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Abstract. Models of smart materials and structures are derived through rigorous mathematical 

methods. We establish a classification of piezoelectric and piezomagnetic crystalline materials and 

propose simplified but accurate models of thin structures made of piezoelectric or 

electromagneto-elastic materials. 

Introduction 

Smart materials present significant multi-physical couplings, one of the fields of interaction being 

mechanics. For instance, the application of an electric field on a piezoelectric material generates a 

deformation and conversely, a deformation generates polarization. Piezoelectric materials are widely 

used in the design of smart structures. They are integrated in these structures, which take 

technological advantages of the piezoelectric effect. We may distinguish two kinds of devices: 

sensors and actuators. Sensors transform a mechanical loading into an electric signal and the systems 

they enter convey these signals according to the needs: design of micro weighing machine, airbags, 

Hi-Fi equipments... The actuators convert an electric signal into a displacement, which can be 

monitored with precision, of say mirrors, lenses, machine tools... This twofold behavior is known and 

used for a long time and several derivations of models of smart structures can be found in the 

engineering literature, but, due to the various used methods, discrepancies and controversies may 

occur. Here we aim to present rigorous mathematical models of both smart materials and smart 

structures by mainly confining to the piezoelectric or electromagneto-elastic cases. 

First we establish a classification of piezoelectric and piezomagnetic crystalline materials by a 

suitable description of crystal lattices and a careful study of the symmetries of the tensors, which 

account for these two phenomena. We mainly used algebraic tools from representation theory. In a 

second part, we intend to propose simplified but accurate models of structures made of piezoelectric 

or elecromagneto-elastic materials, these structures (thin plates, slender rods) presenting one or two 

small dimensions. The models are obtained by a rigorous study of the asymptotic behavior of a three 

dimensional body when some of its dimensions, considered as parameters, tend to zero. We used 

various tools of variational and functional analysis, the point being to consider boundary value 

problems depending on small parameters. This study has been carried out in the steady state and 

transient cases. 

Modeling of Smart Materials 

Because multi-physical couplings of a material strongly depend on its crystalline structure and may 

vanish for some crystal classes, it is necessary to find a way to classify the microstructure of such 

material. It is for example well known that an isotropic material cannot be piezoelectric. 

Considering the crystalline state, it can be classified into 32 families called crystal classes. 

However, only 20 of these crystal classes can give birth to the piezoelectric phenomenon. This 

discrepancy lies in the fact that crystal symmetries and tensors symmetries are two distinct concepts. 

Working on these concepts, we were able to show that the 20 piezoelectric crystal classes may in fact 
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be classified in 15 equivalence classes. This classification has been obtained thanks to two different 

kinds of mathematical tools. First, we modeled the crystal structure itself. Second, we studied the 

symmetry of piezoelectric tensors. 

We therefore chose in [1] and [2] to study crystals as geometrical objects in order to rigorously 

define a suitable classification with respect to their different kinds of symmetries. This paves the way 

to see crystals as algebraic objects. It is therefore possible to define geometric and arithmetic 

equivalent classes which enclose all their symmetry properties. 

However, the goal is to describe the symmetries of the piezoelectric phenomenon, not only the 

symmetries of piezoelectric crystals. The symmetries of the piezoelectric phenomenon are of 

macroscopic nature while the symmetries of piezoelectric crystals are of microscopic nature. To fill 

this gap, we need energetic arguments. The validity of these arguments are based on the Cauchy-Born 

hypothesis which states that the position of atoms (which is a microscopic information) is given by the 

deformation gradient of the solid (which is a macroscopic information). Another very important tool 

in this change of scale between microscopic and macroscopic informations is the Pitteri-Ericksen 

Theorem which allows to study the deformation of the solid in a reduced domain called 

Pitteri-Ericksen neighborhood. This kind of neighborhood has the fundamental property that the 

symmetry properties are finite groups. 

These two steps are necessary to define the right actions to consider for the study and classification 

of tensors symmetries. To make it short, the method is to « rotate » tensors and to observe when these 

« rotations » let them unchanged. Two different kinds of tools make this manipulations easier: the 

harmonic and Cartan decompositions. The goal of these decompositions is to associate a polynomial 

to a given tensor. The advantage of polynomials is that they are much easier to « rotate »! It is then 

possible to show that piezoelectric tensors symmetries can be classified in 15 equivalent classes. 

We also produced an extension of this method to piezomagnetism in [3]. The specificity of this 

phenomenon is that we need to consider spatio-temporal symmetries. The description is therefore 

richer in the case of piezomagnetism.  

Modeling of Smart Structures 

First, finding the equilibrium configuration of a linearly piezoelectric plate can be formulated in 

terms of a linear elliptic boundary value problem posed in a cylindrical domain ),( εεω −× , with ω  

being a two-dimensional domain. To get a simplified but accurate enough model, we take advantage 

of the small thickness ε2  of the plate by studying the asymptotic behavior of the displacement and 

electrical potential fields when ε  goes to zero. By some techniques of singular perturbation in 

variational formulations, [4] establishes that this asymptotic behavior is essentially described by a 

linear elliptic boundary value problem posed in the sole domain ω . It can be shown that, depending 

on the type of electrical loading, two kinds of limit generalized kinematics occur with different 

numbers of degrees of freedom. Moreover, in the case of a polarization normal to the plate, we 

investigate the influence of crystalline symmetries on the properties of our models and show that 

some crystal classes lead to a striking structural switch-off of the piezoelectric effect: even if the 

material is piezoelectric, it is not anymore the case for the thin plate. More precisely, this switch-off 

does not depend only on the crystal class of the piezoelectric material that constitutes the plate but 

also on the electrical boundary conditions, i.e. crystal symmetries do not have the same influence on 

sensors and actuators. It is shown that if the plate is used as a sensor, the decoupling occurs for the 

classes 2; 222; 2mm; 4; 4 ; 422; 4mm, m24 ; 6; 622; 6mm; 23 and m34 . While, if the plate is used as 

an actuator, the decoupling takes place with the classes m; 32; 422; 6 ; 622 and 26m . We therefore 

observe that the decoupling occurs for sensors and actuators for only two classes: 422 and 622! 

Besides the piezoelectric coupling, some materials are sensitive to magnetic effects, thus in [5] we 

extended the previous modeling to linearly electromagneto-elastic thin plates. A similar 

mathematical analysis of the asymptotic behavior of the displacement, electrical and magnetic 

potentials can be done to derive new models. The novelty here is that four limit behaviors may appear 



according to the type of boundary conditions and the magnitude of the data on the electric and 

magnetic fields. These cases can be described as previously but by a couple of indices 

{ }2
2,1),( ∈qp in place of a sole index p. The physical situation when the thin plate is used as an

electrical (resp. magnetic) sensor corresponds to 1=p  (resp. 1=q ) while the actuator case 

corresponds to 2, =qp . It therefore appears two original mixed behaviors when qp ≠ . In these 

situations, the plate is at the same time a sensor and an actuator excepted for the classes for which the 

plate is no more electromagneto-elastic. The two cases qp ≠  allow the modeling of electrically 

commanded magnetic devices and of magnetically commanded electric ones, which is of 

considerable interest in the development of non-volatile magnetic random access memories. 

From a technological point of view, piezoelectric materials can also be used in wires or slender 

rods. Now, the reference configuration of the piezoelectric structure is ),0( L×εω , with L a fixed 

positive real number. On the contrary to the case of plates, the state variables of the limit model 

obtained in [6] do not reduce to the couple displacement/electrical potential but involve additional 

variables: two fields of displacements (easy to interpret mechanically) and a scalar field of electrical 

nature. Nevertheless the kinematics of the state variables is simpler than the one of the genuine 

three-dimensional model which is very favourable from a numerical point of view. As in the purely 

elastic case it is worthwhile to note that for particular classes of monoclinic materials the additional 

variables disappear. Anyway, in the sensor case, the additional variables can be eliminated but it leads 

to non standard equations involving non local terms! 

The interest of an efficient modeling of the dynamic response of piezoelectric plates lies in the fact 

that a major technological application of piezoelectric effects is the control of vibrations of structures 

through very thin plates or patches. We proposed two modelings [4,7] depending on the various 

extents to which the magnetic effects are taken into account. Actually, because of the large 

discrepancy between the celerities of the mechanical and electromechanical waves, magnetic effects 

can be disregarded. That is why we propose a modeling [4] in the appropriate framework of the 

quasi-electrostatic approximation which claims that the electrical field still derives from an electrical 

potential. In the two cases, we still obtained two kinds of models (sensor or actuator) and showed that 

the limit constitutive equations obtained in the static asymptotic models remains valuable in the 

dynamic case. 

As the Mindlin’s theory of elastic dielectrics with polarization gradient accommodates the 

observed and experimentally measured phenomena, such as electromechanical interactions in 

centrosymmetric materials, capacitance of thin dielectric films, surface energy of polarization, 

deformation and optical activity in quartz, we performed [8] a mathematical modeling of the second 

order piezoelectric thin plate. Depending on the type of electric loading, three different models 

appear at the limit. For two of them and for any symmetry class, the constitutive laws can be 

expressed as a Schur complement of the second order piezoelectric tensor. It seems very likely that 

non-local terms appear in the remaining case as for slender rods. Moreover we show that, even for the 

second order piezoelectricity, an electromechanical switch-off may appear in the structure if the plate 

is designed with specific materials. 

As the essential technological interest of piezoelectric patches is the monitoring of a deformable 

body they are bonded to, we proposed [9] various asymptotic models for the behavior of the body 

through the study of the system constituted by a very thin linearly piezoelectric flat patch perfectly 

bonded to a linearly elastic three-dimensional body. We obtained four limit models corresponding to 

reinforcement of the body along the bonded surface. Two of these models are purely elastic 

reinforcements while the two others imply sensing or actuating behaviors. 

Concluding Remarks 

The main advantage of the reduction dimension process is that it allows easy numerical experiments 

by avoiding the meshing of thin three-dimensional domains. 



The methods presented here can be extended to other kinds of multi-physical couplings such as the 

one arising in quasicrystalline media (see [10]). 

References 

[1] T. Weller, Etude des symétries et modèles de plaques en piézoélectricité linéarisé, Thèse,

Université Montpellier 2, 2004.

[2] G. Geymonat, T. Weller, Classes de symétrie des solides piézoélectriques, Comptes Rendus

Mathématiques, 335 (2002) 847-852.

[3] T. Weller, G. Geymonat, Piezomagnetic tensors symmetries: an unifying tentative approach, in:

V.K. Kalpakides, G.A. Maugin (Eds.), Configurational Mechanics, A.A. Balkema Publishers, 2004,

pp. 87-105.

[4] C. Licht, T. Weller, Asymptotic modeling of thin piezoelectric plates, Annals of Solid and

Structural Mechanics, 1 (2010) 173-188.

[5] T. Weller, C. Licht, Modeling of linearly electromagnetoelastic thin plates, C. R. Mécanique 335

(2007) 201-206.

[6] T. Weller, C. Licht, Asymptotic Modeling of linearly piezoelectric slender rods, C. R. Mécanique

336 (2008) 572-577.

[7] C. Licht, Asymptotic Modeling of Thin Linearly Piezoelectric Plates taking into account

Dynamical Electro-Magnetic Effects, International Conference on Mathematical Analysis and Its

Applications ICMAA 2006, Bangkok, Thailand, 20-24 May 2006.

[8] T. Weller, C. Licht, Asymptotic Modeling of piezoelectric plates with electric field gradient, C.

R. Mécanique 340 (2012) 405-410.

[9] C. Licht, S. Orankitjaroen, P. Viriyasrisuwattana, T. Weller, Bonding a linearly piezoelectric

patch on a linearly elastic body, C. R. Mécanique 342 (2014) 234-239.

[10] T. Weller, C. Licht,  Asymptotic modeling of thin linearly quasicrystalline plates, C. R.

Mécanique 341 (2013) 793-798.




