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ASYMPTOTIC BEHAVIOR OF PIEZOELECTRIC PLATES

Thibaut Weller, Christian Licht
Laboratoire de Mécanique et Génie Civil,

cc 048, Université Montpellier II,
F-34095 Montpellier Cedex 5,

Summary We rigorously derive a theory of linearly piezoelectric plates by studying the limit behavior of a three-dimensional flat body
as its thickness tends to zero. We here only present the static case.

INTRODUCTION

The interest of an efficient modeling of piezoelectric plates lies in the fact that a major technological application of
piezoelectric effects is the control of vibrations of structures through very thin plates. We can find in the literature many
derivations of modeling of piezoelectric plates (see for instance the introduction of [1]). Here, we choose to extend to the
linearly piezoelectric case the mathematical derivation of the linearly elastic behavior of a plate as the limit behavior of a
three-dimensional solid whose thickness tends to zero.

THE STATIC CASE

The reference configuration of a linearly piezoelectric thin plate is the closure inR3 of the setΩε = ω × (−ε, ε), where
ε is a small positive parameter andω a bounded domain ofR2 with a Lipschitz boundary. Let(Γε

mD, Γε
mN ), (Γε

eD, Γε
eN )

two suitable partitions of the boundary ofΩε; the plate is, on one hand, clamped alongΓε
mD and at an electric potential

ϕε
0 onΓε

eD and, on the other hand, subjected to body forces and electrical loadings inΩε and to surface forces and electric
loadings onΓε

mD andΓε
eD. We notenε the outward unit normal to∂Ωε and assume thatΓε

mD = γ0 × (−ε, ε), with
γ0 ⊂ ∂ω. Then the equations determining the electromechanical statesε = (uε, ϕε) at equilibrium are :





div σε + fε = 0 in Ωε, σεnε = gε onΓε
mN , uε = 0 onΓε

mD,

div Dε + F ε = 0 in Ωε, Dε · nε = wε onΓε
eN , ϕε = ϕε

0 onΓε
eD,

(σε, Dε) = Mε(x)(e(u),∇ϕ) in Ωε,

(1)

where respectivelyuε, ϕε, σε, e(uε) andDε denotes the displacement and electric potential fields, the stress tensor, the
tensor of small strains and the electric displacement, the operatorMε is such that :

σε = aεe(uε)− bε∇ϕε , Dε = bεT

e(uε) + cε∇ϕε, (2)

bεT

is the transpose ofbε, aε and cε are symmetric and positive. Because of the piezoelectric coupling,Mε is not
symmetric. But, under realistic assumptions of boundness ofaε, bε, cε and of uniform ellipticity ofaε and cε, and
with smooth enough electromechanical loading, the problem admits a unique solution. The very question is to study its
behavior whenε → 0. We will show that, depending on the type of boundary conditions, two limit behaviors, indexed
by p with value 1 or 2, can be obtained. Classically [2], we come down to a fixed open setΩ = ω × (−1, 1) through the
mappingπε :

x = (x1, x2, x3) ∈ Ω̄ 7→ πεx = (x1, x2, εx3) ∈ Ω̄ε, (3)

we drop the indexε for the image by(πε)−1 of the previous geometric sets and letΓ± = ω×{±1}, Γlat = ∂ω× (−1, 1).
We assume that the electromechanical coefficients satisfy :

∃M ∈ L∞(Ω)12 : Mε(πεx) = M(x), a.e.x ∈ Ω ; ∃ η0 > 0 : M(x)h · h > η0 |h|2 , ∀h ∈ R12, a.e.x ∈ Ω. (4)

The magnitude of the external loading is chosen as follows :





fε
α(πεx) = ε fα(x), fε

3 (πεx) = ε2 f3(x), F ε(πεx) = ε2−p F (x), ∀x ∈ Ω,

gε
α(πεx) = ε2 gα(x), gε

3(π
εx) = ε3 g3(x), ∀x ∈ ΓmN ∩ Γ±,

gε
α(πεx) = ε gα(x), gε

3(π
εx) = ε2 g3(x), ∀x ∈ ΓmN ∩ Γlat,

wε(πεx) = ε3−p w(x), ∀x ∈ ΓeN ∩ Γ±, wε(πεx) = ε2−p w(x), ∀x ∈ ΓeN ∩ Γlat,

ϕε
0(π

εx) = εp ϕ0(x), ∀x ∈ ΓeD,

(5)

here(f, F, g, w) is an element ofL2(Ω)3 × L2(Ω) × L2(ΓmN )3 × L2(ΓeN ) independent ofε and we assume thatϕ0

admits an extension toΩ, still notedϕ0, in H1(Ω) = {ψ ∈ L2(Ω); ∇ψ ∈ L2(Ω)3}. In the sequel, for every domain



G of Rn we will note H1
Γ(G) the subset of the Sobolev spaceH1(G) whose elements vanish onΓ ⊂ ∂G. With the

electromechanical statesε
p = (uε

p, ϕ
ε
p) defined onΩε is associated the scaled statesp(ε) = (up(ε), ϕp(ε)) defined onΩ

by :

∀xε = πεx ∈ Ωε, (uε
p)α (xε) = ε(up)α (x), (uε

p)3 (xε) = (up)3 (x), ϕε
p (xε) = εpϕp (x), (6)

sp(ε) is then the solution of the following mathematical problemS(ε, Ω)p equivalent to the genuine physical problem :

S(ε, Ω)p : Findsp(ε) ∈ (0, ϕ0) + Sε; mp(ε)(sp(ε), r) = L(r), ∀ r ∈ Sε = {r = (v, ψ) ∈ H1
ΓmD

(Ω)3 ×H1
ΓeD

(Ω)} ,

with :





mp(ε)(s, r) =
∫
Ω

M(x)kp(ε, s) · kp(ε, r) dx, kp(ε, r) = kp(ε, (v, ψ)) = (e(ε, v), (∇(p)(ε, ψ))),
e(ε, v)αβ = e(v)αβ , e(ε, v)α3 = ε−1e(v)α3, e(ε, v)33 = ε−2e(v)33, 2e(v)ij = ∂ivj + ∂jvi,

∇(p)(ε, ψ)α = εp−1∂αψ,∇(p)(ε, ψ)3 = εp−2∂3ψ,

L(r) = L(v, ψ) =
∫
Ω

f · v dx +
∫
Ω

Fψ dx +
∫
ΓmN

g · v ds +
∫
ΓeN

wψ ds.

(7)

Indexesα, β run from 1 to 2, whereas indexesi, j run from 1 to 3. We make the assumption that the extension ofϕ0 does
not depend onx3 whenp = 1, while w = 0 onΓeN ∩ Γlat or ΓeN ∩ Γlat = ∅ and the closure of the projection ofΓeD on
ω coincides withω̄ whenp = 2. Let H1

∂3
= {ψ ∈ L2(Ω); ∂3ψ ∈ L2(Ω)} and





Vp = {v ∈ H1
ΓmD

(Ω)3; ei3(v) = 0}, X1 = H1
ΓmD

(Ω)3 ×H1(Ω), X2 = H1
ΓmD

(Ω)3 ×H1
∂3

,

Φ1 = {ψ ∈ H1
ΓeD

(Ω); ∂3ψ = 0}, Φ2 = {ψ ∈ H1
∂3

; ψ = 0 onΓeD ∩ Γ±}, Sp = Vp × Φp,

m̃p(s, r) =
∫
Ω

M̃p kp(s) · kp(r) dx, k1(s) = (eαβ(u), ∂αϕ), k2(s) = (eαβ(u), ∂3ϕ),
(8)

whereM̃p is the condensation ofM with respect to the components of(e(v),∇ψ) used inkp(v, ψ). We have the conver-
gence result ([3]) :

Theorem 1 Whenε goes to0, the familysp(ε) of the unique solution ofS(ε, Ω)p converges inXp to the unique solution

sp of S(Ω)p : Find sp ∈ (0, ϕ0) + Sp such thatm̃p(sp, r) = L(r), ∀ r ∈ Sp .

In order to obtain a physically meaningful result,sp(ε) has to be descalled.

CONCLUSION

We emphasize on the fact thatsensors and actuators enter respectively in the casesp = 1 andp = 2. As in the case of
purely elastic plates, the limit state fields involve simplified kinematics : the displacements are of Kirchhoff-Love type
and, in the casep = 1, the electric potential does not depend onx3. From the very definition ofS1 and of a classical char-
acterization of Kirchhoff-Love displacements (see [2]),S(Ω)1 is actually a bi-dimensional problem set inω. Moreover, if∫ 1

−1
x3M̃1(x1,x2, x3) dx3 = 0 (which is implied byx3-even electro-mechanic coefficients) appears a decoupling between

the flexural and membrane displacements in the sense that they are solutions of two independent variational equations,
where the one corresponding to the flexion does not involve the electric potential. Similar results were obtained in [4]
through formal asymptotic expansions and in [5] through rigorous but somewhat different mathematical arguments as
ours. As observed in [6] in the particular case whenaε accounts for homogeneous isotropic elasticity, ifM̃2 andF do not
depend onx3, then the limit electric potentialϕ2 is a second degree polynomial inx3.

Considering the influence of crystalline symmetries, notice that interesting properties ofM̃p can be derived ([3]). In
particular, whenp = 1, there is an electromechanical decoupling for the classes2, 222, 2mm, 4, 4̄, 422, 4mm, 4̄2m, 6,
622, 6mm and23 ; whenp = 2, this decoupling occurs with the classesm, 32, 422, 6̄, 622 and6̄m2; so we claim that
actuators should not be designed with these kinds of material.
It can be shown that in the dynamic case, under the realistic quasi-electrostatic approximation, the limit behavior depends
further more on the relative magnitudes of the density and of the thickness of the plate. In view of applications, it should
be of interest to study the controllability of the plate. Our work should be an introductory to these studies...
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