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Introduction

In this paper we study the asymptotic behavior of the sequence of nonlinear functionals, including some hyperelastic energies (see the examples of Section 2.3), defined on vector-valued functions by

F n (v) := ˆΩ F n (x, Dv) dx for v ∈ W 1,p 0 (Ω) M , with p ∈ (1, ∞), M ≥ 1, (1.1) 
in a bounded open set Ω of R N , N ≥ 2. The sequence F n is assumed to be equi-coercive. Moreover, the associated density F n (•, ξ) satisfies some Lipschitz condition with respect to ξ ∈ R M×N , and its coefficients are not uniformly bounded in Ω. The linear scalar case, i.e. when F n (•, ξ) is quadratic with respect to ξ ∈ R N (M = 1), with uniformly bounded coefficients was widely investigated in the seventies through G-convergence by Spagnolo [START_REF] Spagnolo | Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche[END_REF], extended by Murat and Tartar with H-convergence [START_REF] Murat | H-convergence[END_REF][START_REF] Tartar | The General Theory of Homogenization: A Personalized Introduction[END_REF], and alternatively through Γ-convergence by De Giorgi [START_REF] Giorgi | Sulla convergenza di alcune successioni di integrali del tipo dell'area[END_REF][START_REF] De Giorgi | Su un tipo di convergenza variazionale[END_REF] (see also [START_REF] Maso | An introduction to Γ-convergence[END_REF][START_REF] Braides | Γ-convergence for Beginners[END_REF]). The linear elasticity case was probably first derived by Duvaut (unavailable reference), and can be found in [START_REF] Sánchez-Palencia | Nonhomogeneous Media and Vibration Theory[END_REF][START_REF] Francfort | Homogenisation of a class of fourth order equations with application to incompressible elasticity[END_REF]. In the nonlinear scalar case the first compactness results are due to Carbone, Sbordone [START_REF] Carbone | Some properties of Γ-limits of integral functionals[END_REF] and Buttazzo, Dal Maso [START_REF] Buttazzo | Γ-limits of integral functionals[END_REF] by a Γ-convergence approach assuming the L 1 -equi-integrability of the coefficients. More recently, these results were extended in [START_REF] Braides | Homogenization of non-uniformly bounded periodic diffusion energies in dimension two[END_REF][START_REF] Briane | Asymptotic behavior of equicoercive diffusion energies in two dimension[END_REF][START_REF] Briane | Homogenization of convex functionals which are weakly coercive and not equibounded from above[END_REF] relaxing the L 1 -boundedness of the coefficients but assuming that p > N -1 if N ≥ 3, showing then the uniform convergence of the minimizers thanks to the maximum principle. In all these works the scalar framework combined with the condition p > N -1 if N ≥ 3 and the equi-coercivity of the functionals, induce in terms of the Γ-convergence for the strong topology of L p (Ω), a limit energy F of the same nature satisfying

F (v) := ˆΩ F (x, Dv) dν for v ∈ W, (1.2) 
where C 1 c (Ω) M ⊂ W is some suitable subspace of W 1,p 0 (Ω) M , and ν is some Radon measure on Ω. Removing the L 1 -equi-integrability of the coefficients in the three-dimensional linear scalar case (note that p = N -1 = 2 in this case), Fenchenko and Khruslov [START_REF] Fenchenko | Asymptotic behavior of solutions of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness[END_REF] (see also [START_REF] Ya | Homogenized models of composite media[END_REF]) were, up to our knowledge, the first to obtain a violation of the compactness result due to the appearance of local and nonlocal terms in the limit energy F . This seminal work was also revisited by Bellieud and Bouchitté [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects[END_REF]. Actually, the local and nonlocal terms in addition to the classical strongly local term come from the Beurling-Deny [START_REF] Beurling | Espaces de Dirichlet[END_REF] representation formula of a Dirichlet form, and arise naturally in the homogenization process as shown by Mosco [START_REF] Mosco | Composite media and asymptotic Dirichlet forms[END_REF]. The complete picture of the attainable energies was obtained by Camar-Eddine and Seppecher [START_REF] Camar-Eddine | Closure of the set of diffusion functionals with respect to the Mosco-convergence[END_REF] in the linear scalar case. The elasticity case is much more intricate even in the linear framework, since the loss of uniform boundedness of the elastic coefficients may induce the appearance of second gradient terms as Seppecher and Pideri proved in [START_REF] Pideri | A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium[END_REF]. The situation is dramatically different from the scalar case, since the Beurling-Deny formula does not hold in the vector-valued case. In fact, Camar-Eddine and Seppecher [START_REF] Camar-Eddine | Determination of the closure of the set of elasticity functionals[END_REF] proved that any lower semi-continuous quadratic functional vanishing on the rigid displacements, can be attained. Compactness results were obtained in the linear elasticity case using some (strong) equi-integrability of the coefficients in [START_REF] Briane | Homogenization of systems with equi-integrable coefficients[END_REF], and using various extensions of the classical Murat-Tartar [START_REF] Murat | H-convergence[END_REF] div-curl result in [START_REF] Briane | Homogenization of two-dimensional elasticity problems with very stiff coefficients[END_REF][START_REF] Briane | The div-curl lemma 'trente ans après': an extension and an application to the G-convergence of unbounded monotone operators[END_REF][START_REF] Briane | A new div-curl result. Applications to the homogenization of elliptic systems and to the weak continuity of the Jacobian[END_REF][START_REF] Pallares-Martín | High-Contrast homogenization of linear systems of partial differential equations[END_REF] (which were themselves initiated in the former works [START_REF] Briane | Nonlocal effects in two-dimensional conductivity[END_REF][START_REF] Briane | Asymptotic behavior of equicoercive diffusion energies in two dimension[END_REF] of the two first authors).

In our context the vectorial character of the problem and its nonlinearity prevent us from using the uniform convergence of [START_REF] Briane | Homogenization of convex functionals which are weakly coercive and not equibounded from above[END_REF] and the div-curl lemma of [START_REF] Briane | A new div-curl result. Applications to the homogenization of elliptic systems and to the weak continuity of the Jacobian[END_REF], which are (up to our knowledge) the more recent general compactness results on the topic. We assume that the nonnegative energy density F n (•, ξ) of the functional (1.1) attains its minimum at ξ = 0, and satisfies the following Lipschitz condition with respect to ξ ∈ R M×N :

   F n (x, ξ) -F n (x, η) ≤ h n (x) + F n (x, ξ) + F n (x, η) + |ξ| p + |η| p p-1 p a n (x) 1 p |ξ -η| ∀ ξ, η ∈ R M×N , a.e. x ∈ Ω,
which is controlled by a positive function a n (•) (see the whole set of conditions (2.1) to (2.6) below). The sequence {a n } is assumed to be bounded in L r (Ω) for some r > (N -1)/p if 1 < p ≤ N -1, and bounded in L 1 (Ω) if p > N -1. Note that for p > N -1 our condition is better than the L 1 -equi-integrability used in the scalar case of [START_REF] Carbone | Some properties of Γ-limits of integral functionals[END_REF][START_REF] Buttazzo | Γ-limits of integral functionals[END_REF], but not for 1 < p ≤ N -1. Under these assumptions we prove (see Theorem 2.3) that the sequence {F n } of (1.1) Γ-converges for the strong topology of L p (Ω) M (see Definition 1.1) to a functional of type (1.2) with

W ⊂ W 1, pr r-1 (Ω) M , if 1 < p ≤ N -1 C 1 (Ω) M , if p > N -1, and ν =    Lebesgue measure, if 1 < p ≤ N -1 M (Ω) * -lim n→∞ a n , if p > N -1.
Various types of boundary conditions can be taken into account in this Γ-convergence approach.

A preliminary result (see Theorem 2.2) allows us to prove that the sequence of energy density {F n (•, Du n )} converges in the sense of Radon measures to some strongly local energy density F (•, Du), when u n is an asymptotic minimizer for F n of limit u (see definition (2.15)). The proof of this new compactness result is based on an extension (see Lemma 2.5) of the fundamental estimate for recovery sequences in Γ-convergence (see, e.g., [START_REF] Maso | An introduction to Γ-convergence[END_REF], Chapters 18,[START_REF] Ciarlet | Introduction à l'analyse numérique matricielle et à l'optimisation (French) [Introduction to matrix numerical analysis and optimization[END_REF], which provides a bound (see (2.24)) satisfied by the weak- * limit of {F n (•, Du n )} with respect to the weak- * limit of any sequence {F n (•, Dv n )} such that the sequence {v n -u n } converges weakly to 0 in W 1,p 0 (Ω) M . Rather than using fixed smooth cut-off functions as in the classical fundamental estimate, here we need to consider sequences of radial cut-off functions ϕ n whose gradient has support in n-dependent sets on which u n -u satisfies some uniform estimate with respect to the radial coordinate (see Lemma 2.10 and its proof). This allows us to control the zero-order term ∇ϕ n (u n -u), when we put the trial function ϕ n (u n -u) in the functional F n of (1.1). The uniform estimate is a consequence of the Sobolev compact embedding for the (N -1)-dimensional sphere, and explains the role of the exponent r > (N -1)/p if 1 < p ≤ N -1. A similar argument was used in the linear case [START_REF] Briane | A new div-curl result. Applications to the homogenization of elliptic systems and to the weak continuity of the Jacobian[END_REF] to obtain a new div-curl lemma which is the key-ingredient for the compactness of quadratic elasticity functionals of type (1.1).

Notations

• R N ×N s denotes the set of the symmetric matrices in R N ×N .

• For any ξ ∈ R N ×N , ξ T is the transposed matrix of ξ, and ξ s := 1 2 (ξ + ξ T ) is the symmetrized matrix of ξ. • I N denotes the unit matrix of R N ×N .

• • denotes the scalar product in R N , and : denotes the scalar product in R M×N defined by

ξ : η := tr (ξ T η) for ξ, η ∈ R M×N ,
where tr is the trace.

• | • | denotes both the euclidian norm in R N , and the Frobenius norm in R M×N , i.e.

|ξ| := tr (ξ T ξ)

1 2 for ξ ∈ R M×N .
• For a bounded open set ω ⊂ R N , M (ω) denotes the space of the Radon measures on ω with bounded total variation. It agrees with the dual space of C 0 0 (ω), namely the space of the continuous functions in ω which vanish on ∂ω. Moreover, M (ω) denotes the space of the Radon measures on ω. It agrees with the dual space of C 0 (ω).

• For any measures ζ, µ ∈ M (ω), with ω ⊂ R N , open, bounded, we define ζ µ ∈ L 1 µ (Ω) as the derivative of ζ with respect to µ. When µ is the Lebesgue measure, we write ζ L .

• C is a positive constant which may vary from line to line.

• O n is a real sequence which tends to zero as n tends to infinity. It can vary from line to line.

Recall the definition of the De Giorgi Γ-convergence (see, e.g., [START_REF] Maso | An introduction to Γ-convergence[END_REF][START_REF] Braides | Γ-convergence for Beginners[END_REF] for further details). Definition 1.1. Let V be a metric space, and let F n , F : V → [0, ∞], n ∈ N, be functionals defined on V . The sequence {F n } is said to Γ-converge to F for the topology of V in a set W ⊂ V and we write

F n Γ ⇀ F in W, if -the Γ-liminf inequality holds ∀ v ∈ W, ∀ v n → v in V, F (v) ≤ lim inf n→∞ F n (v n ), -the Γ-limsup inequality holds ∀v ∈ W, ∃ v n → v in V, F (v) = lim n→∞ F n (v n ).
Any sequence v n satisfying (1.1) is called a recovery sequence for F n of limit v.

Statement of the results and examples 2.1 The main results

Consider a bounded open set Ω ⊂ R N with N ≥ 2, M a positive integer, a sequence of nonnegative Carathéodory functions F n : Ω × R M×N → [0, ∞), and p > 1 with the following properties:

• There exist two constants α > 0 and β ∈ R such that

ˆΩ F n (x, Du) dx ≥ α ˆΩ |Du| p dx + β, ∀ u ∈ W 1,p 0 (Ω) M , (2.1) 
and

F n (•, 0) = 0 a.e. in Ω. ( 2 

.2)

• There exist two sequences of measurable functions h n , a n ≥ 0, and a constant γ > 0 such that

h n is bounded in L 1 (Ω), (2.3) a n is bounded in L r (Ω) with      r > N -1 p , if 1 < p ≤ N -1 r = 1, if p > N -1, (2.4) 
   F n (x, ξ) -F n (x, η) ≤ h n (x) + F n (x, ξ) + F n (x, η) + |ξ| p + |η| p p-1 p a n (x) 1 p |ξ -η| ∀ ξ, η ∈ R M×N , a.e. x ∈ Ω, (2.5) 
and

F n (x, λξ) ≤ h n (x) + γ F n (x, ξ), ∀ λ ∈ [0, 1], ∀ ξ ∈ R M×N , a.e. x ∈ Ω. (2.6)
Remark 2.1. From (2.5) and Young's inequality, we get that

F n (x, ξ) ≤ F n (x, η) + h n (x) + F n (x, ξ) + F n (x, η) + |ξ| p + |η| p p-1 p a n (x) 1 p |ξ -η| ≤ F n (x, η) + p -1 p h n (x) + F n (x, ξ) + F n (x, η) + |ξ| p + |η| p + 1 p a n (x) |ξ -η| p ,
and then

F n (x, ξ) ≤ (p-1) h n (x)+(2p-1) F n (x, η)+(p-1) |ξ| p +|η| p +a n (x) |ξ-η| p , ∀ ξ, η ∈ R M×N , a.e. x ∈ Ω. (2.7)
In particular, taking η = 0, we have

F n (x, ξ) ≤ (p -1) h n (x) + p -1 + a n (x) |ξ| p , ∀ ξ ∈ R M×N , a.e. x ∈ Ω, (2.8) 
where the right-hand side is a bounded sequence in L 1 (Ω).

From now on, we assume that

a r n * ⇀ a in M (Ω) and h n * ⇀ h in M (Ω).
(2.9)

The paper deals with the asymptotic behavior of the sequence of functionals

F n (v) := ˆΩ F n (x, Dv) dx for v ∈ W 1,p (Ω) M . (2.10)
First of all, we have the following result on the convergence of the energy density F n (•, Du n ), where u n is an asymptotic minimizer associated with functional (2.10).

Theorem 2.2. Let F n : Ω × R M×N → [0, ∞) be a sequence of Carathéodory functions satisfying (2.1) to (2.6).
Then, there exist a function F : Ω × R M×N → R and a subsequence of n, still denoted by n, such that for any

ξ, η ∈ R N , F (•, ξ) is Lebesgue measurable, if 1 < p ≤ N -1 F (•, ξ) is a-measurable, if p > N -1, (2.11) 
F (x, ξ) -F (x, η) ≤    C h L + F (x, ξ) + F (x, η) + (1 + (a L ) 1 r )(|ξ| p + |η| p ) p-1 p (a L ) 1 pr |ξ -η| a.e. in Ω, if 1 < p ≤ N -1 C 1 + h a + F (x, ξ) + F (x, η) + |ξ| p + |η| p p-1 p |ξ -η| a-a.e. in Ω, if p > N -1, (2.12) 
and F (•, 0) = 0 a.e. in Ω.

(

2.13)

For any open set ω ⊂ Ω, and any sequence

{u n } in W 1,p (ω) M which converges weakly in W 1,p (ω) M to a function u satisfying u ∈ W 1, pr r-1 (ω) M , if 1 < p ≤ N -1 C 1 (ω) M , if p > N -1, (2.14) 
and such that

∃ lim n→∞ ˆω F n (x, Du n ) dx = min lim inf n→∞ ˆω F n (x, Dw n ) dx : w n -u n ⇀ 0 in W 1,p 0 (ω) M < ∞, (2.15) 
we have

F n (•, Du n ) * ⇀ F (•, Du), if 1 < p ≤ N -1 F (•, Du) a, if p > N -1 in M (ω). (2.16)
From Theorem 2.2 we may deduce the Γ-limit (see Definition 1.1) of the sequence of functionals (2.10) with various boundary conditions.

Theorem 2.3. Let F n : Ω × R M×N → [0, ∞) be a sequence of Carathéodory functions satisfying (2.1) to (2.6).
Let ω be an open set such that ω ⊂⊂ Ω, and let V be a subset of W 1,p (ω) M such that

∀ u ∈ V, ∀ v ∈ W 1,p 0 (ω) M , u + v ∈ V.
(2.17)

Define the functional F V n : V → [0, ∞) by F V n (v) := ˆω F n (x, Dv) dx for v ∈ V. (2.18)
Assume that the open set ω satisfies

|∂ω| = 0, if 1 < p ≤ N -1 a(∂ω) = 0, if p > N -1. (2.19)
Then, for the subsequence of n (still denoted by n) obtained in Theorem 2.2 we get

       F V n Γ ⇀ F V := ˆω F (x, Dv) dx in V ∩ W 1, pr r-1 (ω) M , if 1 < p ≤ N -1 F V n Γ ⇀ F V := ˆω F (x, Dv) dx in V ∩ C 1 (ω) M , if p > N -1, (2.20) 
for the strong topology of L p (ω) M , where F is given by convergence (2.16).

Remark 

Auxiliary lemmas

The proof of Theorem 2.2 is based on the following lemma which provides an estimate of the energy density for asymptotic minimizers. In our context it is equivalent to the fundamental estimate for recovery sequences (see Definition 1.1) in Γ-convergence theory (see, e.g., [START_REF] Maso | An introduction to Γ-convergence[END_REF], Chapters 18,[START_REF] Ciarlet | Introduction à l'analyse numérique matricielle et à l'optimisation (French) [Introduction to matrix numerical analysis and optimization[END_REF]. 

Lemma 2.5. Let F n : Ω × R M×N → [0, ∞)
F n (•, Du n ) * ⇀ µ in M (ω), |Du n | p * ⇀ ̺ in M (ω).
Then, the measure ̺ satisfies

̺ ≤ C |Du| p + |Du| p (a L ) 1 r + h + µ + a L a.e. in ω, if 1 < p ≤ N -1 C |Du| p a + h + µ + a a-a.e. in ω, if p > N -1.
(2.21)

Moreover if u n satisfies ∃ lim n→∞ ˆω F n (x, Du n ) dx = min lim inf n→∞ ˆω F n (x, Dw n ) dx : w n -u n ⇀ 0 in W 1,p 0 (ω) M , (2.22) 
then for any sequence

{v n } ⊂ W 1,p (ω) M which converges weakly in W 1,p (ω) M to a function v ∈ W 1, pr r-1 (ω) M , if 1 < p ≤ N -1 C 1 (ω) M , if p > N -1,
and such that

F n (•, Dv n ) * ⇀ ν in M (ω), (2.23 
)

|Dv n | p * ⇀ ̟ in M (ω),
we have

µ ≤    ν + C h L + ν L + ̟ L + (1 + (a L ) 1 r )|D(u -v)| p p-1 p (a L ) 1 pr |D(u -v)| a.e. in ω, if 1 < p ≤ N -1 ν + C 1 + h a + ν a + ̟ a + |D(u -v)| p p-1 p a |D(u -v)| a-a.e. in ω, if p > N -1. (2.24)
We can improve the statement of Lemma 2.5 if we add a non-homogeneous Dirichlet boundary condition on ∂ω.

Lemma 2.6. Let ω be an open set such that ω ⊂⊂ Ω, and let u be a function satisfying

u ∈ W 1, pr r-1 (Ω) M , if 1 < p ≤ N -1 C 1 (Ω) M , if p > N -1. (2.25)
Let {u n } and {v n } be two sequences in W 1,p (ω) M , such that u n satisfies condition (2.22) and

u n -u, v n -u ∈ W 1,p 0 (ω) M , F n (•, Du n ) * ⇀ µ and F n (•, Dv n ) * ⇀ ν in M (ω), (2.26 
) 

|Du n | p * ⇀ ̺ and |Dv n | p * ⇀ ̟ in M (ω). ( 2 
w ∈ W 1,p (ω) M → ˆω F n (x, Dw) dx, (2.28) 
with the Dirichlet condition w -u n ∈ W 1,p 0 (ω) M . Since w = u n clearly satisfies w -u n ∈ W 1,p 0 (ω) M , this makes u n a recovery sequence without imposing any boundary condition. In particular, condition

(2.22) is fulfilled if for a fixed f ∈ W -1,p (ω) M , u n satisfies ˆω F n (x, Du n ) dx = min ˆω F n x, D(u n + v) dx -f, v : v ∈ W 1,p 0 (ω) M .
Assuming the differentiability of F n with respect to the second variable, it follows that u n satisfies the variational equation 

ˆω D ξ F n (x, Du n ) : Dv dx -f, v = 0, ∀ v ∈ W 1,p 0 (ω) M , i.e. u n is a solution of -Div D ξ F n (x, Du) = f in ω,
ˆω F n (x, Du n ) dx ≤ ˆω F n (x, Dw n ) dx + O n , ∀ w n with w n -u n ⇀ 0 in W 1,p 0 (ω) M .
We can check that if u n satisfies this condition in ω, then u n satisfies it in any open subset ω ⊂ ω. To this end, it is enough to consider for a sequence ŵn with ŵn -u n ∈ W 1,p 0 (ω) M , the extension

w n := ŵn in ω u n in ω \ ω.
Corollary 2.9. Let F n : Ω × R M×N → [0, ∞) be a sequence of Carathéodory functions satisfying (2.1) to (2.

6).

Consider two open sets ω 1 , ω 2 ⊂ Ω such that ω 1 ∩ ω 2 = Ø, a sequence u n converging weakly in W 1,p (ω 1 ) M to a function u and a sequence v n converging weakly in W 1,p (ω 2 ) M to a function v, such that

u, v ∈ W 1, pr r-1 (ω 1 ∩ ω 2 ) M , if 1 < p ≤ N -1 C 1 (ω 1 ∩ ω 2 ) M , if p > N -1, |Du n | p * ⇀ ̺, F n (•, Du n ) * ⇀ µ in M (ω 1 ), |Dv n | p * ⇀ ̟, F n (•, Dv n ) ∃ lim n→∞ ˆω1 F n (x, Du n ) dx = min lim inf n→∞ ˆω1 F n (x, Dw n ) dx : w n -u n ⇀ 0 in W 1,p 0 (ω 1 ) M , ∃ lim n→∞ ˆω2 F n (x, Dv n ) dx = min lim inf n→∞ ˆω2 F n (x, Dw n ) dx : w n -v n ⇀ 0 in W 1,p 0 (ω 2 ) M .
Then, we have 

|µ -ν| ≤    C h L + µ L + ν L + ̺ L + ̟ L + (1 + (a L ) 1 r )|D(u -v)| p p-1 p (a L ) 1 pr |D(u -v)| a.e. in ω 1 ∩ ω 2 , if 1 < p ≤ N -1 C 1 + h a + µ a + ν a + ̺ a + ̟ a + |D(u -v)| p p-1 p a |D(u -v)| a-a.e. in ω 1 ∩ ω 2 , if p > N -1. ( 2 
F n (•, ξ n ) * ⇀ Λ and |ξ n | p * ⇀ Ξ in M (ω).
(2.30)

• If 1 < p ≤ N -1 and the sequence {ρ n } converges strongly to ρ in L pr r-1 (ω) M×N , then there exist a subsequence of n and a function ϑ ∈ L 1 (ω) such that

F n (•, ξ n + ρ n ) -F n (•, ξ n ) ⇀ ϑ weakly in L 1 (ω), (2.31) 
where ϑ satisfies

|ϑ| ≤ C h L + Λ L + Ξ L + (1 + (a L ) 1 r )|ρ| p p-1 p (a L ) 1 pr |ρ| a.e. in ω. (2.32) 
• If p > N -1 and the sequence {ρ n } converges strongly to ρ in C 0 (ω) M×N , then there exist a subsequence of n and a function ϑ ∈ L 1 a (ω) such that

F n (•, ξ n + ρ n ) * ⇀ Λ + ϑ a in M (ω),
where ϑ satisfies

|ϑ| ≤ C 1 + h a + Λ a + Ξ a + |ρ| p p-1
p |ρ| a-a.e. in ω.

(2.33)

Examples

In this section we give three examples of functionals F n satisfying the assumptions (2.1) to (2.6) of Theorem 2.2. 1. The first example illuminates the Lipschitz estimate (2.5). It is also based on a functional coercivity of type (2.1) rather than a pointwise coercivity.

2.

The second example deals with the Saint Venant-Kirchhoff hyper-elastic energy (see, e.g., [START_REF] Ciarlet | I: Three-dimensional elasticity[END_REF] Chapter 4).

The third example deals with an

Ogden's type hyper-elastic energy (see, e.g., [START_REF] Ciarlet | I: Three-dimensional elasticity[END_REF] Chapter 4).

Let Ω be a bounded set of R N , N ≥ 2. We denote for any function u : ) . We consider the energy density function defined by

Ω → R N , e ( 
F n (x, ξ) := A n (x)ξ s : ξ s p 2 a.e. x ∈ Ω, ∀ ξ ∈ R N ×N .
We assume that there exists α > 0 such that 

A n (x)ξ : ξ ≥ α |ξ| 2 , a.e. x ∈ Ω, ∀ ξ ∈ R N ×N s , ( 2 
|D ξ F n (x, ξ)| = p (A n (x)ξ s : ξ s ) p-2 2 A n (x)ξ s ≤ p A n (x)ξ s : ξ s | p-1 2 |A n (x)| 1 2 , ∀ ξ ∈ R N ×N , a.e.
x ∈ Ω, then using the mean value theorem and Hölder's inequality, we get

F n (x, ξ) -F n (x, η) ≤ p (A n ξ s : ξ s ) 1 2 + (A n η s : η s ) 1 2 p-1 |A n | 1 2 |ξ s -η s | ≤ p 2 (p-1) 2 p F n (x, ξ) + F n (x, η) p-1 p |A n | 1 2 |ξ -η|,
for every ξ, η ∈ R N ×N and a.e. x ∈ Ω. This implies estimate (2.5) with h n = 0 and

a n = |A n | p 2 bounded in L r (Ω).
The two next examples belong to the class of hyper-elastic materials (see, e.g., [START_REF] Ciarlet | I: Three-dimensional elasticity[END_REF], Chapter 4).

Example 2

For N = 3, we consider the Saint Venant-Kirchhoff energy density defined by

F n (x, ξ) := λ n (x) 2 tr Ẽ(ξ) 2 + µ n (x) Ẽ(ξ) 2 , a.e. x ∈ Ω, ∀ ξ ∈ R 3×3 , (2.37)
where Ẽ(ξ) := 1 2 ξ + ξ T + ξ T ξ , and λ n , µ n are the Lamé coefficients. We assume that there exists a constant C > 1 such that λ n , µ n ≥ 0 a.e. in Ω, ess-inf

Ω (λ n + µ n ) > C -1 , ˆΩ(λ n + µ n ) dx ≤ C.
(2.38)

Then, the density F n and the associated functional (see definition (2.34))

F n (u) := ˆΩ λ n 2 tr E(u) 2 + µ n E(u) 2 dx for u ∈ W 1,4 0 (Ω) 3 , (2.39)
satisfy the conditions (2.1) to (2.6) of Theorem 2.2.

Proof. There exists a constant C > 1 such that we have for a.e. x ∈ Ω and any ξ ∈ R 3×3 ,

C -1 (λ n + µ n ) |ξ| 4 -C (λ n + µ n ) ≤ F n (x, ξ) ≤ C (λ n + µ n ) |ξ| 4 + C (λ n + µ n ). (2.40)
Hence, we deduce that for a.e. x ∈ Ω and any ξ, η ∈ R 3×3 , 

F n (x, ξ) -F n (x, η) ≤ C (λ n + µ n ) 1 + |ξ| 2 + |η| 2 3 2 |ξ -η| = C (λ n + µ n ) 1 2 + (λ n + µ n ) 1 2 |ξ| 2 + (λ n + µ n ) 1 2 |η| 2 3 2 (λ n + µ n ) 1 4 |ξ -η| ≤ C (λ n + µ n ) 1 2 + F n (x, ξ) 1 2 + F n (x, η) 1 2 3 2 (λ n + µ n ) 1 4 |ξ -η| ≤ C λ n + µ n + F n (x, ξ) + F n (x, η) 3 4 (λ n + µ n )
+ Ẽ(λξ) 2 ≤ C 1 + |ξ| 4 , ∀ λ ∈ [0, 1], ∀ ξ ∈ R 3×3 , condition (2.6
) follows from the first inequality of (2.40), which concludes the proof of the second example.

Remark 2.11. The default of the Saint Venant-Kirchhoff model is that the function F n (x, •) of (2.37) is not polyconvex (see [START_REF] Raoult | Nonpolyconvexity of the stored energy function of a Saint-Venant-Kirchhoff[END_REF]). Hence, we do not know if it is quasiconvex, or equivalently, if the functional F n of (2.39) is lower semi-continuous for the weak topology of W 1,4 (Ω) 3 (see, e.g. [START_REF] Dacorogna | Direct methods in the calculus of variations[END_REF], Chapter 4, for the notions of polyconvexity and quasiconvexity).

Example 3

For N = 3 and p ∈ [2, ∞), we consider the Ogden's type energy density defined by

F n (x, ξ) := a n (x) tr C(ξ) p 2 -I 3 + a.e. x ∈ Ω, ∀ ξ ∈ R 3×3 , (2.41)
where C(ξ) := (I 3 + ξ) T (I 3 + ξ), and t + := max (t, 0) for t ∈ R. We assume that there exists a constant C > 1 such that ess-inf

Ω a n > C -1 and ˆΩ a r n dx ≤ C with r > 1, if p = 2 r = 1, if p > 2.
(2.42)

Then, the density F n and the associated functional (see definition (2.34))

F n (u) := ˆΩ a n (x) tr C(u) p 2 -I 3 + dx for u ∈ W 1,p 0 (Ω) 3 , (2.43) satisfy the conditions (2.1) to (2.6) of Theorem 2.2. 
Proof. There exists a constant C > 1 such that we have for a.e. x ∈ Ω and any ξ ∈ R 3×3 ,

C -1 a n |ξ| p -C a n ≤ F n (x, ξ) ≤ C a n |ξ| p + C a n . (2.44) 
This combined with the fact that the (well-ordered) eigenvalues of a symmetric matrix are Lipschitz functions (see, e.g., [START_REF] Ciarlet | Introduction à l'analyse numérique matricielle et à l'optimisation (French) [Introduction to matrix numerical analysis and optimization[END_REF], Theorem 2.3-2), implies that for a.e. x ∈ Ω and any ξ, η ∈ R N , we have 

F n (x, ξ) -F n (x, η) ≤ C a n (1 + |ξ| + |η|) p-1 |ξ -η| ≤ C a n + a n |ξ| p + a n |η| p p-1 p a 1 p n |ξ -η| ≤ C a n + F n (x, ξ) + F n (x, η) p-1 p a 1 p n |ξ -
p 2 ≤ C 1 + |ξ| p , ∀ λ ∈ [0, 1], ∀ ξ ∈ R 3×3 , condition (2.6 
) follows from the first inequality of (2.44), which concludes the proof of the third example.

Remark 2.12. Contrary to Example 2, the function F n (x, •) of (2.41) is polyconvex since it is the composition of the Ogden density energy defined for a.e. x ∈ Ω, by

W n (x, ξ) := a n (x) tr C(ξ) p 2 -I 3 + for ξ ∈ R 3×3 , (2.45) 
which is known to be polyconvex (see [START_REF] Ball | Convexity conditions and existence theorems in nonlinear elasticity[END_REF]), by the non-decreasing convex function t → t + . However, in contrast with (2.45) the function (2.41) does attain its minimum at ξ = 0, namely in the absence of strain.

3 Proof of the results

Proof of the main results

Proof of Theorem 2.2. The proof is divided into two steps. In the first step we construct the limit functional F and we prove the properties (2.11), (2.12), (2.13) satisfied by the function F . The second step is devoted to convergence (2.16).

First step: Construction of F . Let F n : W 1,p (Ω) M → [0, ∞] be the functional defined by

F n (v) = ˆΩ F n (x, Dv) dx for v ∈ W 1,p (Ω) M .
By the compactness Γ-convergence theorem (see e.g. [START_REF] Maso | An introduction to Γ-convergence[END_REF], Theorem 8.5), there exists a subsequence of n, still denoted by n, such that F n Γ-converges for the strong topology of L p (Ω) M to a functional F :

W 1,p (Ω) M → [0, ∞] with domain D(F ).
Let ξ be a matrix of a countable dense subset D of R M×N with 0 ∈ D. Since the linear function x → ξx belongs to D(F ) by (2.8), up to the extraction of a new subsequence, for any ξ ∈ D there exists a recovery sequence w ξ n in W 1,p (Ω) M which converges strongly to ξx in L p (Ω) M and such that

F n (•, Dw ξ n ) * ⇀ µ ξ and |Dw ξ n | p * ⇀ ̺ ξ in M (Ω).
In particular, since F n (•, 0) = 0 we have µ 0 = 0. Moreover, by estimates (2.21) and (2.29) we have for any

ξ, η ∈ D, ̺ ξ ≤ C |ξ| p + |ξ| p (a L ) 1 r + h + µ ξ + a L a.e. in ω, if 1 < p ≤ N -1 C |ξ| p a + h + µ ξ + a a-a.e. in ω, if p > N -1, (3.1) 
|µ ξ -µ η | ≤    C h L + (µ ξ ) L + (µ η ) L + (̺ ξ ) L + (ρ η ) L + (1 + (a L ) 1 r )|ξ -η| p p-1 p (a L ) 1 pr |ξ -η| a.e. in Ω, if 1 < p ≤ N -1 C 1 + h a + (µ ξ ) a + (µ η ) a + (̺ ξ ) a + (̺ η ) a + |ξ -η)| p p-1 p
a |ξ -η| a-a.e. in Ω, if p > N -1.

(3.2) Hence, by a continuity argument we can define a function F : Ω × R M×N → [0, ∞) satisfying (2.11), (2.13) and such that

µ ξ = F (•, ξ), if 1 < p ≤ N -1 F (•, ξ) a, if p > N -1, ∀ ξ ∈ D, (3.3) 
where the property (2.12) is deduced from (3.1), (3.2).

Second step: Proof of convergence (2.16).

Let ω be an open set of Ω, let {u n } be a sequence fulfilling (2.15), which converges weakly in W 

F n (•, Du n ) * ⇀ µ and |Du n | p * ⇀ ̺ in M (Ω). (3.4)
Applying Corollary 2.9 to the sequences u n and v n = w ξ n , we have

|µ -µ ξ | ≤    C h L + µ L + (µ ξ ) L + ̺ L + (̺ ξ ) L + (1 + (a L ) 1 r )|Du -ξ| p p-1 p (a L ) 1 pr |Du -ξ| a.e. in ω, if 1 < p ≤ N -1 C 1 + h a + µ a + (µ ξ ) a + ̺ a + (̺ ξ ) a + |Du -ξ| p p-1 p a |Du -ξ| a-a.e. in ω, if p > N -1.
Using (3.1), (3.3) and the continuity of F (x, ξ) with respect to ξ, we get that

µ = F (•, Du), if 1 < p ≤ N -1 F (•, Du) a, if p > N -1. (3.5) 
On the other hand, by the first step applied with ũ = u and the set Ṽ , we have

lim n→∞ ˆω F n (x, D ũn ) dx =        ˆω F (x, Du) dx, if 1 < p ≤ N -1 ˆω F (x, Du) da, if p > N -1. (3.8)
Therefore, combining (3.6), (3.7), (3.8), for the sequence n obtained in Theorem 2.2, the sequence F V n Γconverges to some functional F V satisfying (2.20) with v = u, which concludes the proof of Theorem 2.3.

Proof of the lemmas

Proof of Lemma 2.10. Assume that 1 < p ≤ N -1. Using (2.7), we have

F n (x, ξ n + ρ n ) ≤ (p -1)h n + (2p -1)F n (x, ξ n ) + (p -1) |ξ n + ρ n | p + |ξ n | p + a n |ρ n | p a.e. in ω.
From this we deduce that {F n (•, ξ n + ρ n )} is bounded in L 1 (ω). Moreover, by (2.5), we have

F n (x, ξ n + ρ n ) -F n (x, ξ n ) ≤ h n + F n (x, ξ n + ρ n ) + F n (x, ξ n ) + |ξ n + ρ n | p + |ξ n | p p-1 p a 1 p n |ρ n | a.e. in ω,
where, thanks to the strong convergence of {ρ n } in L pr r-1 (ω) M×N , we can show that the right-hand side is bounded in L 1 (ω) and equi-integrable. Indeed, taking into account

p -1 p + 1 pr + r -1 pr = 1,
we have the boundedness in L 1 (ω), while the strong convergence of {ρ n } in L pr r-1 (ω) M×N implies that {|ρ n | pr r-1 } is equi-integrable and therefore, the equi-integrability of the right-hand side. By the Dunford-Pettis theorem, extracting a subsequence if necessary, we conclude (2.31), which, together with (2.30), in particular implies

F n (•, ξ n + ρ n ) * ⇀ Λ + ϑ in M (ω).
Moreover, for any ball B ⊂ ω, we have

ˆB F n (x, ξ n + ρ n ) -F n (x, ξ n ) dx ≤ ˆB h n + F n (x, ξ n + ρ n ) + F n (x, ξ n ) + |ξ n + ρ n | p + |ξ n | p p-1 p a 1 p n |ρ n |dx ≤ ˆB h n + F n (x, ξ n + ρ n ) + F n (x, ξ n ) + C|ξ n | p + C|ρ n | p dx p-1 p ˆB a r n dx 1 pr ˆB |ρ n | pr r-1 dx r-1 pr
, which, passing to the limit, implies Assume now that p > N -1. Again, using (2.7) we deduce that {F n (•, ξ n + ρ n )} is bounded in L 1 (ω), and thanks to (2.5) we get

ˆB |ϑ|dx ≤ (h + 2Λ + ϑ + CΞ)(B) + C ˆB |ρ| p dx p-1 p a(B)
F n (x, ξ n + ρ n ) -F n (x, ξ n ) ≤ h n + F n (x, ξ n + ρ n ) + F n (x, ξ n ) + |ξ n + ρ n | p + |ξ n | p p-1 p a 1 p n |ρ n | a.e. in ω. Consequently, the sequence {F n (•, ξ n + ρ n ) -F n (•, ξ n )} is bounded in L 1 (ω). Extracting a subsequence if necessary, the sequence {F n (•, ξ n + ρ n ) -F n (•, ξ n )} weakly- * converges in M (ω) to a measure Θ, which, together with (2.30), implies F n (•, ξ n + ρ n ) * ⇀ Λ + Θ in M (ω).
Furthermore, if E is a measurable subset of ω, then, using Hölder's inequality, we have

ˆE F n (x, ξ n + ρ n ) -F n (x, ξ n ) dx ≤ ˆE h n + F n (x, ξ n + ρ n ) + F n (x, ξ n ) + |ξ n + ρ n | p + |ξ n | p p-1 p a 1 p n |ρ n | dx ≤ ρ n L ∞ (ω) M ×N C ρ n p L ∞ (ω) M ×N + ˆE h n + F n (x, ξ n + ρ n ) + F n (x, ξ n ) + C|ξ n | p dx p-1 p ˆE a n dx 1 p
, which, passing to the limit, shows that Θ is absolutely continuous with respect to a. By the Radon-Nikodym theorem, there exists ϑ ∈ L 1 a (ω) such that Θ = ϑa in M (ω).

From the previous expression and using the measures differentiation theorem, we get (2.33).

Proof of Lemma 2.5. Let x 0 ∈ ω and two numbers 0 < R 1 < R 2 with B(x 0 , R 2 ) ⊂ ω. Lemma 2.6 in [START_REF] Briane | A new div-curl result. Applications to the homogenization of elliptic systems and to the weak continuity of the Jacobian[END_REF] gives the existence of a sequence of closed sets

U n ⊂ [R 1 , R 2 ], with |U n | ≥ 1 2 (R 2 -R 1 ), such that defining ūn (r, z) = u n (x 0 + rz), ū(r, z) = u(x 0 + rz), r ∈ (0, R 2 ), z ∈ S N-1 ,
we have ūn -ū C 0 (Un;X) → 0, (3.10) where X is the space defined by

X :=      L s (S N-1 ) M , with 1 ≤ s < (N-1)p N-1-p , if 1 < p < N -1, L s (S N-1 ) M , with 1 ≤ s < ∞, if p = N -1, C 0 (S N-1 ) M , if p > N -1.
For the rest of the prove we assume 1 < p ≤ N -1 because the case p > N -1 is quite similar.

We define φn ∈ W 1,∞ (0, ∞) by Finally, the Young inequality yields the desired estimate (2.21). Now consider {u n } and {v n } as in the statement of the lemma. Let x 0 ∈ ω and 0 < R 0 < R 1 < R 2 with B(x 0 , R 2 ) ⊂ ω. Again using Lemma 2.6 in [START_REF] Briane | A new div-curl result. Applications to the homogenization of elliptic systems and to the weak continuity of the Jacobian[END_REF] there exist two sequences of closed sets

φn (r) =          1, if 0 < r < R 1 , 1 |U n | ˆR2 r χ Un ds, if R 1 < r < R 2 , 0, if R 2 < r, (3.11 
V n ⊂ [R 0 , R 1 ], U n ⊂ [R 1 , R 2 ], with |V n | ≥ 1 2 (R 1 -R 0 ), |U n | ≥ 1 2 (R 2 -R 1 ),
such that defining ūn (r, z) = u n (x 0 + rz), vn (r, z) = v n (x 0 + rz), r ∈ (0, R 2 ), z ∈ S N-1 , ū(r, z) = u(x 0 + rz), v(r, z) = v(x 0 + rz), r ∈ (0, R 2 ), z ∈ S N-1 ,

we have ūn -ū C 0 (Un;X) → 0, vn -v C 0 (Vn;X) → 0.

Then, consider the function φn defined by (3.11) and the function ψn ∈ W 1,∞ (0, ∞) defined by ψn (r) =

         1, if 0 < r < R 0 , 1 |V n | ˆR1 r χ Vn ds, if R 0 < r < R 1 , 0, if R 1 < r.

u) := 1 2 2 1

 221 Du + Du T , E(u) := 1 Du + Du T + Du T Du , C(u) := (I N + Du) T (I N + Du). Let p ∈ (1, ∞), and let A n be a symmetric tensor-valued function in L ∞ Ω; L (R N ×N s

1 r )|Du| p p- 1 p (a L ) 1 pr- 1 . 1 r )|Du| p p- 1 p (a L ) 1 pr 1 r )|Du| p p- 1 p (a L ) 1 pr 1 r

 11111111111 ) and ϕ n (x) = φn (|x -x 0 |).Applying the coercivity inequality (2.1) to the sequence ϕ n (u n -u) and using F n (•, 0) = 0,ϕ n = 1 in B(x 0 , R 1 ), we get α ˆB(x0,R1) |Du n -Du| p dx ≤ α ˆB(x0,R2) D ϕ n (u n -u) p dx ≤ ˆB(x0,R2) F n x, D(ϕ n (u n -u)) dx = ˆB(x0,R2) F n x, ϕ n Du n -ϕ n Du + (u n -u) ⊗ ∇ϕ n dx.By the convergence (2.31) with ξ n := ϕ n Du n , ρ n := -ϕ n Du + (u n -u) ⊗ ∇ϕ n , and by estimate (2.6) we obtain up to a subsequencelim n→∞ ˆB(x0,R2) F n x, ϕ n Du n -ϕ n Du + (u n -u) ⊗ ∇ϕ n dx ≤ lim n→∞ ˆB(x0,R2) F n x, ϕ n Du n ) dx + ˆB(x0,R2) ϑ dx ≤ C(h + µ) B(x 0 , R 2 ) + ˆB(x0,R2) ϑ dx, with |ϑ| ≤ C h L + µ L + ̺ L + (1 + (a L ) |Du| a.e. in ω.Indeed, thanks to (3.10) the sequence (u n -u) ⊗ ∇ϕ n converges strongly to 0 inL pr r-1 (ω) M×N taking into account the inequality (N -1)p N -1 -p ≥ pr rHence, we deduce from the previous estimates that̺ B(x 0 , R 1 ) ≤ C(h + µ) B(x 0 , R 2 ) + C ˆB(x0,R1) |Du| p dx + C ˆB(x0,R2) h L + µ L + ̺ L + (1 + (a L ) |Du| dx. Taking R 2 such that (h + µ) {|x -x 0 | = R 2 } = 0,which holds true except for a countable set E x0 ⊂ 0, dist(x 0 , ∂ω) , and making R 1 tend to R 2 , we get that̺ B(x 0 , R 2 ) ≤ C(h + µ) B(x 0 , R 2 ) + C ˆB(x0,R2) |Du| p dx + C ˆB(x0,R2) h L + µ L + ̺ L + (1 + (a L ) |Du| dx,for any R 2 ∈ 0, dist(x 0 , ∂ω) \ E x0 . Then, by the measures differentiation theorem it follows that̺ ≤ C (|Du| p + h + µ) + C h L + µ L + ̺ L + (1 + (a L )

  .27) Then, estimates (2.21) and (2.24) hold in ω. Remark 2.7. Condition (2.22) means that u n is a recovery sequence in ω for the functional

  where no boundary condition is imposed.Assumption(2.22) allows us to take into account very general boundary conditions. For example, if u n is a recovery sequence for (2.28) with (non necessarily homogeneous) Dirichlet or Neumann boundary condition, then it also satisfies(2.22). Condition (2.22) is equivalent to the asymptotic minimizer property satisfied by u n :

	Remark 2.8.

  .29) Lemma 2.5 is itself based on the following compactness result. Lemma 2.10. Let F n : Ω × R M×N → [0, ∞) be a sequence of Carathéodory functions satisfying (2.1) to (2.6), and let ω be an open subset of Ω. Consider a sequence {ξ n } ⊂ L p (ω) M×N such that

  which implies estimate (2.5) with p = 4 and h n = a n = λ n + µ n , while (2.3) and (2.4) are a straightforward consequence of (2.38). Moreover, by the first inequality of (2.40) combined with (2.38) we get that the functional (2.39) satisfies the coercivity condition (2.1). Condition (2.2) is immediate. Finally, since we have tr Ẽ(λξ) 2

1

4 

|ξ -η|,

  η|, which implies estimate (2.5) with h n = a n , while (2.3) and (2.4) are a straightforward consequence of (2.42).

	Moreover, by the first inequality of (2.44) combined with (2.42) we get that the functional (2.43) satisfies the
	coercivity condition (2.1). Condition (2.2) is immediate. Finally, since we have
	tr C(λξ)

  1,p (ω) M to a function u satisfying (2.14), and let ξ ∈ D. Since F n (•, Du n ) is bounded in L 1 (Ω), there exists a subsequence of n, still denoted by n, such that
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Note that since the limit µ is completely determined by F , the first convergence of (3.4) holds for the whole sequence, which concludes the proof.

Proof of Theorem 2.3. The proof is divided into two steps.

First step: The case where V = {û} + W 1,p 0 (ω) M . Fix a function û satisfying (2.25), and define the set V := {û} + W 1,p 0 (ω) M . Let u ∈ V such that

which is extended by û in Ω \ ω, and consider a recovery sequence {u n } for F V n of limit u. There exists a subsequence of n, still denoted by n, such that the first convergences of (2.26) and (2.27) hold. By Theorem 2.2 convergences (2.16) are satisfied in ω, which implies (3.5). Now, applying the estimate (2.24) of Lemma 2.6 with u n and v n = u, it follows that

where the convergence holds up to a subsequence. Then, using estimate (2.5) with η = 0 and Hölder's inequality, we have for any ϕ ∈ L ∞ Ω; [0, 1] with compact support in Ω,

which implies that ν is absolutely continuous with respect to the Lebesgue measure if 1 < p ≤ N -1, and absolutely continuous with respect to measure a if p > N-1. Due to condition (2.19) in both cases the equality ν(∂ω) = 0 holds, so does with µ. This combined with (2.16) and (3.5) yields

which concludes the first step.

Second step: The general case. Let V be a subset of W 1,p (ω) M satisfying (2.17). Let u be a function such that

and define the set Ṽ := {u} + W 1,p 0 (ω) M . Consider a recovery sequence {u n } for F V n given by (2.18) of limit u, and a recovery sequence {ũ n } for F Ṽ n of limit u. By virtue of Theorem 2.2 the convergences (2.16) hold for both sequences {u n } and {ũ n }. Hence, since ω is an open set, and

Moreover, since ũn -u n ⇀ 0 in W 1,p 0 (ω) M , ũn ∈ V by property (2.17) and because {u n } is a recovery sequence for F V n , {ũ n } is an admissible sequence for the minimization problem (2.15), which implies that

From these sequences we define w n ∈ W 1,p (ω) M by

i.e.

(3.12)

It is clear that, for a subsequence, w n converges a.e. to u. Using then that w n -u n is in W 1,p 0 (ω) M and that, thanks to ϕ n , ψ n bounded in W 1,∞ (Ω), w n is bounded in W 1,p (ω) M , we get

Thus, from (2.22) we deduce

what implies, in particular

(3.13) To estimate the first term on the right-hand side of this inequality, we use Lemma 2.10 with ξ n = Dv n , ρ n = D(-v + u), which take into account (2.23), gives

For the second term, we use again Lemma 2.10 with ξ n = ψ n Dv n and

Therefore, up to subsequence it holds

The third term is analogously estimated by Lemma 2.10 with

From (3.13), (3.14), (3.15) and (3.16) we deduce that

which holds true except for a countable set E x0 ⊂ 0, dist(x 0 , ∂ω) , and making R 1 , R 2 tend to R 0 , from (3.17) we deduce that

for any R 0 ∈ 0, dist(x 0 , ∂ω) \ E x0 (observe that the right term in the integral is well defined as an element of L 1 (ω)). Therefore, the measures differentiation theorem shows (2.24).

Proof of Lemma 2.6. The proof is the same as the proof of Lemma 2.5 choosing any point x 0 in Ω rather than ω, extending the functions u n , v n by u in Ω \ ω, and then noting that the function w n defined by (3.12) in Ω is also equal to u in Ω \ ω.

Proof of Corollary 2.9. Assume that 1 < p ≤ N -1. Applying Lemma 2.5 with ω = ω 1 (see also Remark 2.7 about the subsets of ω) we obtain

Analogously with ω = ω 2 , we get

These two expressions prove the first estimate of (2.29). The proof of the second estimate is similar.