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Abstract

The present paper deals with the asymptotic behavior of equi-coercive sequences {Fn} of nonlinear
functionals defined over vector-valued functions in W

1,p
0

(Ω)M , where p > 1, M ≥ 1, and Ω is a bounded
open set of R

N , N ≥ 2. The strongly local energy density Fn(·, Du) of the functional Fn satisfies a
Lipschitz condition with respect to the second variable, which is controlled by a positive sequence {an}
which is only bounded in some suitable space Lr(Ω). We prove that the sequence {Fn} Γ-converges for the
strong topology of Lp(Ω)M to a functional F which has a strongly local density F (·, Du) for sufficiently
regular functions u. This compactness result extends former results on the topic, which are based either on
maximum principle arguments in the nonlinear scalar case, or adapted div-curl lemmas in the linear case.
Here, the vectorial character and the nonlinearity of the problem need a new approach based on a careful
analysis of the asymptotic minimizers associated with the functional Fn. The relevance of the conditions
which are imposed to the energy density Fn(·, Du), is illustrated by several examples including some classical
hyper-elastic energies.

1 Introduction

In this paper we study the asymptotic behavior of the sequence of nonlinear functionals, including some hyper-
elastic energies (see the examples of Section 2.3), defined on vector-valued functions by

Fn(v) :=

ˆ

Ω

Fn(x,Dv) dx for v ∈W 1,p
0 (Ω)M , with p ∈ (1,∞), M ≥ 1, (1.1)

in a bounded open set Ω of RN , N ≥ 2. The sequence Fn is assumed to be equi-coercive. Moreover, the
associated density Fn(·, ξ) satisfies some Lipschitz condition with respect to ξ ∈ R

M×N , and its coefficients are
not uniformly bounded in Ω.

The linear scalar case, i.e. when Fn(·, ξ) is quadratic with respect to ξ ∈ R
N (M = 1), with uniformly

bounded coefficients was widely investigated in the seventies through G-convergence by Spagnolo [33], extended
by Murat and Tartar with H-convergence [28, 35], and alternatively through Γ-convergence by De Giorgi [22, 23]
(see also [21, 4]). The linear elasticity case was probably first derived by Duvaut (unavailable reference), and can
be found in [32, 25]. In the nonlinear scalar case the first compactness results are due to Carbone, Sbordone [17]
and Buttazzo, Dal Maso [14] by a Γ-convergence approach assuming the L1-equi-integrability of the coefficients.
More recently, these results were extended in [5, 9, 10] relaxing the L1-boundedness of the coefficients but
assuming that p > N−1 if N ≥ 3, showing then the uniform convergence of the minimizers thanks to the
maximum principle. In all these works the scalar framework combined with the condition p > N−1 if N ≥ 3
and the equi-coercivity of the functionals, induce in terms of the Γ-convergence for the strong topology of Lp(Ω),
a limit energy F of the same nature satisfying

F (v) :=

ˆ

Ω

F (x,Dv) dν for v ∈W, (1.2)
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where C1
c (Ω)

M ⊂W is some suitable subspace ofW 1,p
0 (Ω)M , and ν is some Radon measure on Ω. Removing the

L1-equi-integrability of the coefficients in the three-dimensional linear scalar case (note that p = N−1 = 2 in
this case), Fenchenko and Khruslov [24] (see also [26]) were, up to our knowledge, the first to obtain a violation
of the compactness result due to the appearance of local and nonlocal terms in the limit energy F . This seminal
work was also revisited by Bellieud and Bouchitté [2]. Actually, the local and nonlocal terms in addition to the
classical strongly local term come from the Beurling-Deny [3] representation formula of a Dirichlet form, and
arise naturally in the homogenization process as shown by Mosco [27]. The complete picture of the attainable
energies was obtained by Camar-Eddine and Seppecher [15] in the linear scalar case. The elasticity case is much
more intricate even in the linear framework, since the loss of uniform boundedness of the elastic coefficients
may induce the appearance of second gradient terms as Seppecher and Pideri proved in [30]. The situation is
dramatically different from the scalar case, since the Beurling-Deny formula does not hold in the vector-valued
case. In fact, Camar-Eddine and Seppecher [16] proved that any lower semi-continuous quadratic functional
vanishing on the rigid displacements, can be attained. Compactness results were obtained in the linear elasticity
case using some (strong) equi-integrability of the coefficients in [11], and using various extensions of the classical
Murat-Tartar [28] div-curl result in [7, 13, 12, 29] (which were themselves initiated in the former works [6, 9] of
the two first authors).

In our context the vectorial character of the problem and its nonlinearity prevent us from using the uniform
convergence of [10] and the div-curl lemma of [12], which are (up to our knowledge) the more recent general
compactness results on the topic. We assume that the nonnegative energy density Fn(·, ξ) of the functional (1.1)
attains its minimum at ξ = 0, and satisfies the following Lipschitz condition with respect to ξ ∈ R

M×N :







∣

∣Fn(x, ξ) − Fn(x, η)
∣

∣ ≤
(

hn(x) + Fn(x, ξ) + Fn(x, η) + |ξ|p + |η|p
)

p−1
p an(x)

1
p |ξ − η|

∀ ξ, η ∈ R
M×N , a.e. x ∈ Ω,

which is controlled by a positive function an(·) (see the whole set of conditions (2.1) to (2.6) below). The
sequence {an} is assumed to be bounded in Lr(Ω) for some r > (N−1)/p if 1 < p ≤ N−1, and bounded in
L1(Ω) if p > N−1. Note that for p > N−1 our condition is better than the L1-equi-integrability used in the
scalar case of [17, 14], but not for 1 < p ≤ N−1. Under these assumptions we prove (see Theorem 2.3) that
the sequence {Fn} of (1.1) Γ-converges for the strong topology of Lp(Ω)M (see Definition 1.1) to a functional
of type (1.2) with

W ⊂

{

W 1, pr

r−1 (Ω)M , if 1 < p ≤ N−1

C1(Ω)M , if p > N−1,
and ν =







Lebesgue measure, if 1 < p ≤ N−1

M (Ω) ∗ − lim
n→∞

an, if p > N−1.

Various types of boundary conditions can be taken into account in this Γ-convergence approach.
A preliminary result (see Theorem 2.2) allows us to prove that the sequence of energy density {Fn(·, Dun)}

converges in the sense of Radon measures to some strongly local energy density F (·, Du), when un is an
asymptotic minimizer for Fn of limit u (see definition (2.15)). The proof of this new compactness result is
based on an extension (see Lemma 2.5) of the fundamental estimate for recovery sequences in Γ-convergence
(see, e.g., [21], Chapters 18, 19), which provides a bound (see (2.24)) satisfied by the weak-∗ limit of {Fn(·, Dun)}
with respect to the weak-∗ limit of any sequence {Fn(·, Dvn)} such that the sequence {vn−un} converges weakly
to 0 in W 1,p

0 (Ω)M . Rather than using fixed smooth cut-off functions as in the classical fundamental estimate,
here we need to consider sequences of radial cut-off functions ϕn whose gradient has support in n-dependent
sets on which un−u satisfies some uniform estimate with respect to the radial coordinate (see Lemma 2.10 and
its proof). This allows us to control the zero-order term ∇ϕn(un−u), when we put the trial function ϕn(un−u)
in the functional Fn of (1.1). The uniform estimate is a consequence of the Sobolev compact embedding for
the (N−1)-dimensional sphere, and explains the role of the exponent r > (N−1)/p if 1 < p ≤ N−1. A similar
argument was used in the linear case [12] to obtain a new div-curl lemma which is the key-ingredient for the
compactness of quadratic elasticity functionals of type (1.1).

Notations

• R
N×N
s denotes the set of the symmetric matrices in R

N×N .

• For any ξ ∈ R
N×N , ξT is the transposed matrix of ξ, and ξs := 1

2 (ξ + ξT ) is the symmetrized matrix of ξ.

• IN denotes the unit matrix of RN×N .

• · denotes the scalar product in R
N , and : denotes the scalar product in R

M×N defined by
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ξ : η := tr (ξT η) for ξ, η ∈ R
M×N ,

where tr is the trace.

• | · | denotes both the euclidian norm in R
N , and the Frobenius norm in R

M×N , i.e.

|ξ| :=
(

tr (ξT ξ)
)

1
2 for ξ ∈ R

M×N .

• For a bounded open set ω ⊂ R
N , M (ω) denotes the space of the Radon measures on ω with bounded

total variation. It agrees with the dual space of C0
0 (ω), namely the space of the continuous functions in ω̄

which vanish on ∂ω. Moreover, M (ω̄) denotes the space of the Radon measures on ω̄. It agrees with the
dual space of C0(ω̄).

• For any measures ζ, µ ∈ M (ω), with ω ⊂ R
N , open, bounded, we define ζµ ∈ L1

µ(Ω) as the derivative of

ζ with respect to µ. When µ is the Lebesgue measure, we write ζL.

• C is a positive constant which may vary from line to line.

• On is a real sequence which tends to zero as n tends to infinity. It can vary from line to line.

Recall the definition of the De Giorgi Γ-convergence (see, e.g., [21, 4] for further details).

Definition 1.1. Let V be a metric space, and let Fn,F : V → [0,∞], n ∈ N, be functionals defined on V . The
sequence {Fn} is said to Γ-converge to F for the topology of V in a set W ⊂ V and we write

Fn
Γ
⇀ F in W,

if

- the Γ-liminf inequality holds

∀ v ∈W, ∀ vn → v in V, F (v) ≤ lim inf
n→∞

Fn(vn),

- the Γ-limsup inequality holds

∀v ∈ W, ∃ vn → v in V, F (v) = lim
n→∞

Fn(vn).

Any sequence vn satisfying (1.1) is called a recovery sequence for Fn of limit v.

2 Statement of the results and examples

2.1 The main results

Consider a bounded open set Ω ⊂ R
N with N ≥ 2,M a positive integer, a sequence of nonnegative Carathéodory

functions Fn : Ω× R
M×N → [0,∞), and p > 1 with the following properties:

• There exist two constants α > 0 and β ∈ R such that
ˆ

Ω

Fn(x,Du) dx ≥ α

ˆ

Ω

|Du|p dx+ β, ∀u ∈W 1,p
0 (Ω)M , (2.1)

and
Fn(·, 0) = 0 a.e. in Ω. (2.2)

• There exist two sequences of measurable functions hn, an ≥ 0, and a constant γ > 0 such that

hn is bounded in L1(Ω), (2.3)

an is bounded in Lr(Ω) with











r >
N−1

p
, if 1 < p ≤ N−1

r = 1, if p > N−1,

(2.4)







∣

∣Fn(x, ξ) − Fn(x, η)
∣

∣ ≤
(

hn(x) + Fn(x, ξ) + Fn(x, η) + |ξ|p + |η|p
)

p−1
p an(x)

1
p |ξ − η|

∀ ξ, η ∈ R
M×N , a.e. x ∈ Ω,

(2.5)

and
Fn(x, λξ) ≤ hn(x) + γ Fn(x, ξ), ∀λ ∈ [0, 1], ∀ ξ ∈ R

M×N , a.e. x ∈ Ω. (2.6)
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Remark 2.1. From (2.5) and Young’s inequality, we get that

Fn(x, ξ) ≤ Fn(x, η) +
(

hn(x) + Fn(x, ξ) + Fn(x, η) + |ξ|p + |η|p
)

p−1
p an(x)

1
p |ξ − η|

≤ Fn(x, η) +
p− 1

p

(

hn(x) + Fn(x, ξ) + Fn(x, η) + |ξ|p + |η|p
)

+
1

p
an(x) |ξ − η|p,

and then

Fn(x, ξ) ≤ (p−1)hn(x)+(2p−1)Fn(x, η)+(p−1)
(

|ξ|p+|η|p
)

+an(x) |ξ−η|
p, ∀ ξ, η ∈ R

M×N , a.e. x ∈ Ω. (2.7)

In particular, taking η = 0, we have

Fn(x, ξ) ≤ (p− 1)hn(x) +
(

p− 1 + an(x)
)

|ξ|p, ∀ ξ ∈ R
M×N , a.e. x ∈ Ω, (2.8)

where the right-hand side is a bounded sequence in L1(Ω).

From now on, we assume that

arn
∗
⇀ a in M (Ω) and hn

∗
⇀ h in M (Ω). (2.9)

The paper deals with the asymptotic behavior of the sequence of functionals

Fn(v) :=

ˆ

Ω

Fn(x,Dv) dx for v ∈ W 1,p(Ω)M . (2.10)

First of all, we have the following result on the convergence of the energy density Fn(·, Dun), where un is
an asymptotic minimizer associated with functional (2.10).

Theorem 2.2. Let Fn : Ω×R
M×N → [0,∞) be a sequence of Carathéodory functions satisfying (2.1) to (2.6).

Then, there exist a function F : Ω× R
M×N → R and a subsequence of n, still denoted by n, such that for any

ξ, η ∈ R
N ,

{

F (·, ξ) is Lebesgue measurable, if 1 < p ≤ N−1

F (·, ξ) is a-measurable, if p > N−1,
(2.11)

∣

∣F (x, ξ)− F (x, η)
∣

∣ ≤






C
(

hL+F (x, ξ)+F (x, η)+(1 + (aL)
1
r )(|ξ|p + |η|p)

)

p−1
p (aL)

1
pr|ξ − η| a.e. in Ω, if 1 < p ≤N−1

C
(

1 + ha + F (x, ξ) + F (x, η) + |ξ|p + |η|p
)

p−1
p |ξ − η| a-a.e. in Ω, if p >N−1,

(2.12)

and
F (·, 0) = 0 a.e. in Ω. (2.13)

For any open set ω ⊂ Ω, and any sequence {un} in W 1,p(ω)M which converges weakly in W 1,p(ω)M to a
function u satisfying

u ∈

{

W 1, pr

r−1 (ω)M , if 1 < p ≤ N−1

C1(ω)M , if p > N−1,
(2.14)

and such that

∃ lim
n→∞

ˆ

ω

Fn(x,Dun) dx = min

{

lim inf
n→∞

ˆ

ω

Fn(x,Dwn) dx : wn − un ⇀ 0 in W 1,p
0 (ω)M

}

<∞, (2.15)

we have

Fn(·, Dun)
∗
⇀

{

F (·, Du), if 1 < p ≤ N−1

F (·, Du)a, if p > N−1
in M (ω). (2.16)

From Theorem 2.2 we may deduce the Γ-limit (see Definition 1.1) of the sequence of functionals (2.10) with
various boundary conditions.
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Theorem 2.3. Let Fn : Ω×R
M×N → [0,∞) be a sequence of Carathéodory functions satisfying (2.1) to (2.6).

Let ω be an open set such that ω ⊂⊂ Ω, and let V be a subset of W 1,p(ω)M such that

∀u ∈ V, ∀ v ∈ W 1,p
0 (ω)M , u+ v ∈ V. (2.17)

Define the functional FV
n : V → [0,∞) by

F
V
n (v) :=

ˆ

ω

Fn(x,Dv) dx for v ∈ V. (2.18)

Assume that the open set ω satisfies
{

|∂ω| = 0, if 1 < p ≤ N−1

a(∂ω) = 0, if p > N−1.
(2.19)

Then, for the subsequence of n (still denoted by n) obtained in Theorem 2.2 we get















F
V
n

Γ
⇀ F

V :=

ˆ

ω

F (x,Dv) dx in V ∩W 1, pr

r−1 (ω)M , if 1 < p ≤ N−1

F
V
n

Γ
⇀ F

V :=

ˆ

ω

F (x,Dv) dx in V ∩ C1(ω)M , if p > N−1,

(2.20)

for the strong topology of Lp(ω)M , where F is given by convergence (2.16).

Remark 2.4. The condition (2.19) on the open set ω is not so restrictive. Indeed, for any family (ω)i∈I of open
sets of Ω with two by two disjoint boundaries, at most a countable subfamily of (∂ω)i∈I does not satisfy (2.19).

2.2 Auxiliary lemmas

The proof of Theorem 2.2 is based on the following lemma which provides an estimate of the energy density for
asymptotic minimizers. In our context it is equivalent to the fundamental estimate for recovery sequences (see
Definition 1.1) in Γ-convergence theory (see, e.g., [21], Chapters 18, 19).

Lemma 2.5. Let Fn : Ω× R
M×N → [0,∞) be a sequence of Carathéodory functions satisfying (2.1) to (2.6).

Consider an open set ω ⊂ Ω, and a sequence {un} ⊂ W 1,p(ω)M converging weakly in W 1,p(ω)M to a function
u satisfying (2.14), and such that

Fn(·, Dun)
∗
⇀ µ in M (ω),

|Dun|
p ∗
⇀ ̺ in M (ω).

Then, the measure ̺ satisfies

̺ ≤

{

C
(

|Du|p + |Du|p(aL)
1
r + h+ µ+ aL

)

a.e. in ω, if 1 < p ≤ N−1

C
(

|Du|pa+ h+ µ+ a
)

a-a.e. in ω, if p > N−1.
(2.21)

Moreover if un satisfies

∃ lim
n→∞

ˆ

ω

Fn(x,Dun) dx = min

{

lim inf
n→∞

ˆ

ω

Fn(x,Dwn) dx : wn − un ⇀ 0 in W 1,p
0 (ω)M

}

, (2.22)

then for any sequence {vn} ⊂W 1,p(ω)M which converges weakly in W 1,p(ω)M to a function

v ∈

{

W 1, pr

r−1 (ω)M , if 1 < p ≤ N−1

C1(ω)M , if p > N−1,

and such that
Fn(·, Dvn)

∗
⇀ ν in M (ω), (2.23)

|Dvn|
p ∗
⇀ ̟ in M (ω),

we have

µ ≤







ν + C
(

hL + νL +̟L + (1 + (aL)
1
r )|D(u − v)|p

)

p−1
p (aL)

1
pr |D(u− v)| a.e. in ω, if 1 < p ≤ N−1

ν + C
(

1 + ha + νa +̟a + |D(u− v)|p
)

p−1
p a |D(u− v)| a-a.e. in ω, if p > N−1.

(2.24)
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We can improve the statement of Lemma 2.5 if we add a non-homogeneous Dirichlet boundary condition on
∂ω.

Lemma 2.6. Let ω be an open set such that ω ⊂⊂ Ω, and let u be a function satisfying

u ∈

{

W 1, pr

r−1 (Ω)M , if 1 < p ≤ N−1

C1(Ω)M , if p > N−1.
(2.25)

Let {un} and {vn} be two sequences in W 1,p(ω)M , such that un satisfies condition (2.22) and

un − u, vn − u ∈ W 1,p
0 (ω)M ,

Fn(·, Dun)
∗
⇀ µ and Fn(·, Dvn)

∗
⇀ ν in M (ω), (2.26)

|Dun|
p ∗
⇀ ̺ and |Dvn|

p ∗
⇀ ̟ in M (ω). (2.27)

Then, estimates (2.21) and (2.24) hold in ω.

Remark 2.7. Condition (2.22) means that un is a recovery sequence in ω for the functional

w ∈W 1,p(ω)M 7→

ˆ

ω

Fn(x,Dw) dx, (2.28)

with the Dirichlet condition w−un ∈ W 1,p
0 (ω)M . Since w = un clearly satisfies w−un ∈W 1,p

0 (ω)M , this makes
un a recovery sequence without imposing any boundary condition. In particular, condition (2.22) is fulfilled if
for a fixed f ∈W−1,p(ω)M , un satisfies

ˆ

ω

Fn(x,Dun) dx = min

{
ˆ

ω

Fn

(

x,D(un + v)
)

dx− 〈f, v〉 : v ∈ W 1,p
0 (ω)M

}

.

Assuming the differentiability of Fn with respect to the second variable, it follows that un satisfies the variational
equation

ˆ

ω

DξFn(x,Dun) : Dv dx− 〈f, v〉 = 0, ∀ v ∈ W 1,p
0 (ω)M ,

i.e. un is a solution of
−Div

(

DξFn(x,Du)
)

= f in ω,

where no boundary condition is imposed.
Assumption (2.22) allows us to take into account very general boundary conditions. For example, if un is

a recovery sequence for (2.28) with (non necessarily homogeneous) Dirichlet or Neumann boundary condition,
then it also satisfies (2.22).

Remark 2.8. Condition (2.22) is equivalent to the asymptotic minimizer property satisfied by un:

ˆ

ω

Fn(x,Dun) dx ≤

ˆ

ω

Fn(x,Dwn) dx+On, ∀wn with wn − un ⇀ 0 in W 1,p
0 (ω)M .

We can check that if un satisfies this condition in ω, then un satisfies it in any open subset ω̂ ⊂ ω. To this end,
it is enough to consider for a sequence ŵn with ŵn − un ∈ W 1,p

0 (ω̂)M , the extension

wn :=

{

ŵn in ω̂
un in ω \ ω̂.

Corollary 2.9. Let Fn : Ω×R
M×N → [0,∞) be a sequence of Carathéodory functions satisfying (2.1) to (2.6).

Consider two open sets ω1, ω2 ⊂ Ω such that ω1 ∩ ω2 6= Ø, a sequence un converging weakly in W 1,p(ω1)
M to a

function u and a sequence vn converging weakly in W 1,p(ω2)
M to a function v, such that

u, v ∈

{

W 1, pr

r−1 (ω1 ∩ ω2)
M , if 1 < p ≤ N−1

C1(ω1 ∩ ω2)
M , if p > N−1,

|Dun|
p ∗
⇀ ̺, Fn(·, Dun)

∗
⇀ µ in M (ω1),

|Dvn|
p ∗
⇀ ̟, Fn(·, Dvn)

∗
⇀ ν in M (ω2),
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∃ lim
n→∞

ˆ

ω1

Fn(x,Dun) dx = min

{

lim inf
n→∞

ˆ

ω1

Fn(x,Dwn) dx : wn − un ⇀ 0 in W 1,p
0 (ω1)

M

}

,

∃ lim
n→∞

ˆ

ω2

Fn(x,Dvn) dx = min

{

lim inf
n→∞

ˆ

ω2

Fn(x,Dwn) dx : wn − vn ⇀ 0 in W 1,p
0 (ω2)

M

}

.

Then, we have

|µ− ν| ≤






C
(

hL+µL+νL+̺L+̟L+(1 + (aL)
1
r )|D(u− v)|p

)

p−1
p (aL)

1
pr |D(u− v)| a.e. in ω1 ∩ ω2, if 1<p ≤N−1

C
(

1 + ha + µa + νa + ̺a +̟a + |D(u − v)|p
)

p−1
p a |D(u − v)| a-a.e. in ω1 ∩ ω2, if p >N−1.

(2.29)

Lemma 2.5 is itself based on the following compactness result.

Lemma 2.10. Let Fn : Ω×R
M×N → [0,∞) be a sequence of Carathéodory functions satisfying (2.1) to (2.6),

and let ω be an open subset of Ω. Consider a sequence {ξn} ⊂ Lp(ω)M×N such that

Fn(·, ξn)
∗
⇀ Λ and |ξn|

p ∗
⇀ Ξ in M (ω). (2.30)

• If 1 < p ≤ N − 1 and the sequence {ρn} converges strongly to ρ in L
pr

r−1 (ω)M×N , then there exist a
subsequence of n and a function ϑ ∈ L1(ω) such that

Fn(·, ξn + ρn)− Fn(·, ξn)⇀ ϑ weakly in L1(ω), (2.31)

where ϑ satisfies

|ϑ| ≤ C
(

hL + ΛL + ΞL + (1 + (aL)
1
r )|ρ|p

)

p−1
p (aL)

1
pr |ρ| a.e. in ω. (2.32)

• If p > N−1 and the sequence {ρn} converges strongly to ρ in C0(ω)M×N , then there exist a subsequence
of n and a function ϑ ∈ L1

a(ω) such that

Fn(·, ξn + ρn)
∗
⇀ Λ + ϑa in M (ω),

where ϑ satisfies

|ϑ| ≤ C
(

1 + ha + Λa + Ξa + |ρ|p
)

p−1
p |ρ| a-a.e. in ω. (2.33)

2.3 Examples

In this section we give three examples of functionals Fn satisfying the assumptions (2.1) to (2.6) of Theorem 2.2.

1. The first example illuminates the Lipschitz estimate (2.5). It is also based on a functional coercivity of
type (2.1) rather than a pointwise coercivity.

2. The second example deals with the Saint Venant-Kirchhoff hyper-elastic energy (see, e.g., [18] Chapter 4).

3. The third example deals with an Ogden’s type hyper-elastic energy (see, e.g., [18] Chapter 4).

Let Ω be a bounded set of RN , N ≥ 2. We denote for any function u : Ω → R
N ,

e(u) :=
1

2

(

Du+DuT
)

, E(u) :=
1

2

(

Du+DuT +DuTDu
)

, C(u) := (IN +Du)T (IN +Du). (2.34)

Example 1

Let p ∈ (1,∞), and let An be a symmetric tensor-valued function in L∞
(

Ω;L (RN×N
s )

)

. We consider the energy
density function defined by

Fn(x, ξ) :=
∣

∣An(x)ξ
s : ξs

∣

∣

p

2 a.e. x ∈ Ω, ∀ ξ ∈ R
N×N .

We assume that there exists α > 0 such that

An(x)ξ : ξ ≥ α |ξ|2, a.e. x ∈ Ω, ∀ ξ ∈ R
N×N
s , (2.35)
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and that
|An|

p

2 is bounded in Lr(Ω) with r defined by (2.4). (2.36)

Then, the density Fn and the associated functional

Fn(u) :=

ˆ

Ω

∣

∣Ane(u) : e(u)
∣

∣

p

2 dx for u ∈ W 1,p
0 (Ω)N ,

satisfy the conditions (2.1) to (2.6) of Theorem 2.2.

Proof. Using successively (2.35) and the Korn inequality in W 1,p
0 (Ω)N for p > 1 (see, e.g., [34]), we have for

any u ∈W 1,p
0 (Ω)N ,

Fn(u) =

ˆ

Ω

∣

∣Ane(u) : e(u)
∣

∣

p

2 dx ≥ α

ˆ

Ω

|e(u)|p dx ≥ αC

ˆ

Ω

|Du|p dx,

which implies (2.1). Conditions (2.2) and (2.6) are immediate. It remains to prove condition (2.5) with
estimate (2.4). Taking into account that

|DξFn(x, ξ)| = p
∣

∣(An(x)ξ
s : ξs)

p−2
2 An(x)ξ

s
∣

∣ ≤ p
∣

∣An(x)ξ
s : ξs|

p−1
2 |An(x)|

1
2 , ∀ ξ ∈ R

N×N , a.e. x ∈ Ω,

then using the mean value theorem and Hölder’s inequality, we get

∣

∣Fn(x, ξ)− Fn(x, η)
∣

∣ ≤ p
(

(Anξ
s : ξs)

1
2 + (Anη

s : ηs)
1
2

)p−1

|An|
1
2 |ξs − ηs|

≤ p 2
(p−1)2

p

(

Fn(x, ξ) + Fn(x, η)
)

p−1
p |An|

1
2 |ξ − η|,

for every ξ, η ∈ R
N×N and a.e. x ∈ Ω. This implies estimate (2.5) with hn = 0 and an = |An|

p

2 bounded in
Lr(Ω).

The two next examples belong to the class of hyper-elastic materials (see, e.g., [18], Chapter 4).

Example 2

For N = 3, we consider the Saint Venant-Kirchhoff energy density defined by

Fn(x, ξ) :=
λn(x)

2

[

tr
(

Ẽ(ξ)
)]2

+ µn(x)
∣

∣Ẽ(ξ)
∣

∣

2
, a.e. x ∈ Ω, ∀ ξ ∈ R

3×3, (2.37)

where Ẽ(ξ) := 1
2

(

ξ + ξT + ξT ξ
)

, and λn, µn are the Lamé coefficients.
We assume that there exists a constant C > 1 such that

λn, µn ≥ 0 a.e. in Ω, ess-inf
Ω

(λn + µn) > C−1,

ˆ

Ω

(λn + µn) dx ≤ C. (2.38)

Then, the density Fn and the associated functional (see definition (2.34))

Fn(u) :=

ˆ

Ω

(

λn
2

[

tr
(

E(u)
)]2

+ µn

∣

∣E(u)
∣

∣

2
)

dx for u ∈W 1,4
0 (Ω)3, (2.39)

satisfy the conditions (2.1) to (2.6) of Theorem 2.2.

Proof. There exists a constant C > 1 such that we have for a.e. x ∈ Ω and any ξ ∈ R
3×3,

C−1(λn + µn) |ξ|
4 − C (λn + µn) ≤ Fn(x, ξ) ≤ C (λn + µn) |ξ|

4 + C (λn + µn). (2.40)

Hence, we deduce that for a.e. x ∈ Ω and any ξ, η ∈ R
3×3,

∣

∣Fn(x, ξ) − Fn(x, η)
∣

∣ ≤ C (λn + µn)
(

1 + |ξ|2 + |η|2
)

3
2 |ξ − η|

= C
(

(λn + µn)
1
2 + (λn + µn)

1
2 |ξ|2 + (λn + µn)

1
2 |η|2

)
3
2

(λn + µn)
1
4 |ξ − η|

≤ C
(

(λn + µn)
1
2 + Fn(x, ξ)

1
2 + Fn(x, η)

1
2

)
3
2

(λn + µn)
1
4 |ξ − η|

≤ C
(

λn + µn + Fn(x, ξ) + Fn(x, η)
)

3
4 (λn + µn)

1
4 |ξ − η|,
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which implies estimate (2.5) with p = 4 and hn = an = λn + µn, while (2.3) and (2.4) are a straightfor-
ward consequence of (2.38). Moreover, by the first inequality of (2.40) combined with (2.38) we get that the
functional (2.39) satisfies the coercivity condition (2.1). Condition (2.2) is immediate. Finally, since we have

[

tr
(

Ẽ(λξ)
)]2

+
∣

∣Ẽ(λξ)
∣

∣

2
≤ C

(

1 + |ξ|4
)

, ∀λ ∈ [0, 1], ∀ ξ ∈ R
3×3,

condition (2.6) follows from the first inequality of (2.40), which concludes the proof of the second example.

Remark 2.11. The default of the Saint Venant-Kirchhoff model is that the function Fn(x, ·) of (2.37) is not
polyconvex (see [31]). Hence, we do not know if it is quasiconvex, or equivalently, if the functional Fn of
(2.39) is lower semi-continuous for the weak topology of W 1,4(Ω)3 (see, e.g. [20], Chapter 4, for the notions of
polyconvexity and quasiconvexity).

Example 3

For N = 3 and p ∈ [2,∞), we consider the Ogden’s type energy density defined by

Fn(x, ξ) := an(x)
[

tr
(

C̃(ξ)
p

2 − I3
)

]+

a.e. x ∈ Ω, ∀ ξ ∈ R
3×3, (2.41)

where C̃(ξ) := (I3 + ξ)T (I3 + ξ), and t+ := max (t, 0) for t ∈ R. We assume that there exists a constant C > 1
such that

ess-inf
Ω

an > C−1 and

ˆ

Ω

arn dx ≤ C with

{

r > 1, if p = 2

r = 1, if p > 2.
(2.42)

Then, the density Fn and the associated functional (see definition (2.34))

Fn(u) :=

ˆ

Ω

an(x)
[

tr
(

C(u)
p

2 − I3
)

]+

dx for u ∈ W 1,p
0 (Ω)3, (2.43)

satisfy the conditions (2.1) to (2.6) of Theorem 2.2.

Proof. There exists a constant C > 1 such that we have for a.e. x ∈ Ω and any ξ ∈ R
3×3,

C−1an |ξ|
p − C an ≤ Fn(x, ξ) ≤ C an |ξ|

p + C an. (2.44)

This combined with the fact that the (well-ordered) eigenvalues of a symmetric matrix are Lipschitz functions
(see, e.g., [19], Theorem 2.3-2), implies that for a.e. x ∈ Ω and any ξ, η ∈ R

N , we have

∣

∣Fn(x, ξ)− Fn(x, η)
∣

∣ ≤ C an(1 + |ξ|+ |η|)p−1|ξ − η|

≤ C
(

an + an|ξ|
p + an|η|

p
)

p−1
p a

1
p

n |ξ − η|

≤ C
(

an + Fn(x, ξ) + Fn(x, η)
)

p−1
p a

1
p

n |ξ − η|,

which implies estimate (2.5) with hn = an, while (2.3) and (2.4) are a straightforward consequence of (2.42).
Moreover, by the first inequality of (2.44) combined with (2.42) we get that the functional (2.43) satisfies the
coercivity condition (2.1). Condition (2.2) is immediate. Finally, since we have

tr
(

C̃(λξ)
p

2

)

≤ C
(

1 + |ξ|p
)

, ∀λ ∈ [0, 1], ∀ ξ ∈ R
3×3,

condition (2.6) follows from the first inequality of (2.44), which concludes the proof of the third example.

Remark 2.12. Contrary to Example 2, the function Fn(x, ·) of (2.41) is polyconvex since it is the composition
of the Ogden density energy defined for a.e. x ∈ Ω, by

Wn(x, ξ) := an(x)
[

tr
(

C̃(ξ)
p

2 − I3
)

]+

for ξ ∈ R
3×3, (2.45)

which is known to be polyconvex (see [1]), by the non-decreasing convex function t 7→ t+. However, in contrast
with (2.45) the function (2.41) does attain its minimum at ξ = 0, namely in the absence of strain.
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3 Proof of the results

3.1 Proof of the main results

Proof of Theorem 2.2. The proof is divided into two steps. In the first step we construct the limit functional
F and we prove the properties (2.11), (2.12), (2.13) satisfied by the function F . The second step is devoted to
convergence (2.16).

First step: Construction of F .
Let Fn :W 1,p(Ω)M → [0,∞] be the functional defined by

Fn(v) =

ˆ

Ω

Fn(x,Dv) dx for v ∈W 1,p(Ω)M .

By the compactness Γ-convergence theorem (see e.g. [21], Theorem 8.5), there exists a subsequence of n, still de-
noted by n, such that Fn Γ-converges for the strong topology of Lp(Ω)M to a functional F :W 1,p(Ω)M → [0,∞]
with domain D(F ).

Let ξ be a matrix of a countable dense subset D of RM×N with 0 ∈ D. Since the linear function x 7→ ξx
belongs to D(F ) by (2.8), up to the extraction of a new subsequence, for any ξ ∈ D there exists a recovery
sequence wξ

n in W 1,p(Ω)M which converges strongly to ξx in Lp(Ω)M and such that

Fn(·, Dw
ξ
n)

∗
⇀ µξ and |Dwξ

n|
p ∗
⇀ ̺ξ in M (Ω).

In particular, since Fn(·, 0) = 0 we have µ0 = 0. Moreover, by estimates (2.21) and (2.29) we have for any
ξ, η ∈ D,

̺ξ ≤

{

C
(

|ξ|p + |ξ|p(aL)
1
r + h+ µξ + aL

)

a.e. in ω, if 1 < p ≤ N−1

C
(

|ξ|pa+ h+ µξ + a
)

a-a.e. in ω, if p > N−1,
(3.1)

|µξ − µη| ≤






C
(

hL+(µξ)L+(µη)L+(̺ξ)L+(ρη)L+(1 + (aL)
1
r )|ξ − η|p

)

p−1
p (aL)

1
pr |ξ − η| a.e. in Ω, if 1 < p ≤N−1

C
(

1 + ha + (µξ)a + (µη)a + (̺ξ)a + (̺η)a + |ξ − η)|p
)

p−1
p a |ξ − η| a-a.e. in Ω, if p >N−1.

(3.2)
Hence, by a continuity argument we can define a function F : Ω× R

M×N → [0,∞) satisfying (2.11), (2.13)
and such that

µξ =

{

F (·, ξ), if 1 < p ≤ N−1

F (·, ξ)a, if p > N−1,
∀ ξ ∈ D, (3.3)

where the property (2.12) is deduced from (3.1), (3.2).

Second step: Proof of convergence (2.16).
Let ω be an open set of Ω, let {un} be a sequence fulfilling (2.15), which converges weakly in W 1,p(ω)M to a
function u satisfying (2.14), and let ξ ∈ D. Since Fn(·, Dun) is bounded in L1(Ω), there exists a subsequence
of n, still denoted by n, such that

Fn(·, Dun)
∗
⇀ µ and |Dun|

p ∗
⇀ ̺ in M (Ω). (3.4)

Applying Corollary 2.9 to the sequences un and vn = wξ
n, we have

|µ− µξ| ≤






C
(

hL+µL+(µξ)L+̺L+(̺ξ)L+(1 + (aL)
1
r )|Du − ξ|p

)

p−1
p (aL)

1
pr |Du− ξ| a.e. in ω, if 1 < p ≤N−1

C
(

1 + ha + µa + (µξ)a + ̺a + (̺ξ)a + |Du− ξ|p
)

p−1
p a |Du− ξ| a-a.e. in ω, if p >N−1.

Using (3.1), (3.3) and the continuity of F (x, ξ) with respect to ξ, we get that

µ =

{

F (·, Du), if 1 < p ≤ N−1

F (·, Du)a, if p > N−1.
(3.5)
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Note that since the limit µ is completely determined by F , the first convergence of (3.4) holds for the whole
sequence, which concludes the proof. �

Proof of Theorem 2.3. The proof is divided into two steps.

First step: The case where V = {û}+W 1,p
0 (ω)M .

Fix a function û satisfying (2.25), and define the set V := {û}+W 1,p
0 (ω)M . Let u ∈ V such that

u ∈

{

W 1, pr

r−1 (ω)M , if 1 < p ≤ N−1

C1(ω)M , if p > N−1.

which is extended by û in Ω \ ω, and consider a recovery sequence {un} for FV
n of limit u. There exists a

subsequence of n, still denoted by n, such that the first convergences of (2.26) and (2.27) hold. By Theorem 2.2
convergences (2.16) are satisfied in ω, which implies (3.5). Now, applying the estimate (2.24) of Lemma 2.6
with un and vn = u, it follows that

µ ≤ ν in ω with Fn(·, Dvn)
∗
⇀ ν in M (Ω),

where the convergence holds up to a subsequence. Then, using estimate (2.5) with η = 0 and Hölder’s inequality,
we have for any ϕ ∈ L∞

(

Ω; [0, 1]
)

with compact support in Ω,

ˆ

Ω

ϕFn(x,Du) dx ≤























(
ˆ

Ω

ϕ
(

hn + Fn(x,Du) + |Du|p
)

dx

)

p−1
p

(
ˆ

Ω

ϕarn dx

)
1
pr (

ϕ |Du|
pr

r−1 dx
)

r−1
pr

, if 1 < p ≤ N−1

(
ˆ

Ω

ϕ
(

hn + Fn(x,Du) + |Du|p
)

dx

)

p−1
p

(
ˆ

Ω

ϕan dx

)
1
p

‖Du‖L∞(Ω)M , if p > N−1,

which implies that ν is absolutely continuous with respect to the Lebesgue measure if 1 < p ≤ N−1, and
absolutely continuous with respect to measure a if p > N−1. Due to condition (2.19) in both cases the equality
ν(∂ω) = 0 holds, so does with µ. This combined with (2.16) and (3.5) yields

lim
n→∞

ˆ

ω

Fn(x,Dun) dx =















ˆ

ω

F (x,Du) dx, if 1 < p ≤ N−1

ˆ

ω

F (x,Du) da, if p > N−1,

which concludes the first step.

Second step: The general case.
Let V be a subset of W 1,p(ω)M satisfying (2.17). Let u be a function such that

u ∈

{

V ∩W 1, pr

r−1 (Ω)M , if 1 < p ≤ N−1

V ∩ C1(Ω)M , if p > N−1,

and define the set Ṽ := {u}+W 1,p
0 (ω)M . Consider a recovery sequence {un} for FV

n given by (2.18) of limit

u, and a recovery sequence {ũn} for F Ṽ
n of limit u. By virtue of Theorem 2.2 the convergences (2.16) hold for

both sequences {un} and {ũn}. Hence, since ω is an open set, and Fn(x,Dun) is non-negative, we have

if 1 < p ≤ N−1,

ˆ

ω

F (x,Du) dx

if p > N−1,

ˆ

ω

F (x,Du) da















≤ lim inf
n→∞

ˆ

ω

Fn(x,Dun) dx. (3.6)

Moreover, since ũn − un ⇀ 0 in W 1,p
0 (ω)M , ũn ∈ V by property (2.17) and because {un} is a recovery sequence

for FV
n , {ũn} is an admissible sequence for the minimization problem (2.15), which implies that

∃ lim
n→∞

ˆ

ω

Fn(x,Dun) dx ≤ lim inf
n→∞

ˆ

ω

Fn(x,Dũn) dx. (3.7)
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On the other hand, by the first step applied with ũ = u and the set Ṽ , we have

lim
n→∞

ˆ

ω

Fn(x,Dũn) dx =















ˆ

ω

F (x,Du) dx, if 1 < p ≤ N−1

ˆ

ω

F (x,Du) da, if p > N−1.

(3.8)

Therefore, combining (3.6), (3.7), (3.8), for the sequence n obtained in Theorem 2.2, the sequence
{

FV
n

}

Γ-
converges to some functional FV satisfying (2.20) with v = u, which concludes the proof of Theorem 2.3.
�

3.2 Proof of the lemmas

Proof of Lemma 2.10. Assume that 1 < p ≤ N−1. Using (2.7), we have

Fn(x, ξn + ρn) ≤ (p− 1)hn + (2p− 1)Fn(x, ξn) + (p− 1)
(

|ξn + ρn|
p + |ξn|

p
)

+ an|ρn|
p a.e. in ω.

From this we deduce that {Fn(·, ξn + ρn)} is bounded in L1(ω). Moreover, by (2.5), we have

∣

∣Fn(x, ξn + ρn)− Fn(x, ξn)
∣

∣ ≤
(

hn + Fn(x, ξn + ρn) + Fn(x, ξn) + |ξn + ρn|
p + |ξn|

p
)

p−1
p a

1
p

n |ρn| a.e. in ω,

where, thanks to the strong convergence of {ρn} in L
pr

r−1 (ω)M×N , we can show that the right-hand side is
bounded in L1(ω) and equi-integrable. Indeed, taking into account

p− 1

p
+

1

pr
+
r − 1

pr
= 1,

we have the boundedness in L1(ω), while the strong convergence of {ρn} in L
pr

r−1 (ω)M×N implies that {|ρn|
pr

r−1 }
is equi-integrable and therefore, the equi-integrability of the right-hand side. By the Dunford-Pettis theorem,
extracting a subsequence if necessary, we conclude (2.31), which, together with (2.30), in particular implies

Fn(·, ξn + ρn)
∗
⇀ Λ + ϑ in M (ω).

Moreover, for any ball B ⊂ ω, we have

ˆ

B

∣

∣Fn(x, ξn + ρn)− Fn(x, ξn)
∣

∣ dx

≤

ˆ

B

(

hn + Fn(x, ξn + ρn) + Fn(x, ξn) + |ξn + ρn|
p + |ξn|

p
)

p−1
p a

1
p

n |ρn|dx

≤

(
ˆ

B

(

hn + Fn(x, ξn + ρn) + Fn(x, ξn) + C|ξn|
p + C|ρn|

p
)

dx

)

p−1
p

(
ˆ

B

arndx

)
1
pr

(
ˆ

B

|ρn|
pr

r−1 dx

)

r−1
pr

,

which, passing to the limit, implies

ˆ

B

|ϑ|dx ≤

(

(h+ 2Λ + ϑ+ CΞ)(B) + C

ˆ

B

|ρ|pdx

)

p−1
p

a(B)
1
pr

(
ˆ

B

|ρ|
pr

r−1 dx

)
r−1
pr

,

and then, dividing by |B|, the measures differentiation theorem shows that

|ϑ| ≤
(

hL + 2ΛL + ϑ+ CΞ + C|ρ|p
)

p−1
p (aL)

1
pr |ρ| a.e. in ω. (3.9)

Using Young’s inequality in (3.9)

|ϑ| ≤
p− 1

p

(

hL + 2ΛL + ϑ+ CΞL + C|ρ|p
)

+
1

p
(aL)

1
r |ρ|p a.e. in ω,

and then
|ϑ| ≤ C

(

hL + ΛL + ΞL + (1 + (aL)
1
r )|ρ|p

)

a.e. in ω,

which substituted in (3.9) shows (2.32).
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Assume now that p > N−1. Again, using (2.7) we deduce that {Fn(·, ξn + ρn)} is bounded in L1(ω), and
thanks to (2.5) we get

∣

∣Fn(x, ξn + ρn)− Fn(x, ξn)
∣

∣ ≤
(

hn + Fn(x, ξn + ρn) + Fn(x, ξn) + |ξn + ρn|
p + |ξn|

p
)

p−1
p a

1
p

n |ρn| a.e. in ω.

Consequently, the sequence {Fn(·, ξn + ρn) − Fn(·, ξn)} is bounded in L1(ω). Extracting a subsequence if
necessary, the sequence {Fn(·, ξn+ρn)−Fn(·, ξn)} weakly-∗ converges in M (ω) to a measure Θ, which, together
with (2.30), implies

Fn(·, ξn + ρn)
∗
⇀ Λ +Θ in M (ω).

Furthermore, if E is a measurable subset of ω, then, using Hölder’s inequality, we have
ˆ

E

∣

∣Fn(x, ξn + ρn)− Fn(x, ξn)
∣

∣ dx

≤

ˆ

E

(

hn + Fn(x, ξn + ρn) + Fn(x, ξn) + |ξn + ρn|
p + |ξn|

p
)

p−1
p a

1
p

n |ρn| dx

≤‖ρn‖L∞(ω)M×N

(

C‖ρn‖
p

L∞(ω)M×N +

ˆ

E

(

hn + Fn(x, ξn + ρn) + Fn(x, ξn) + C|ξn|
p
)

dx

)

p−1
p

(
ˆ

E

andx

)
1
p

,

which, passing to the limit, shows that Θ is absolutely continuous with respect to a. By the Radon-Nikodym
theorem, there exists ϑ ∈ L1

a(ω) such that

Θ = ϑa in M (ω).

From the previous expression and using the measures differentiation theorem, we get (2.33). �

Proof of Lemma 2.5. Let x0 ∈ ω and two numbers 0 < R1 < R2 with B(x0, R2) ⊂ ω. Lemma 2.6 in [12]
gives the existence of a sequence of closed sets

Un ⊂ [R1, R2], with |Un| ≥
1

2
(R2 −R1),

such that defining

ūn(r, z) = un(x0 + rz), ū(r, z) = u(x0 + rz), r ∈ (0, R2), z ∈ SN−1,

we have
‖ūn − ū‖C0(Un;X) → 0, (3.10)

where X is the space defined by

X :=











Ls(SN−1)
M , with 1 ≤ s < (N−1)p

N−1−p
, if 1 < p < N−1,

Ls(SN−1)
M , with 1 ≤ s <∞, if p = N−1,

C0(SN−1)
M , if p > N−1.

For the rest of the prove we assume 1 < p ≤ N−1 because the case p > N−1 is quite similar.

We define ϕ̄n ∈ W 1,∞(0,∞) by

ϕ̄n(r) =



















1, if 0 < r < R1,

1

|Un|

ˆ R2

r

χUn
ds, if R1 < r < R2,

0, if R2 < r,

(3.11)

and
ϕn(x) = ϕ̄n(|x− x0|).

Applying the coercivity inequality (2.1) to the sequence ϕn(un−u) and using Fn(·, 0) = 0, ϕn = 1 in B(x0, R1),
we get

α

ˆ

B(x0,R1)

|Dun −Du|p dx ≤ α

ˆ

B(x0,R2)

∣

∣D
(

ϕn(un − u)
))∣

∣

p
dx

≤

ˆ

B(x0,R2)

Fn

(

x,D(ϕn(un − u))
)

dx =

ˆ

B(x0,R2)

Fn

(

x, ϕnDun − ϕnDu+ (un − u)⊗∇ϕn

)

dx.
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By the convergence (2.31) with ξn := ϕnDun, ρn := −ϕnDu+(un−u)⊗∇ϕn, and by estimate (2.6) we obtain
up to a subsequence

lim
n→∞

ˆ

B(x0,R2)

Fn

(

x, ϕnDun − ϕnDu+ (un − u)⊗∇ϕn

)

dx

≤ lim
n→∞

ˆ

B(x0,R2)

Fn

(

x, ϕnDun) dx+

ˆ

B(x0,R2)

ϑ dx

≤ C(h+ µ)
(

B(x0, R2)
)

+

ˆ

B(x0,R2)

ϑ dx,

with

|ϑ| ≤ C
(

hL + µL + ̺L + (1 + (aL)
1
r )|Du|p

)

p−1
p (aL)

1
pr |Du| a.e. in ω.

Indeed, thanks to (3.10) the sequence (un − u) ⊗ ∇ϕn converges strongly to 0 in L
pr

r−1 (ω)M×N taking into
account the inequality

(N − 1)p

N − 1− p
≥

pr

r − 1
.

Hence, we deduce from the previous estimates that

̺
(

B(x0, R1)
)

≤ C(h+ µ)
(

B(x0, R2)
)

+ C

ˆ

B(x0,R1)

|Du|p dx

+C

ˆ

B(x0,R2)

(

(

hL + µL + ̺L + (1 + (aL)
1
r )|Du|p

)

p−1
p (aL)

1
pr |Du|

)

dx.

Taking R2 such that
(h+ µ)

(

{|x− x0| = R2}
)

= 0,

which holds true except for a countable set Ex0 ⊂
(

0, dist(x0, ∂ω)
)

, and making R1 tend to R2, we get that

̺
(

B(x0, R2)
)

≤ C(h+ µ)
(

B(x0, R2)
)

+ C

ˆ

B(x0,R2)

|Du|p dx

+C

ˆ

B(x0,R2)

(

(

hL + µL + ̺L + (1 + (aL)
1
r )|Du|p

)

p−1
p (aL)

1
pr |Du|

)

dx,

for any R2 ∈
(

0, dist(x0, ∂ω)
)

\Ex0 . Then, by the measures differentiation theorem it follows that

̺ ≤ C (|Du|p + h+ µ) + C

(

(

hL + µL + ̺L + (1 + (aL)
1
r )|Du|p

)

p−1
p

)

(aL)
1
pr |Du|.

Finally, the Young inequality yields the desired estimate (2.21).
Now consider {un} and {vn} as in the statement of the lemma. Let x0 ∈ ω and 0 < R0 < R1 < R2 with

B(x0, R2) ⊂ ω. Again using Lemma 2.6 in [12] there exist two sequences of closed sets

Vn ⊂ [R0, R1], Un ⊂ [R1, R2],

with

|Vn| ≥
1

2
(R1 −R0), |Un| ≥

1

2
(R2 −R1),

such that defining

ūn(r, z) = un(x0 + rz), v̄n(r, z) = vn(x0 + rz), r ∈ (0, R2), z ∈ SN−1,

ū(r, z) = u(x0 + rz), v̄(r, z) = v(x0 + rz), r ∈ (0, R2), z ∈ SN−1,

we have
‖ūn − ū‖C0(Un;X) → 0, ‖v̄n − v̄‖C0(Vn;X) → 0.

Then, consider the function ϕ̄n defined by (3.11) and the function ψ̄n ∈ W 1,∞(0,∞) defined by

ψ̄n(r) =



















1, if 0 < r < R0,

1

|Vn|

ˆ R1

r

χVn
ds, if R0 < r < R1,

0, if R1 < r.
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From these sequences we define wn ∈W 1,p(ω)M by

wn = ψn(vn − v + u) + ϕn(1 − ψn)u+ (1− ϕn)un,

with
ϕn(x) = ϕ̄n(|x − x0|), ψn(x) = ψ̄n(|x− x0|),

i.e.

wn =



















vn − v + u, if |x− x0| < R0,

ψn(vn − v) + u, if R0 < |x− x0| < R1,

ϕnu+ (1− ϕn)un, if R1 < |x− x0| < R2,

un, if R2 < |x− x0|, x ∈ ω.

(3.12)

It is clear that, for a subsequence, wn converges a.e. to u. Using then that wn − un is in W 1,p
0 (ω)M and

that, thanks to ϕn, ψn bounded in W 1,∞(Ω), wn is bounded in W 1,p(ω)M , we get

wn − un ⇀ 0 weakly in W 1,p
0 (ω).

Thus, from (2.22) we deduce

ˆ

ω

Fn(x,Dun) dx ≤

ˆ

ω

Fn(x,Dwn) dx +On

=

ˆ

B(x0,R0)

Fn

(

x,D(vn − v + u)
)

dx+

ˆ

{R2<|x−x0|}∩ω

Fn(x,Dun) dx

+

ˆ

{R0<|x−x0|<R1}

Fn

(

x, ψnD(vn − v) +Du+ (vn − v)⊗∇ψn

)

dx

+

ˆ

{R1<|x−x0|<R2}

Fn

(

x, ϕnDu+ (1 − ϕn)Dun + (u− un)⊗∇ϕn

)

dx+On,

what implies, in particular

ˆ

B(x0,R2)

Fn(x,Dun) dx ≤

ˆ

B(x0,R0)

Fn

(

x,D(vn − v + u)
)

dx

+

ˆ

{R0<|x−x0|<R1}

Fn

(

x, ψnD(vn − v) +Du+ (vn − v)⊗∇ψn

)

dx

+

ˆ

{R1<|x−x0|<R2}

Fn

(

x, ϕnDu+ (1− ϕn)Dun + (u − un)⊗∇ϕn

)

dx+On.

(3.13)
To estimate the first term on the right-hand side of this inequality, we use Lemma 2.10 with ξn = Dvn,

ρn = D(−v + u), which take into account (2.23), gives

ˆ

B(x0,R0)

Fn

(

x,D(vn − v + u)
)

dx

≤ ν
(

B(x0, R0)
)

+ C

ˆ

B(x0,R0)

(

hL + νL +̟L + (1 + (aL)
1
r )|D(u − v)|p

)

p−1
p (aL)

1
pr |D(u − v)|dx+On.

(3.14)

For the second term, we use again Lemma 2.10 with ξn = ψnDvn and ρn = −ψnDv +Du + (vn − v) ⊗∇ψn.
Therefore, up to subsequence it holds

ˆ

{R0<|x−x0|<R1}

Fn

(

x, ψnD(vn − v) +Du+ (vn − v)⊗∇ψn

)

dx

≤ C(h+ ν +̟)
(

{R0 ≤ |x− x0| ≤ R1}
)

+ C

ˆ

{R0<|x−x0|<R1}

(

hL + νL +̟L + (1 + (aL)
1
r )(|Dv|p + |Du|p)

)

p−1
p (aL)

1
pr (|Du|+ |Dv|) dx+On.

(3.15)

15



The third term is analogously estimated by Lemma 2.10 with ξn = (1−ϕn)Dun and ρn = ϕnDu+(u−un)⊗∇ϕn.
Extracting a subsequence if necessary, it yields

ˆ

{R1<|x−x0|<R2}

Fn

(

x, ϕnDu+ (1− ϕn)Dun + (u− un)⊗∇ϕn

)

dx

≤ C(h+ µ+ ̺)
(

{R1 ≤ |x− x0| ≤ R2}
)

+ C

ˆ

{R1<|x−x0|<R2}

(

hL + µL + ̺L + (1 + (aL)
1
r )|Du|p

)

p−1
p (aL)

1
pr |Du|dx+ On.

(3.16)

From (3.13), (3.14), (3.15) and (3.16) we deduce that

µ
(

B(x0, R2)
)

≤ ν
(

B(x0, R0)
)

+ C

ˆ

B(x0,R0)

(

hL + νL +̟ + (1 + (aL)
1
r )|D(u− v)|p

)

p−1
p (aL)

1
pr |D(u− v)|dx

+ C(h+ ν +̟)
(

{R0 ≤ |x− x0| ≤ R1}
)

+ C

ˆ

{R0<|x−x0|<R1}

(

hL + νL +̟L + (1 + (aL)
1
r )(|Dv|p + |Du|p)

)

p−1
p (aL)

1
pr (|Du|+ |Dv|) dx

+ C(h+ µ+ ̺)
(

{R1 ≤ |x− x0| ≤ R2}
)

+ C

ˆ

{R1<|x−x0|<R2}

(

hL + µL + ̺L + (1 + (aL)
1
r )|Du|p

)

p−1
p (aL)

1
pr |Du|dx.

(3.17)
Taking R0 such that

(h+ ν +̟ + µ+ ̺)
(

{|x− x0| = R0}
)

= 0,

which holds true except for a countable set Ex0 ⊂
(

0, dist(x0, ∂ω)
)

, and making R1, R2 tend to R0, from (3.17)
we deduce that

µ
(

B(x0, R0)
)

≤ ν
(

B(x0, R0)
)

+ C

ˆ

B(x0,R0)

(

hL + νL +̟L + (1 + (aL)
1
r )|D(u − v)|p

)

p−1
p (aL)

1
pr |D(u− v)|dx,

for any R0 ∈
(

0, dist(x0, ∂ω)
)

\Ex0 (observe that the right term in the integral is well defined as an element of
L1(ω)). Therefore, the measures differentiation theorem shows (2.24).

�

Proof of Lemma 2.6. The proof is the same as the proof of Lemma 2.5 choosing any point x0 in Ω rather
than ω, extending the functions un, vn by u in Ω \ω, and then noting that the function wn defined by (3.12) in
Ω is also equal to u in Ω \ ω. �

Proof of Corollary 2.9. Assume that 1 < p ≤ N−1. Applying Lemma 2.5 with ω = ω1 (see also Remark 2.7
about the subsets of ω) we obtain

µ ≤ ν + C
(

hL + νL +̟L + (1 + (aL)
1
r )|D(u− v)p|

)

p−1
p (aL)

1
pr |D(u− v)| in ω1 ∩ ω2.

Analogously with ω = ω2, we get

ν ≤ µ+ C
(

hL + µL + ̺L + (1 + (aL)
1
r )|D(u− v)p|

)

p−1
p (aL)

1
pr |D(u− v)| in ω1 ∩ ω2.

These two expressions prove the first estimate of (2.29). The proof of the second estimate is similar. �
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