+ =
1

∆x























−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0
... 0 −1 1

0 . . . . . . 0 −1























, (72)

and D = (D++D−)/2. Let us define A := D+D+D−+
D, and C := A +∆tId where Id is the identity matrix.
Moreover, we will denote, for each discrete time i,

U i :=
[

U i
1 U i

2 . . . U i
Nx+1

]T

the plant state, and

Oi :=
[

Oi
1 Oi

2 . . . Oi
Nx+1

]T

the observer state. The state output will be denoted
by YU and YO stands for the observer output. The dis-
cretized controller gain K and observer gain P , respec-
tively, are defined by

K =
[

K1 K2 . . . KNx+1

]T

and

P =
[

P1 P2 . . . PNx+1

]T

.

We compute them from a successive approximations
method (see [3]). Since we have the nonlinearity uux,
we use an iterative fixed point method to solve the
nonlinear system

CU i+1 = U i −
1

2
D(U i+1)2.

With Niter = 5, which denotes the number of iterations
of the fixed point method, we get good approximations
of the solutions.
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Given U0, O0 = 0, K, and P , the following is the struc-
ture of the algorithm used in our simulations.

While i < Nt

• U i+1
1 = Oi+1

1 =
∑Nx

j=1 ∆x
Oi

j+1Kj+1+Oi
jKj

2

U i+1
Nx

= U i+1
Nx+1 = U i+1

Nx−1, Oi+1
Nx

= Oi+1
Nx+1 =

Oi+1
Nx+1;

• YU := U i(Nx + 1), YO := Oi(Nx + 1);

• Setting J(1) = Oi, for all k ∈ {1, . . . , Niter}, solve

J(k + 1) = C−1(Oi −
1

2
D(J(k))2 + P (YU − YO))

Set Oi+1 = J(Niter);

• Setting J̃(1) = U i, for all k ∈ {1, . . . , Niter}, solve

J̃(k + 1) = C−1(U i −
1

2
D(J̃(k))2)

Set U i+1 = J(Niter);

• t = t+ dt;

End

In order to illustrate our theoretical results, we per-
form some simulations on the domain [0, 2π]. We take
Nx = 30, Nt = 167, Tfinal = 10, λ = 2, u0(x) = sin(x)
and û0(x) = 0. Figure 1 illustrates the convergence to
the origin of the solution of the closed-loop system (1)-
(3)-(4)-(14). Figure 2 illustrates the L2-norm of this so-
lution and the L2-norm of the solution of the observer
(4). Finally, Figure 3 shows that the observation error
(u− û) converges to 0 in L2-norm. From the simulations,
this convergence seems to be exponential as expected.

0
2

4
6

8
10 0

2

4

6

8−10

−5

0

5

x

u(t,x)

t

Fig. 1. Solution of the closed-loop system (1)-(3)-(4)-(14)
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0
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10

15

t

 

 

‖u‖2
L2(0,L)

‖û‖2
L2(0,L)

Fig. 2. Time evolution of the L
2-norm for the state (blue

line) and the observer (red line).
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0

0.5

1

1.5

2

2.5

3

3.5

t

 

 

‖ũ‖2
L2(0,L)

Fig. 3. Time evolution of the L
2-norm for the observation

error u− û.

8 Conclusion

In this paper, an output feedback control has been de-
signed for the Korteweg-de Vries equation. This con-
troller uses an observer and gives the local exponential
stability of the closed-loop system. Numerical simula-
tions have been provided to illustrate the efficiency of
the output feedback design.

In order to go to a global feedback control for the non-
linear KdV equation, a first step should be to build some
nonlinear boundary controls giving a semi-global expo-
nential stability. That means that for any fixed r > 0 we
can find a feedback law exponentially stabilizing to the
origin any solution with initial data u0 whose L2-norm
is smaller than r. The term semi-global comes from the
fact that the decay rate can depend on r. Some inter-
nal feedback controls are given for KdV in [14], [18] and
[13]. The latter considers saturated controls.

The second step, in order to deal with the output case,
is to design an observer for the nonlinear KdV equation
to obtain a global asymptotic stability. We could for
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instance follow the same approach than in the finite-
dimensional case performed in [7].
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