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ASYMPTOTIC BEHAVIOR OF PIEZOELECTRIC PLATES

Thibaut Weller Christian Licht
Laboratoire de Mécanique et Génie Civil,
cc 048, Université Montpellier I,
F-34095 Montpellier Cedex 5,

Summary We rigorously derive a theory of linearly piezoelectric plates by studying the limit behavior of a three-dimensional flat body
as its thickness tends to zero. We here only present the static case.

INTRODUCTION

The interest of an efficient modeling of piezoelectric plates lies in the fact that a major technological application of
piezoelectric effects is the control of vibrations of structures through very thin plates. We can find in the literature many
derivations of modeling of piezoelectric plates (see for instance the introduction of [1]). Here, we choose to extend to the
linearly piezoelectric case the mathematical derivation of the linearly elastic behavior of a plate as the limit behavior of a
three-dimensional solid whose thickness tends to zero.

THE STATIC CASE

The reference configuration of a linearly piezoelectric thin plate is the closi®e af the setQ® = w x (—¢,¢), where

e is a small positive parameter anca bounded domain d&* with a Lipschitz boundary. Lefl™, ,, T ), (TSp, TSy)
two suitable partitions of the boundary @f; the plate is, on one hand, clamped aldijg,, and at an electric potential
g onI , and, on the other hand, subjected to body forces and electrical loadifigsimd to surface forces and electric
loadings onl;, , andI'¢,,. We noten® the outward unit normal t¢2° and assume that’ , = v x (—¢,¢), with

v C Odw. Then the equations determining the electromechanical state(u®, ¢°) at equilibrium are :

divo® + f¢ =0inQ°, 0°n® = g° onI 5, v =0onl% o,
divDe 4+ F= =0inQ°, D®-n® = w® onlS,y, ¢ = pg onlsy, (1)
(0¢,D%) = M=(z)(e(u), Vi) in QF,

where respectively®, ¢°, o, e(u®) andD* denotes the displacement and electric potential fields, the stress tensor, the
tensor of small strains and the electric displacement, the opev&tas such that :

o =ae(u”) —b°Vy¢* |, D= bETe(ug) + cV©, 2

be' is the transpose dff, a* and¢® are symmetric and positive. Because of the piezoelectric couplifigjs not
symmetric. But, under realistic assumptions of boundness 06°, ¢ and of uniform ellipticity ofa® and ¢*, and

with smooth enough electromechanical loading, the problem admits a unique solution. The very question is to study its
behavior where — 0. We will show that, depending on the type of boundary conditions, two limit behaviors, indexed

by p with value 1 or 2, can be obtained. Classically [2], we come down to a fixed opéh=set x (—1, 1) through the
mappingre :

= (z1,20,73) € Q = 72 = (v1,20,673) € QF, 3

we drop the index for the image by(7*) ! of the previous geometric sets andligt = w x {£1}, Tiat = Ow x (-1, 1).
We assume that the electromechanical coefficients satisfy :

IM e L®(0)'?: M*(r°2) = M(z), a.e.x € Q; g >0: M@)h-h=n|h]>, Vhe R'?, aerecQ (4)

The magnitude of the external loading is chosen as follows :

fo(rmfx) = e fo(x), f5(n°x) = &% f3(x), Fe(nz) = e>"P F(x),Va € Q,

9a(mx) = €% ga (@), g5(n°x) = €% g3(x), Vo € Dy N T,

9a(m°2) = £ ga(2), g5(n°x) = €2 g3(), V& € Tryy N Diar, (5)
we(rfz) = 37 Pw(x), Vo € Doy NIy, w(nfz) = 2 Pw(x), Vo € Tey NTiay,

o5 (mxz) = eP po(x), VY € Tep,

here(f, F, g,w) is an element of.2(Q)3 x L?(Q) x L*(T',,n)3 x L?(T'.y) independent of and we assume that,
admits an extension 10 still notedovs in HL(O) = {4 € T.2(0):- Vb € T2(0)3Y |In the seauel for everv domain



G of R™ we will note H{(G) the subset of the Sobolev spaté (G) whose elements vanish dh ¢ 9G. With the
electromechanical statg = (u;, ¢;,) defined on)® is associated the scaled stafgs) = (u,(c), ¢, (€)) defined ont2

by :

Vot =7z € O, (up)a (2°) =c(up)a (x), (up)s(2%) = (up)s (z), o} (%) =Py (@), (6)
sp(e) is then the solution of the following mathematical probléia, €2),, equivalent to the genuine physical problem :

S(e,Q), : Findsp(e) € (0,0) + Se; mp(e)(sp(e),r) = L(r), Vr € Se ={r = (v,¢) € Hllmp (Q)?’ X H%CD (D}

with :

myp(e)(s,r)

Jo M(@)kp(e,5) - kple,m) da, kp(e,7) = Eyp(e, (v,9)) = (e(e,0), (Vip) (£, 9))),
)

e(g,0)ap = €(vV)ag, (€, V)03 = € 1e(V)as, e(g,v)33 = £ 2e(v)33, 2e(v)i; = O;v; + ;v @
Vi) (& 1) = eP710a1), V() (g,10)3 = eP 7231,
L(r) = L(v,¢) = [ f-vde + [ Fyde + [ g-vds+ [ wids.

Indexesa, 5 run from 1 to 2, whereas indexégj run from 1 to 3. We make the assumption that the extensign afoes
not depend oz whenp = 1, whilew = 0 onT'.;y N gt 0r Ty N g = ) and the closure of the projection Bf 5 on
w coincides witho whenp = 2. Let Hj = {4 € L*(Q); 93¢ € L*(Q)} and

Vo ={veH (0% eis(v) =0}, X1 = H} ()% x H\(Q), Xp = H} | (Q)° x H}
o, = {1/) € Hi D( ); O3 =0}, @y ={Y € Hj ;¢ =00nTp NIE}, S, =V, x @, (8)
mp(s,1) = [o Mpkp(s) - kp(r) da, ki(s) = (eap(u), 0a), k2(s) = (eap(u), ds¢),
whereﬁp is the condensation dff with respect to the components @{v), Vi) used ink, (v, v)). We have the conver-
gence result ([3]) :

Theorem 1 Whene goes ta0, the familys,, (<) of the unique solution of (¢, 2),, converges inX,, to the unique solution
sp Of| S(Q), : Find s, € (0,00) + S, such thatin, (s, 1) = L(r), ¥r € 5, |.

In order to obtain a physically meaningful resulj(s) has to be descalled.
CONCLUSION

We emphasize on the fact thegnsors and actuators enter respectively in the casesl andp = 2. As in the case of

purely elastic plates, the limit state fields involve simplified kinematics : the displacements are of Kirchhoff-Love type
and, in the case = 1, the electric potential does not dependign From the very definition of; and of a classical char-
acterization of Kirchhoff-Love displacements (see [2])§2); is actually a bi-dimensional problem setin Moreover, if

ffl $3M1(1?1,$2, x3) dzs = 0 (which is implied byzs-even electro-mechanic coefficients) appears a decoupling between

the flexural and membrane displacements in the sense that they are solutions of two independent variational equations,
where the one corresponding to the flexion does not involve the electric potential. Similar results were obtained in [4]
through formal asymptotic expansions and in [5] through rigorous but somewhat different mamematical arguments as
ours. As observed in [6] in the particular case whémccounts for homogeneous isotropic elasticity/if and /" do not

depend orx3, then the limit electric potentiab, is a second degree polynomialig.

Considering the influence of crystalline symmetries, notice that interesting propertﬁé@ oén be derived ([3]). In
particular, wherp = 1, there is an electromechanical decoupling for the clagsg22, 2mm, 4, 4, 422, 4mm, 42m, 6,

622, 6mm and23 ; whenp = 2, this decoupling occurs with the classes 32, 422, 6, 622 and6m2; so we claim that
actuators should not be designed with these kinds of material.

It can be shown that in the dynamic case, under the realistic quasi-electrostatic approximation, the limit behavior depends
further more on the relative magnitudes of the density and of the thickness of the plate. In view of applications, it should
be of interest to study the controllability of the plate. Our work should be an introductory to these studies...
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