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INTRODUCTION 
 
Each year, new localisation techniques elaborate 
new potential objectives. In recent years they 
have been trying to accost the hidden part of the 
localisation systems. In fact, each technique 
deployed outdoors, cannot easily be deployed 
indoors or when we have an environment with 
difficulties. This phenomenon is due to the large 
number of obstacles that a transmitted signal has 
to pass, as in the case of GPS systems. 
 
The scientific world has carried out research to 
improve indoor methods, using different 
techniques. In the following article, we describe 
some of these techniques and try to understand 
their functionalities, study the advantages, the 
drawbacks, and make comparisons. The real aim 
of this paper is to create a quasi-exhaustive list of 
the existing methods to localize or position a 
mobile device, in extremely difficult conditions. 
To obtain the final position, systems use data that 
they compute with mathematical equations by 
different ways. In general, they use the distances 

or angles between a mobile and reference points 
or bases. These data are employed to reach the 
outcome. 
  
I. TRIANGULATION AND 
TRILATERATION 
  
In this paragraph, we describe the general 
approaches that could be used in localisation 
systems. In fact, the equipment employed varies 
and each one has its own characteristics. The 
study of the intrinsic and extrinsic environment is 
necessary to avoid all surprises when the process 
is working. 
 
The final results are related to the effects of the 
neighborhood, the environment, the mobile 
equipment and many other things that must be 
taken into consideration. 
    
One of the most used and best-known methods 
for localisation systems is the triangulation or 
trilateration method. It represents the basic 
mathematical method for the calculation of the 
position using distances or angles between 
transmitters and receivers.  
 
Today, the best-known system is the GPS system, 
which is based on trilateration. The performance 
of this method is attractive and efficient in fixed 
conditions, achieving a precision of centimeters. 
Many other systems use this method to obtain the 
final result, meaning the coordinates of a point. 
We can consider the triangulation as the origins 
of the trilateration method. Triangulation is the 
process of determining the location of a point by 
measuring angles to it from known points at 
either end of a fixed baseline. 
 
The trilateration method uses the distance 
between transmitter and receiver to calculate the 
final results. 
 
Different methods are used to determine the 



distance between the base stations or reference 
points and the subject. We can divide these 
methods into deterministic ones and probabilistic 
ones. First, we describe the probabilistic methods 
of calculating the position and second, we 
describe the probabilistic methods [1]. 
 
II. DETERMINISTIC METHODS 
II.1 TIME OF ARRIVAL 

The common process to acquire this measure is 
the Time of Arrival (TOA). It obtains the range 
information via the signal time. To use this 
means, accurate synchronization between 
equipments is necessary. To put an accurate time 
reference, we can add to the mobile equipment a 
Cesium or a Rubidium clock. Going back to the 
principle of this concept, the measurement of the 
time that the signal takes to be transmitted from a 
known transmitter to an unknown receiver is the 
key to the calculation. In fact, this time interval is 
multiplied by the speed of the signal. At the end, 
we obtain the distance transmitter -receiver. 
 
For a two-dimensional positioning, three 
distances between emitter and receiver are 
sufficient. In the case of the GPS, we must note 
that a higher number of bases (emitters) are used 
due to fact that the two solutions given by the non 
linear system obtained are situated on earth and in 
the sky. The solution in this case is evident, in 
certain precise conditions. When we are based 
with the receiver on earth, we need four 
transmitters to find the coordinates of our point. 
The fourth satellite is in fact necessary for the 
synchronization processes and not to determine 
the point being sought. 
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Figure 1 Resulting position with TOA method 

 
Figure 1 shows the distribution of four mobile 
devices. The initial position 
is . 5.0,2,5.6 === zyx

With the method used above, the calculated 
position in a local referential is estimated as equal 
to the point in red. The error is a few meters [2]. 
 
II.2 TIME OF ARRIVAL DIFFERENCE 
 
Another technique for the trilateration process is 
the Time Difference of Arrival (TDOA). It’s 
computed by transmitting a signal which is 
delayed. A correlation analysis is made to obtain 
the path difference between receivers I and j.  
The receivers’ signal is: 
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The common way to compare the signals received 
is to use pairs and take a correlation function.  

nji
jivd ji

≤≤≤

−=Δ

1

)(*, ττ
                                          (2) 

Where v is the speed of sound, light or water 
vibrations. Here, n is the number of receivers and 

is an enumeration of all K pair of receivers, 
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Obtaining this system of equations, an estimation 
step is needed after In fact, these estimated 
TDOAs are transformed into range measurements 
[3] [4].  
 
II.3 ANGLE OF ARRIVAL 
 
The latest   well-known method is AOA. The 
AOA is the angle between the propagation wave 
and the reference direction, with a known 
orientation. The orientation is represented in 
degrees in a clockwise direction from the north. 
The AOA can be relative or absolute, regarding 
the orientation. Two non-linear neighboring bases 
are required to obtain a location when the 
orientations are known and three neighboring 
bases when we want to discover the orientation. 
 
II.4 HOP BY HOP 
 
In many cases the techniques in wireless 
networks use the trajectory of the signals to 
obtain some metrics. In fact, in AD-Hoc networks 
the number of hops is frequently used.  



An algorithm called hop-by-hop is based on 
transmitting data in a network from one piece of 
equipment to another to obtain the distance 
between the transmitter and receiver. Every 
device communicates with a single neighbor. This 
method can give us the result of the distance 
between two pieces of equipments. Using the 
method of trilateration each node can compute its 
own position with at least three distances. 
Evidently, a node can have many difficulties 
calculating its position. Errors, like the lack of the 
number of ranges used or the systems without a 
converging solution could be an important 
obstacle to obtaining the final result.  
 
The method of Hop-By-Hop is used in relatively 
small networks, in which each node can only see 
its neighbor and not the whole architecture. This 
rule creates limits to this technique. To avoid this 
limitation, another calculation system has been 
evaluated. 
 
II.5 DV-HOP 
 
Another method used in Ad-Hoc networks is to 
use the number of hops correlated to the distance 
necessary for one hop, called Distance-Vector 
Hop. This distance is an average from all the 
distances calculated, in other terms it is the 
average distance between all single pairs in the 
network. The final distance reached is the number 
of hops multiplied by the average described 
before. 
 
This technique comprises by three essential steps. 
The first step is based on the classical exchange 
between nodes to get the distances between each 
other in hops. Each node has a table with all the 
information needed and it must do an update very 
frequently. In the second step, the landmark 
estimates the average of one hop, which is 
deployed as a correction to the nodes in its 
neighborhood. The third step consists in 
calculating   the position with the trilateration 
mode. The correction that a landmark computes 
is: 
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For all landmarks j 
 
The major inconvenience of this method is that 
when networks are not homogenous and can 

present very different distances between nodes. In 
this case, the average used can cause a decrease 
in the accuracy of the final position.  
In order to avoid errors, the method of DV-Hop is 
only used with isotropic networks, to avoid 
errors. In fact, in these graphs, the properties are 
the same in all directions. The advantages are the 
simplicity and the fact that it does not depend on 
range measurement error. The same position is 
taken to estimate the coordinates with this 
method.  
 
In fact, the method uses the number of hops 
between nodes of the network to estimate the 
position. The result depends on the distribution of 
the mobile equipments and the size of the 
network.  
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Figure 2 Resulting position with DV-Hop 

method 
 
Figure 2 shows the coordinates of the position are 

7568.6,9459.0,0541.9 === zyx . The error is 
more important due to fact that a geographic 
distance could not be represented by a hop in a 
network with accurate results. The nodes could be 
distributed randomly and the number of hops 
could be very small and the same for different 
nodes far from the position. 
 
II.6 DV-DISTANCE PROPAGATION 
METHOD 
 
This method of calculating the distance uses the 
propagation model to calculate the distance 
between two nodes, using the signal strength. The 
next steps are identical to the DV-Hop method, 
described in the previous section.  
 
II.7 EUCLIIDIAN PROPAGATION MODEL 
 
This method uses the Euclidean distance to the 
landmark. A node from the network has to have 



at least two neighbors, which contain their 
distances from the landmark.  

 
Figure 3 Principle of Euclidian method 

 
Figure 3 explains the system. Node A has 
acquired distances to nodes B and C.  B and C 
have estimates to L. The distances AB, AC and 
BC are known. The sides of the quadrilateral 
ABCL are known. A necessary condition is that 
A and B are also neighbors.  When we establish 
the final calculation, we can achieve the results 
with two final points: A and A’. We can then with 
an estimate of AL determine the right point. 
Having the estimate for the obtained range may, 
in certain cases, reduce the average positioning 
error by up to 50 %. 
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e = AC, CL, LB, BA, BC. 
 
The uncertainty  propagated together with the 
actual length AL to nodes which are farther from 
the landmark L. The advantage of this method is 
that it provides better accuracy under certain 
conditions, and there are no corrections to be 
deployed later, once a node has ranges from three 
landmarks, it may estimate the position by itself 
[5]. 
 
II.8 DV COORDINATE PROPAGATION 
METHOD 
 
This method requires some preprocessing. In the 
case that the second hop deviation is available, 
each node can establish a local coordinate system. 
   

As we can see in the figure, node A can build its 
local coordinates system using its immediate 
neighbors and the ranges between them. A has the 
coordinates . In the case of A, E is chosen as 
an indicator for x (a) axis and F for y (a). Using 
known ranges to eliminate ambiguities, all 
immediate neighbors of A are added to the local 
coordinate system. Every node in the network 
independently builds its own coordinate system 
centered on itself. 

)0,0(

Each coordinate sent from one node to another, 
must be translated to the right coordinate system. 
Nodes A and B have coordinates of nodes A; B; 
C and D in both coordinate systems, which are 
used to compute associate transformation 
matrices used for translation from one system to 
another. 
 
Nodes that have the ranges from their neighbors 
in their coordinate systems could not localize 
themselves. They have to translate all the data 
from one point to another. The next steps are 
similar to the preceding method [6]. 
 
II.9 DISTANCE CALCULATION USING 
RECEIVED RSSI 
 
Some of the techniques described before, use the 
signal strength to calculate the distance between 
the transmitter and the receiver.  

II.10 PROPAGATION METHOD 
 
These techniques are based on the propagation 
model, which is extremely accurate outdoors but 
not yet perfect indoors. 
 
The propagation model in an outdoor 
environment can be represented like this: 
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Pr is the power received by the receiver and Gr is 
the gain of the antenna. Pt and Gt are the same 
measurements but transmitted by the transmitting 
antenna. λ is the wavelength and d is the distance 
between the transmitter and the receiver. Since 
the measurement is typically received, it is 
possible to get the distance d using the following 
formula: 
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In indoor environments, this formula is slightly 
changed and the propagation model used is as 
follows:  
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The theory has defined the variable n as being 
equal to 2 for the external environment. For the 
indoor, n varies from one research to another. In 
fact, we need experimental measurements to 
determine the possible value in defined 
conditions. With this equation we can determine 
the distance between the emitter and the receiver. 
In the case of indoor environments the radio wave 
are submit to different type of perturbations, this 
is the major negative effect on the final 
calculation of the distance. Our previous research 
defined experimentally a variable n equal to 3.5 
as a best one for the indoor system base in the 
TELECOM & Management SudParis. This 
conclusion was established by doing many 
measurements of the signal strength and distances 
in the buildings. 

 

Figure 4 Distance related to the signal strength 
 

Figure 4 below shows the evolution and the 
important difference of distance’s measurements 
with various n [7]. 

II.11 LOCAL RANGE AND BEARING 
SENSING  

This technique is based on a study of different 
devices detected in the neighborhood.  After this 
study, we choose the two strongest signals and 
their transmitters. The principle of this algorithm 
is based on the calculation of the angle offset 
within the quadrant to find the bearing of the 
transmitter.  

)21(* vva −=θ                                                    (11) 
θφ += AngleQuadrant _                                   (12) 

A is a calibrated constant. If 4
πθ f , θ  is set to 

4
π where the objective is to remain in the same 

quadrant. To calculate the range, the algorithm 
assumes that the signal intensity V1 is given by:  
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The equation of the range then becomes: 
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1
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This is followed by a non-linear transformation 
using a look-up table to get the actual distance. 

Several changes to this method were established 
to offer better accuracy. The original formula 
would calculate an offset which was three times 
as large at the closest range. So the step needed to 
improve the results is to use the two best signal 
strengths received and divide them by the 
strongest.  
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θφ += AngleQuadrant _                                   (16) 
b is still a calibrated constant. This makes the 
calculation of the angle much more constant for 
different ranges. The second aspect is that the 
range term is calculated using the bearing offset. 
This introduces the error from the bearing offset 
into the equation, making the result less accurate. 
A better approach is to use: 
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The third method used is based on another 
equation. This term takes into consideration the 
variation of received signal intensity. To avoid 
other perturbations, it is approximate like that: 
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Additional modifications can be made to these 
methods to improve the final result. The 
intensities of signals can be modelled as below: 
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These two equations, give the calculation of the 
distance: 

)cos(*2
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The errors vary with the method used to calculate 
the distance. The last algorithm is the more 
efficient according to the results achieved when 
using it. All the errors were calculated using an 
interpolation between known points of the range 
term. 
 
II.12 RECURSIVE ESTIMATION 
  
The network in this case has several reference 
points, with known coordinates and the rest of the 
points’ coordinates are unknown. This condition 
supposes that the distances between some 
emitters and some receivers are obvious and we 
can calculate them exactly. The system takes into 
consideration an arbitrary number of network 
nodes. The first algorithm uses four or more 
reference points. The steps of the algorithm 
consist in: 

Determining the reference points of the network. 

Collecting range estimates for the selected nodes 
and estimating the final position. 

In the first phase, the node collects the list of 
reference points that it can receive. Then, it must 
choose the reference points that it will use. This 
selection is based on the calculation of the 
residual values, a measure of confidence, 
described as shown below: 
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The node chooses the points with the lowest 
values for the next phase. Once the reference 
points have been chosen, the node must calculate 
the distance estimates to each reference. The node 
can reject a reference point for which it can’t find 
the distance. With the distances to the reference 
points, the node can estimate its position. 
Equations that we can achieve are given as 
follow:  

ε izziyyixxid i +−+−+−= )( 2)( 2)( 2   (23) 

ε represents the error term. 

The distances are calculated iteratively to find all 
the possible ones in the network. 

II.13 MINMEAN  

This technique is based on a calculation of time 
difference propagation between two different 
signals. The idea consists using a combination of 
the radio waves and ultrasound to enable a 
listener to determine the distance to the beacons.  
On each transmission, the transmitter sends 
information over the radio waves adding an 
ultrasonic pulse.  The receiver has to analyze the 
radio wave first and then a little time after, it must 
analyze the ultrasonic pulse, which has a delay of 
transmission.  The listener uses the time 
difference between the receipt of the first bit of 
radio wave information and the ultrasonic pulse 
in order to determine the distance to the beacon. 
It is also possible to define this distance using the 
velocity of the two signals.  

Identifiers of the radio wave and the ultrasonic 
pulse are unique pairs in the system, which allows 
the listener to correlate the two signals properly.  

The simplest algorithm simply picks the beacon 
with the highest frequency of occurrence in the 
data set.  In the MinMean algorithm, the listener 
calculates the mean distance from each beacon 
for the set of data points within the data set. Then, 
it selects the beacon with the minimum mean as 
the closest one. The problem with this algorithm 
is that it doesn’t take into consideration the multi-
path effects.  

III. PROBABILISTIC METHODS 
  
In this section, we describe the methods of 
calculating the distances between transmitters and 
receivers or other parameters which could help us 
to solve the final system, as in the previous 
section. Various schemes are described below. 
The bases of these techniques have the 
probabilistic approach as a common point.  

Major complications for indoor measurements are 
due to nonlineofsight propagation. This means 
that waves transmitted by the equipment are not 
directly transmitted to the receiver. They are 
subjected to many obstacles and phenomena, such 
as distortion. Research is being done in other 



directions using estimation and probability. 

III.1 A MINIMUM ENTROPY ESTIMATION 

This scheme uses a different approach for the 
calculation of the time of arrival (TOA), taking 
into consideration the noise that can influence the 
measurements. In the absence of disturbance, the 
TOA measured is: 
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c is the speed of light. 

So, with the disturbance that can affect waves the 
distance could be described like this: 

nid ir i +=                                                            (25) 
The parameter n is considered as the noise that 
attains the wave. This noise is represented as a 
Gaussian noise. The position of the mobile is 
defined as ),( yx=θ with x and y the coordinates 
of each point. Usually the position estimates  
are obtained by minimizing a cost function   
of the residual 
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The classical estimator used for this calculation 
is: 
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To avoid problems with the use of this estimator, 
the minimization of the entropy of an estimate  

)(ˆ , ehnρ  of )(eρ is needed. The  is a 

kernel estimate based on the empirical 
distribution of the random sample 
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 to )(ˆ , ehnρ )(eρ  is reached. Then, the entropy 

criterion is built on . However, the 

minimization of the entropy of  is hard 

to achieve, since the entropy of such a function is 
invariant by translation. Thus, the minimization 

of the entropy of  has been shown to be 

more suitable, where 
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Finally the minimum-entropy estimator is 
denoted by . Our objective function is: 
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The choice of the Gaussian kernel for this 
calculation is very important. 
  
III.2 ANCHORS METHOD 

Another new method to calculate the distance 
between two points is based also on an estimation 
system. The network employed has to have points 
named anchors. The anchors represent the 
reference points. These points are known and 
have their positions.  We define these points with 
this equation: 
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The data can be employed in a matrix p x m. 
The rest of the unknown points are named 
Xobject and they are represented as follows: 
 

Nim

X Objects
pp1

x j][

+

=
                                             (33) 

With a matrix p x n, representing that. 
Let be the estimation of . The goal will be 

to minimize the function: 
x jˆ x j
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To estimate our positions, we use the 
communication between points in the network.  
Let   
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be the Euclidian distance between two points I 



and j. Let  be the estimation for . The 

objective here is to minimize this function: 
d jiˆ , d ji,
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At the beginning, the data employed are the 
distances between anchors. The goal is to 
calculate the other ones. 
The estimations of distance can be based on 
equitable indicators:   
Propagation time of a wave.  
The signal at the reception (RSSI: Received 
Signal Strength Indicator).  
The rate of errors corrected in communications 
(LQI: Link Quality Indicator). 
If cij is the value of the indicator between nodes i 
and j and if the function f allows us to determine 
an estimate of the distance between  
i and j, we have:  
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The general model of estimation is based on a 
linear regression between the indicator cij and the 
distance. The data used is composed by K RSSI 
values for each couple (i,j) of nodes in the 
network. In this case, the distance  is known. 

The average value of the K moments of time is 
given by: 
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The estimated distance is described as follows: 
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Another model can be used. Each node gets an 
estimate of distance with all its neighbors using 
Gaussian noise. The model used is: 
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III.3 DISCRETE METHOD 

In many complicated cases, when the localisation 
system could not obtain the coordinates with the 
classical method, probabilistic algorithms are 
used. In this paragraph, we describe discrete 
methods. The localisation problem involved only 
non-deterministic uncertainty. In addition, it was 
assumed that nature does not interfere with the 
state transition. Otherwise, the I-states are not 
predictable. 

For the active localisation problem, this means 
that a localisation plan must use information 
feedback. In other words, the actions must be 
conditioned on I-states so that the appropriate 
decisions are taken after new observations are 
made. An update is necessary. The passive 
localisation problem involves computing 
probabilistic I-states from the sensing and action 
histories. Only the non-deterministic I-space  
will be considered, for the explanations.  

 
Figure 5 Possible actions 

 
Figure 5.a This map is given to the robot for 
localisation purposes Figure 5.b The four possible 
actions each take one step, if possible, and re-
orient the robot as shown. 

Figures 5.a and 5.b show a map that can be 
created by acquainting the coordinates of each 
point detected for a period of time. The 
equipment detecting its successive positions does 
not have its initial coordinates and it creates a 
grid using these acquainted points’ coordinates. 
To formulate this problem, we must include in the 
state both the position and the orientation of the 
mobile equipment. We suppose that the mobile 
equipment is represented by a robot. The robot 
may be oriented in one of four directions, which 
are labeled N, E, W, and S, for ``north,'' ``east,'' 



``west,'' and ``south,'' respectively. The state of 
the robot is determined by ),(, dpxXx =∈ , 
where p is a position and d is a direction. 

 
Figure 6 Possible directions 

Figure 6.a If a direction is blocked because of 
an obstacle, then the orientation changes, but the 
position remains fixed. In this example, the 

action is applied. Figure 6.b Another map is 
given to the robot for localisation purposes.  
In this case, the robot cannot localise itself 
exactly. 
The robot is given four actions,  

{ LRBFU ,,,= }                                               (44) 
which represent ``forward,’’ ``backward,’’ ``right 
motion,’’ and ``left motion,’’ respectively. These 
motions occur with respect to the current 
orientation of the robot, which may be unknown. 
For the  action, the robot moves forward one 
grid element and maintains its orientation. For 
the  action, the robot changes its orientation by 
180 degrees and then moves forward one grid 
element. For the R action, the robot turns right by 
90 degrees and then moves forward one grid 
element. The L action behaves similarly. If it is 
not possible to move because of an obstacle, it is 
assumed that the robot changes its orientation (in 
the case of B, R, or L) but does not change its 
position. The robot has one simple sensor that can 
only detect if it was able to move in the direction 
that was attempted. The sensor space is 

, the sensor mapping is 
. This yields 

{ }1,0=Y
XxXh −:

(
Y>−

),1 xkxkhy =

(

−

),1− x

if  and  place the 
robot at different positions, 
and

xk 1−

0

xk

=kxkh otherwise. Thus, the sensor 
indicates whether the robot has moved after the 
application of an action, or not. Non deterministic 
uncertainty will be used, and the initial I-state 

is always assumed to be (this can easily be 
extended to allow us to start with any non-empty 
subset of . A history I-state at stake  in its 
general form appears as  

),...,2,~ 1,(0 ykyu kX −=η                              (45) 

There is no observation  because the sensor 
mapping requires a previous state to report a 
value. Thus, the observation history starts with 

. An example history I-state for stage  
is  

)1,1,0,1,,,,,( LFRRXR =η                               (46) 
in which ),,,(~4),(0 LFRRuX ==η , and  

)1,1,0,1()5,4,3,2( =yyyy . The passive 
localisation problem starts with a given map, such 
as the one shown before, and a history I-stateη k , 
and computes the non-deterministic I-state 

XkX k ⊆)(η . The active localisation problem 

is to compute some and sequence of 
actions , such that the non-

deterministic I-state is as small as possible. In the 
best case, 

uu ,...,1(

(

k )1−

)η kX k might become a singleton set, 
which means that the robot knows its position and 
orientation on the map. However, due to 
symmetries, which will be presented shortly in an 
example, it might not be possible.  
A state is once again expressed as . 
The initial condition is a probability distribution, 

over

),( dpx =

)1(xP . One reasonable choice is to 
make  a uniform probability distribution, 
which makes each direction and position equally 
likely. The robot is once again given four actions, 
but now assumes that nature interferes with state 
transitions. For example, if

)1(xP

Fuk = , then perhaps 
with high probability the robot moves forward, 
but with low probability it may move right, left, 
or possibly not move at all, even if it is not 
blocked.  The sensor mapping indicated whether 
the robot moved. In the current setting, nature can 
interfere with this measurement. With low 
probability, it may incorrectly indicate that the 
robot moved, when in fact it remained stationary. 
Conversely, it may also indicate that the robot 
remained still, when in fact it moved. Since the 
sensor depends on the previous two states, the 
mapping is expressed as  

),1,( ψ kxkxkyk −=                                      (47) 
With a given probability model, )(ψ kP , this can 

be expressed as )1,( xkxkykP − . 
To solve the passive localisation problem, the 
expressions for computing the derived I-states are 
applied. If the sensor mapping used only the 
current state, then successive expressions would 
apply without modification. However, since h 



depends on both and , some 
modifications are needed. Recall that the 
observations start with 

xk xk 1−

for this sensor. 
Therefore )1(xP)11()11( yxPxP ==η . 

After each stage, )11( η ++ kxkP is computed 

from )( η kxkP . It reduces using marginalization 

as  

),1,11
1

(*),1,1,1(

),1,1(

xkukkxk
Xxk

PxkxkukkykP

xkukkykP

−−−∑
∈−

−−−

=−−

ηη

η

(48) 
The first factor in the sum can be reduced to the 
sensor model,  

),1(),1,1,1( xkxkykPxkxkukkyP k −=−−−η
(49) 
because the observations depend only on  

 , and the nature sensing action,  . The 
second term below can be computed using 
Bayes’s rule as  

∑
∈

−

−−−−−−

−−−−−−=

−−

Xx
u kkxkPxku kkxkP

u kkxkPxku kkxkP

xku kkyP k

k 1

)1,11(*)1,1,1(:

)1,11(*)1,1,1(

),1,1(

ηη

ηη

η

(50) 
in which )1,1,1(P plifies to xkukkxk −−−η sim

)1,1(P is is directly obtained 
from the state transition probability, which is 
expressed as

xkukxk −− . Th

),1( xukxkP +
stage index forward. The 
term

k by shifting the 

)1,11( ukkxkP −−− η is given before. 

Then the computation of the probabilistic I-states 
is necessary which solves the passive localisation 
problem.  
Solving the active localisation problem is 
substantially harder because a search occurs on 

. The same choices exist as for the discrete 
localisation problem. Computing an information-
feedback plan over the whole I-space  is 
theoretically possible but impractical for most 
environments.  
 
 
 

III.4 CONTINOUS METHOD 

 

Figure 7 Continous space 

Localisation in a continuous space using 
probabilistic models has received substantial 
attention in recent years. It is often difficult to 
localize mobile equipment. Probabilistic 
modeling and the computation of probabilistic I-
states have been quite successful in many 
experimental systems, both for indoor and 
outdoor mobile robots. Figure 7 shows 
localisation successfully being solved using 
sonars only. The vast majority of work in this 
context involves passive localisation because the 
robot is often completing some other task, such as 
reaching a particular part of the environment. 
Therefore, the focus is mainly on computing the 
probabilistic I-states, rather than performing a 
difficult search on .  
Probabilistic localisation in continuous spaces 
most often involves the definition of the 
probability densities ),1( xkukxkP + and  

 (in the case of a state sensor 
mapping). If the stages represent equally spaced 
times, then these densities usually remain fixed 
for every stage. The state space is usually  

)( xkykP

)2(SEX =  to account for translation and 

rotation, but it may be for translation 

only. The density 
ℜ= 2X

),1( ukxkxkP +  accounts for 
the unpredictability that arises when controlling a 
mobile robot over a fixed time interval. A method 
for estimating this distribution for non-holonomic 
robots by solving stochastic differential equations 
can be used to calculate the final result. 

The density )( xkykP  indicates the relative 
likelihood of various measurements when given 



the state. Most often this models distance 
measurements that are obtained from a laser 
range scanner, an array of sonars, or even infrared 
sensors. Suppose that a robot moves around in a 
2D environment and takes depth measurements at 
various orientations. In the robot body frame, 
there are angles at which a depth measurement 
is taken. Ideally, the measurements should look 
like those in the figure above; however, in 
practice, the data contain substantial noise. The 
observation is an Yy∈ -dimensional vector of 
noisy depth measurements.  

One common way to define )( xyP  is to 

assume that the error in each distance 
measurement follows a Gaussian density. The 
mean value of the measurement can easily be 
calculated as the true distance value once is 
given, and the variance should be determined 
from the experimental evaluation of the sensor. If 
it is assumed that the vector of measurements is 
modeled as a set of independent, identically 
distributed random variables, a simple product of 

Gaussian densities is obtained for )( xyP .  

Once the models have been formulated, the 
computation of probabilistic I-states directly 
follows. The initial condition is a probability 
density function,  over)1(xP . The 
marginalization and Bayesian update rules are 
then applied to construct a sequence of density 
functions of the form )(P η kxk for every 

stage .  
In some limited applications, the models used to 
express ),1( ukxkxkP + and )( xkykP  may be 
linear and Gaussian. In this case, the Kalman 
filter can easily be applied. In most cases, 
however, the densities will not have this form. 

Moment-based approximations can be used to 
approximate the densities. If second-order 
moments are used, then the so-called extended 
Kalman filter is obtained, in which the Kalman 
filter update rules can be applied to a linear-
Gaussian approximation to the original problem. 
In recent years, one of the most widely accepted 
approaches in experimental mobile robotics has 
been to use sampling-based techniques to directly 
compute and estimate the probabilistic I-states. 
The particle-filtering approach appears to provide 
a good experimental performance when applied 
to localisation. The application of particle 
filtering in this context is often referred to as 
Monte Carlo localisation [8] [9]. 
IV. COMPARATIVE BALANCE OF ALL 
THE TECHNIQUES 
 
Studying the techniques and approaches 
employed for the localisation systems; we can 
conclude that each one has its advantages and 
drawbacks.  
 
Establishing a real comparison is not possible in 
practice because approaches are not based on the 
same fundamentals. Each technique use data that 
are not the same and tries to analyze them as 
possible. 
 
A general table, figure 8, with the achievements 
of all methods will be implemented next to give 
an idea about achieved results. As a general 
analysis we can assume that the probabilistic 
methods are based on previous states of the 
mobile, in other words the historical steps. Often 
the equipment to be localized needs a global 
localisation and does not have the previous 
positions. This is the most important drawback of 
these methods. 
 



 
Figure 8 Comparison table between the methods 

 
CONCLUSION 
 
In this paper, we have set out the different 
approaches that have been established recently 
for positioning. 
 
Each method is characterized by advantages, 
drawbacks and is restricted by the environmental 
conditions. However, probabilistic methods are 
generally based on historical data and the first 
established position may not be accurate.  
 
This article allows us to have a broad idea of the 
implementation approaches and give us the 
possibility to draw up a new approach of 
localisation, based essentially on the spatial 
relations between mobile equipments. Our recent 
work is based on modeling an environment 
composed by mobile networks using graphs. It 
would be interesting to make divers researches 
towards this direction. 
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