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Abstract— One salient feature of data produced by the IoT is 
its heterogeneity. Despite this heterogeneity, future IoT 
applications including Smart Home, Smart City, Smart Energy 
services, will require that all data be easily compared, correlated 
and merged and that interpretation of this resulting aggregate 
into higher level context, which better matches people needs and 
requirements, bringing the user experience to the next level. In 
this paper we propose a framework based on semantic 
technologies to aggregate IoT data. Our approach has been 
assessed in the domain of the Smart Home with real data 
provided by Orange Homelive solution. We show that our 
approach enables simple reasoning mechanisms to be conducted 
on the aggregated data so that contexts such as the presence, 
activities of people as well as abnormal situations requiring 
corrective actions, be inferred. 
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I.  INTRODUCTION  

An IDC study [1] predicts that the number of connected 
objects is approaching 200 billion today with 7% (14 billion) 
already connected to and communicating over the internet. 
Most of these objects automatically record, report and receive 
data. Although the volume of these IoT data currently repre- 
sents only 2% of the world’s data, the same study report by 
2020 it will increase up to 10%. 

This data has been characterized by IBM data scientists 
along four dimensions [2]: volume, variety, velocity and ve- 
racity. 

In this paper we mainly address the Variety issue, which 
further refer to incompatible data formats, non-aligned data 
structures and inconsistent data semantics. 

IoT data is heterogeneous both semantically (the temper- 
ature in my bedroom doesn’t have much to do with the 
positioning of my fridge in the kitchen) and syntactically (a 
temperature is a floating point number expressed in celsius 
grade, whereas a position is a coordinates pair expressed in 
meters with respect to some defined reference origin). De- spite 
this heteogenity, future IoT applications including Smart 
Home, Smart City and Smart Energy services, will require that 
all data be easily compared, correlated and merged, and that 
interpretation of the resulting aggregate into higher level 
context better matches people needs and requirements. In this 
paper we propose a framework based on semantic technologies 

to aggregate IoT data. Our approach has been assessed in the 
domain of the Smart Home with real data provided by Orange 
Homelive solution, which we introduce in section III. We show 
that our approach enables reasoning mechanisms to be 
conducted on the aggregated data so that contexts such as the 
presence, activities of people as well as abnormal situations 
requiring corrective actions, could be easily recognized. 

In the next section we state the problems and draw the 
related state of the art. We then introduce the experimental 
platform that we used to experiment and assess our solution 
approach. This will enable us to illustrate the technical and 
scientific challenges that we face with a real Smart Home 
setting. We then develop our semantic modeling approach and 
elaborate on the benefit of this approach in terms of reasoning 
and high level interpretation that this model allows. We finally 
discuss our approach with its short terms perspectives and 
unveil a first repertoire of use-cases exploiting our approach 
that will improve the experience of Smart Home occupants. 

II. PROBLEM STATEMENT AND STATE OF THE 

ART 

Some work has been conducted in analyzing the benefit of 
semantic modeling in the domain of pervasive computing ([3], 
[4]), but to our knowledge none have pushed to the point of 
implementing and evaluating it on real life data. 

The value of semantic technologies has been recognized for 
sometimes now for integrating database schema, data modeling 
and processing. 

A. Semantic data integration  

Data integration research has been focused in database 
schema integration approaches and the use of ontologies and 
related semantic technologies to provide data consistency 
among heterogeneous database schemas. The theoretical foun- 
dations of this Ontology-Based Data Access (OBDA) [5] have 
been thoroughly investigated. 

The  Web  since  its  origins  has  been  a  vehicle  of  data 
interchange. However, automatic discovery and integration of 
Web data has been impractical until the availability of the RDF 
framework and RDF data sources. The flagship initiative on 
this area, LinkedData [6] has fostered both the size of the 
structured Web data and its exploitation [7]. One of the pillars 
of this idea is the possibility of retrieve specific data in the web 



of data; this task is performed by SPARQL [8], a SQL-like 
language that enables querying a RDF store. 

B. Semantic data modeling  

One major benefit of expressing data representation with 
semantic language relates to its ability to provide high level 
and  expressive  abstractions. For instance, in the  IoT,  data 
abstraction is concerned with the ways that the physical world 
is perceived and managed. In this domain, a Semantic Sensor 
Network ontology [9] has been developed and proposed at the 
W3C for standardization. To enable semantic interoperability 
for smart appliances in the smart home domain TNO1 therefore 
developed SAREF, the Smart Appliance REFerence ontology. 
It  covers popular sensor and actuators and can be  aligned with 
other ontologies. There are other examples related to semantic 
data  modeling in  context  of  smart  home  for  en- ergy 
efficiency, such as ThinkHome [10], S-SESAME [11]. 
Recently, LOV4IoT [12] has introduced a new ontology in the 
smart home among the 45 other ontologies. This vision of 
introducing abstraction based on a semantic approach, i.e. on 
ontologies shared by the IoT community is being pushed 
forward within several Standard Defining Organizations. For 
instance ETSI M2M focuses on semantic support for M2M 
data, OneM2M focuses on Abstraction and Semantics, and 
W3C  on  the  Web  of  Things.  One  motivation of  semantic 
abstraction resides in interacting with higher level entities 
rather than  with  sensors and  actuators and  thus  making it 
possible to understand data without prior knowledge about 
their source (device, web service,...). 

C. Semantic data processing   

Semantic web technologies allow logical reasoning so that 
new information or knowledge can be inferred from existing 
assertions and rules. IoT applications will require reasoning for 
various purposes such as resource discovery, data ab- straction 
and knowledge extraction. To this purpose, specific algorithms 
are usually implemented within dedicated reasoners (e.g. 
Pellet, FACT++ and Jena) so developers do not need to be 
concerned with the complexities of the reasoning process itself. 
Examples of IoT resource discovery in the linked data can be 
found in [13]. 

We aim at applying this approach to integrating IoT Data 
and to experiment this approach in a real operationnal setting. 

III.  EXPERIMENTAL SETTING 

As  we  have  set  high  the  ambition of  assessing our  ap- 
proach in today’s home, we have based our experimental 
platform on an off the shelf home automation solution called 
Homelive [14]. Homelive allows people to manage their home 
appliances remotely. The Homelive pack offers a  range of 
intelligent sensors and connected devices, brought by Orange’s 
partners: weather monitors, thermostats, light switches, sound 
and movement detectors, water leak and smoke detectors, to 
name but a few. We have thus instrumented a space in our 
building with Homelive connected devices. It is worth noting 
that this space was already used by people for lunch around 

                                                           
1 http://ontology.tno.nl/saref/ 

noon, coffee breaks in the morning, tea breaks in the afternoon, 
and for short breaks throughout the day during which people 
could engage informal discussions or simply get some rest. 
Deploying Homelive in this space didn’t have any impact on 
the way it was used already. 

Each  device  is  assigned  a  name  which  makes  explicit 
its type. Thus smart plugs have been named MLPlug1, 
MLPlug2, MLPlug3, MLPlug4 and MLPlug5. 

The pictures displayed in Fig. 1 detail where each device 
has been placed. 

 

Fig. 1.   Devices deployment 

All these devices are wirelessly connected through the 
wireless communication technology Z-Wave [15]. A Home 
Automation Box (HAB) is a dedicated gateway which makes it 
possible to access these devices from the IP world as depicted 
in Fig. 2, and make them part of the HAN (Home Area 
Network). In order to further extend their reachability from the 
HAN to the WAN (Wide Area Network), this HAB has to be 
connected to another gateway, such as the white box at the 
bottom of the figure. In our case it was an Orange Livebox. 

 

Fig. 2.   Experimental setup 

In  our experimental setup, the HAB collects all devices 
events and forwards them to a local server which will handle 
the aggregation and interpretation task. 



Such device events are formatted in json, following a fixed 
“key-value” schema. An example of such an event issued by 
smartplug MLPlug1 is as shown in Fig. 3 

From this comprehensive event description, which consists 
of 10 key-value pairs, we will mainly keep the following four: 

timestamp  is the date the event was received by the HAB. 
It is expressed as the number of seconds elapsed since 
jan. 1 rst , 1970 at 1:00AM. 

name  is the name of the device. As mentioned earlier we 
made  is  so  that  the  type  of  the  sensor  could  be 
identified from its name. For instance, we know from 
the name MLPlug1 that the event has been issued by a 
smartplug. 

variable  is  the  physical  parameter  that  the  event  is 
about.  In  the  event  sample  above,  this  parameter is 
the current electrical power consumed by the appliance 
it supplies. 

{"deviceId": "22",  
"deviceType":  "BinaryLight",  
"homelive": "47122383",  
"id": "3", 
"name": "MLPlug1",  
"room": "A118", 
"service": "EnergyMetering1",  
"timestamp": "1428595051",  
"variable": "Watts", 
"value": "45"} 

Fig. 3.   Event Description in JSON 

As you can notice, the above definitions of the keys are 
nec- essary for the reader to understand what the values 
associated to these keys mean, although the name of the keys 
have been chosen in a way that the reader would have figured 
out these definitions easily by himself. For an information 
processing system to correctly interpret an event, the meaning 
should be made explicit and even be embedded in the 
representation itself. In the section V we explain how we make 
this possible. But before that, in  the  following section we  
elaborate on  why remaining at the basic event description is 
too low a level to expect any interesting interpretation of the 
information it conveys. 

IV.  TOWARDS A MORE RESPONSIVE AND 

INTELLIGIBLE  HOME 

IoT sensors are usually very talkative and versatile. For 
instance, in our Homelive platform, the smartplugs regularly 
delivers dense streams of power measurements that amount to 
sometimes more than 10 measures per minutes, although these 
smartplugs have been configured in such a way that a new 
measurement is issued only if the current power consummed 
differs from the previous measure sent by more than 10Watts. 
More generally Homelive devices send an event whenever a 
significant change in the data it measures occurs. 

Such an  abundance of  information is  superfluous to  the 
inhabitants as well as to most smart home applications. These 
cumbersome data could be synthesized by applying one or 
more of the following policies: 

• compute a mean value over a time slice of say 10mn 

• compute a general trend from which strong increases 
and decrease could be easily detected 

• or check compliancy to predetermined thresholds. 

such abstraction of raw data will uplift the level of information 
and will place it closer to the home occupants’concerns. 

The main idea is that we want to bridge the gap between 
low level raw data and high level information, so that the step 
that remains to be done to make a decision or to engage an 
action becomes straightforward. One positive side effect not to 
be underrated is that through this abstraction process, we 
reduce the size of the information and thus reduce the traffic. 
The gain in traffic size is particularly high if this abstraction 
process is carried out close to the source of the information, i.e. 
close to the sensor. Having this process handled by the HAB or 
at least in the HAN is technically a reasonable solution. In 
order for a computer system to be able to process this low level 
data, it is necessary to reformat this data into a representation 
that incorporates the semantics of the data as well as the data 
itself. Applied to the data produced by our homelive devices, 
this will result into a semantic model the SmartHome data. In 
the next section we explain this reformatting process. 

V. MANAGING  THE SMART HOME DATA  AT  A 

SEMANTIC LEVEL  

We first introduce the architecture of our system so that we 
get an overall perspective on where the raw data comes from, 
where the target semantic model will be stored and how it will 
be further exploited for high level interpretation and reasoning. 

Fig. 4.   System architecture 

This architecture is depicted on Fig. 4 Input low level data 
is provided in a push/asynchronous mode by the Homelive 
HAB, which we have represented as a rectangular box on the 
lower left part of the diagram. As explained in section III, this 
data consists of a flow of independent events emitted by each 
Homelive device. The HAB acts as a pass-through proxy which 
collects events from each device and forwards them right away 
to the local server, which has subscribed to receive such events 
as mentioned earlier. Events are described in json as shown in 
Fig. 3 Because we use the semantic web framework and its 
associated modeling languages RDF/OWL, our first goal is to 



interpret the data conveyed in the event description in terms of 
elements of these languages. An event is a piece of information 
that is produced by an IoT device. Thus we create a concept 
representing this piece of information and one representing this 
device. As this event is possibly not the first one produced by 
this device, the concept representing this device might already 
exists. In which case, we don’t create it but will refer to the 
existing one instead, as will be shown later. Each key-value 
pair in this description has to be properly annotated. Although 
those pairs are syntactically similar to each other, each of them 
express quite different things. For instance: 

"variable": "Watts" 

means that the event reports about a physical phe-
nomenon which is related to the rate at with electrical 
energy is consumed. This phenomenon is not specific to 
the event nor to the device that has produced this event. 
Thus we need to relate the information conveyed by this 
event to a concept that models this phenomenon. So, if 
this concept already exists we link the concept 
representing this information to the concept 
representing the phenomenon. If it doesn’t exist we will 
simply create it. We call such concepts topics and create 
them as instances of a class called InformationTopic. 
The name of the link between Information instances and 
Informa-tionTopic instances is called isAboutTopic The 
rate of electrical energy consumption is a quantitative 
characteristic of this phenomenon, which in the OWL 
modeling language we model as a datatype property 
link. 

"value": "45" 

means that the target of this datatype property link 
should equate to the litteral value 45. 

The process of semantically annotating the event 
description is illustrated in Fig. 5. As you see, some key-value 
pairs correspond to links between existing concepts, some refer  

Fig. 5.   Homelive data semantic annotation 

to concepts that already exist or eventually that have to be 
created, some refer to litteral values to be assigned to concepts 
through links that already exist or eventually that have to be 
created. Such analysis can be only conducted by one or a team 
domain experts which collectively know the domain ontology, 
i.e. the catalog of concepts classes necessary to describe the 
application domain, the potential links between instances of 
these classes, and axioms that constrain the use of these links. 

An example of such an axiom is that the arity of the relation 
hasValue is 1, which means that a piece of information can 
only has one value and not more. Such axioms are necessary 
for the system to decide on the policy to adopt upon reception 
of new events from a device, which has already sent events 
about the same topic in the past. Note that this is generally the 
case, because once a device has been freshly provisionned and 
sent its first event to report about a physical phenomenon, its 
job is to update this report by sending other events. If the 
involved relations, such as hasValue is of arity 1 (or “is a 
functional relation” in the OWL terminology), the current 
target node in the model should be removed and replaced by 
the new node created by the event abstraction process. The 
result of annotating one event description is a graph fragment 
consisting of a set of concepts which are classes of the 
ontology or instances of these classes, interrelated by relations 
of the ontologies. Some of these concepts are common to 
different events. This means that assembling these fragments 
together will result into a larger graph which will aggregate and 
relate the information conveyed by the different event to each 
other. This graph gives an overall account of the state of the 
physical environment as seen by the pool of devices 
collectively. We call this state the situation. Then this graph 
constitutes a semantic model of the situation. A user-friendly 
way to visualize this aggregated graph and more generally any 
RDF model, and to navigate along its edges is to use the 
Prot´eg´ editor [16]. Using this editor, the semantic model of 
our SmartHome data can be displayed as shown in Fig. 6. The 
concepts classes of the ontology are displayed as a hierarchical 

 

Fig. 6.   Navigating in the model using Protégé editor 

tree on the left part of the screen. On the right part, concepts, 
links are displayed as a graph. Instances are displayed on the 
right. Hovering the mouse over nodes will popup datatype 
properties revealing the name of the datatype link and its 
litteral value. Hovering the mouse over links will reveal the 
name of the link. 

In the following section we show how this situation se-
mantic model can be easily exploited to infer higher level 
information, which can be directly processed to improve the 
home occupants’ experience. 

VI.  HIGH LEVEL INTERPRETATION OF IOT DATA   

In the following table we list the inferences that can 
possibly be made, and for each of them, we mention the gain it 



No Inference benefit to the user 
1 nobody’s in nice spot to cut oneself off 
2 at least one people is in nice spot for a chat 
3 someone is in the living room nice spot for a long chat 
4 someone is in the dining room nice   spot   for   a   chat   and 

munchies 
5 someone is in the kitchen nice spot for chat and drink 
6 at least two people are here bad place to cut oneself off 
7 at least three people are here is there a party in? 
8 the  coffee  machine has  been 

used less than 1mn ago 
there’s probably a  hot coffee 
for me 

9 the  coffee  machine has  been 
used less than 10mn ago 

if  there’s coffee left it should 
be still warm 

10 the boiler has been used less 
than 1mn ago 

there’s probably a hot tea for 
me 

11 the boiler has been used less 
than 10mn ago 

if  there’s tea left it should be 
still warm 

12 the  fridge  is  being  open  for 
more than one minute 

let’s have a look and close it 

13 the light is on although it is 
day time 

let’s switch it off 

14 the light is on although lumi- 
nosity is high 

let’s switch it off 

15 at  least  one  people  is  here 
while  the  luminosity  is  very 
low 

let’s have a look to see what’s 
going on 

16 somebody’s here although it is 
night time 

alert the security 

brings out in terms of user experience. Let’s now elaborate on 
how the inferences on the left of the table can be drawn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE I 
INFERENCES AND USER EXPERIENCE 

It would take too much space to detail the mechanism for all 
the inferences, so lets take the inference No14 and elaborate 
this particular case. Here is the basic reasoning: As shown in 
Fig. 1 a move detector MLMove3 has been placed behind the 
door, and the door itself is equipped with a door opening 
detector MLDoor1. If a move has been detected by MLMove3 
after MLDoor1 has detected that the door has been opened, for 
sure somebody has entered. In order to check if the statement 
S:“MLMove3 has detected a move after MLDoor1 has been 
opened”, we have to search the situation model for some 
fragment which describes this statement. Searching in a RDF 
model amounts to query it using SPARQL query language. A 
sparql query is a graph pattern, i.e. a subgraph defined using 
the same ontology elements (concepts and relations) than the 
complete graph but where some of the nodes, resp. some of the 
links, may be defined as variables, i.e. can match any node, 
resp. any link, in the graph. Before elaborating the SPARQL 
query, lets first define the graph pattern that describe statement 
S. Whenever MLMove3 detects a move it sends an event 
which as we have seen in section V updates a piece of 
information which captures information about movement 
within MLMove3 perimeter. Information about mouvement is 
an instance of the class TrippedInformationTopic. We then 
have to search for a node which is an instance of 
TrippedInformationTopic and which is linked to the node that 
models MLMove3 device with the relation says, as according 
to our ontology this relation says links Information to its 
InformationSource. From this node we should search its value 
along the relation hasValue and its timestamp along the 
relation timestamp. This pre-liminary graph fragment, that 
describes this part of the search corresponds to the 6 nodes and 

corresponding links on the upper part of the Fig. 7. Nodes 
which are searched are named with a prefix “?”. For instance, 
the node representing the move information has been named 
?info1. This is also the case for ?move3ts which represent the 
timestamp of the ?info1 information. We have to do the same 
for searching the status of the door informed by MLDoor1 
detector. This additional part of our search corresponds to the 6 
nodes and corresponding links on the lower part of the figure. 
Now that we’ve introduced the two timestamps ?move3ts and 
?door1ts, our final question is “is ?move3ts greater than 
?door1ts. If the answer is yes, then we can conclude that 
statement S is true. To complete our graph fragment, and thus 
add this last question to our SPARQL query, we will use a 
specific mechanism that the SPARQL language provides, for 
combining several variables and for defining “virtual” nodes, 
i.e. nodes which are defined in terms of other nodes of the 
graph fragment. In our particular case, we introduce the 
“virtual” node ?nbSecFromM3ToD1 which is computed by 
subtracting ?door1ts’ from ?move3ts. Now that we’ve  

 

Fig. 7.   Has somebody moved in since the door has been 
closed? 

visualized  the graph pattern that represents our query it is 
straightforward to format it using the SPARQL language. Fig. 
8 shows how the query looks like. Basically, each line in the 
WHERE section corresponds to an edge in the graph 
representation of the query as displayed in Fig. 7. Each line 
represents an edge as a triplet. For instance the line: 

?dev1 hl:says ?info1 . 

represents an edge where the source of the link has the 
identifier?dev1, the link has the identifier hl:says and the target 
of the link has the identifier ?info1. This work is ongoing. 

PREFIX hl:<http://www.orange.com/ontologies/shd#> 

 WITH GRAPH <http://fiwarelod.orange-labs.fr> 

 SELECT 

?move3value 

?move3ts 

?door1value 

?door1ts 

?nbSecFromM3toD1 WHERE { 



?dev1 hl:says ?info1 . ?dev1 hl:name "MLMove3" . 

?info1 hl:isAboutTopic hl:TrippedInformationTopic .  

?info1 hl:hasValue ?move3value . 

?info1 hl:timestamp ?move3ts . ?dev2 hl:says ?info2 . 

?dev2 hl:name "MLDoor1" . 

?info2 hl:isAboutTopic hl:TrippedInformationTopic . 

 ?info2 hl:hasValue ?door1value . 

?info2 hl:timestamp ?door1ts . 

BIND((?door1ts - ?move3ts) AS ?nbSecFromM3toD1) } 

Fig. 8.   SPARQL query 

We have obtained good results on few experiments which 
show that inferences that we make with our approach are 
sound. However we plan to conduct an extensive testing 
campain that confirm the robustness of our system. 

A wider perspective and discussion on these first results are 
developed in the next section. 

VII.  DISCUSSION AND CONCLUSION 

Adopting  semantic  modeling  technologies  opens  up  an 
avenue of user experience improvements. For instance, one use 
case we have briefly evoked in our paper [17] but haven’t 
tested with real data yet is to take into account information 
about devices location, such as rooms where the devices are 
located and devices functionality, such as the nature of data the 
device measures and reports in case it is a sensor. Aggregating 
devices  information  into  the  picture  makes  it  possible  for 
occupants to converse with their home with questions such as 
“what is the temperature in the kitchen?”. This query would be 
decomposed into looking up all devices located in the kitchen 
(device location), then identifying which of those devices is a  
thermometer  (device  function)  and  finally retrieving  the 
current temperature measured by this device. The answer to 
these 3 sub-queries can be found in the aggregated RDF graph. 
Widening the range of information sources beyond the IoT 
domain  would  even  make  possible  fancier  use  cases.  For 
example, if we don’t limit ourselves to the restricted scope of 
smart home data, as we did in the work reported here, but 
aggregate data from the Open Data world, we could for 
example find out  which  IKEA  cupboard would fit best  in 
kitchen, in  the  space  between the  oven  and  the  wall.  For 
this, we simply need the dimensions of our kitchen and its 
appliances  (our  Smart  Home  data)  and  the  dimensions  of 
IKEA  products.  The  laters  could  be  found  on  the  IKEA 
online catalog if this catalog is available as open data. Once 
aggregated on the common semantic model, the respective 

dimensions could be compared. 

 To this view, of having IoT system access open data 
sources, there’s of course the dual view point, of inserting the 
IoT in the realm of the semantic web and consider our home, 
our car, the city as new contributors to the semantic web by 
having them publish real-time information about themselves, 
their states, their moods, etc... By the end of the day, the 
philosophy would be the same: an aggregation of data 

originating from the IoT and the one side and from the public 
Web on the other side, to form a consolidated model, and 
reason upon this consolidated model. The main difference is 
about where the aggregation takes place and who performs the 
reasoning, an IoT application or a Web service? Who cares? 
The technology to implement these processes would probably 
be the same and as attested by our experiments this technology 
is there and mature enough to be applied. 
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