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Abstract. We discuss the form of the wave-function of a state subjected to a scalar

linear potential, paying special attention to quantum tunneling. We analyze the phases

acquired by the evolved state and show that some of them have a pure quantum

mechanical origin. In order to measure one of these phases, we propose a simple

experimental scenario. We finally apply the evolution equations to re-analyze the

Stern&Gerlach experiment and to show how to manipulate spin by employing constant

electric fields.
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1. Introduction

Scalar linear potentials are widely used in physics, as they can be generated by

homogeneous irrotational fields, like electrostatic or gravitational fields, which are very

typical in physical problems. Moreover, linear potentials are of general use since they

can approximate more sophisticated potentials for sufficiently small distances. Scalar

linear potentials are also considered for quantum tunneling (e.g. the Sauter potential

[1]). Being able to rigorously evolve a quantum mechanical state subjected to a linear

potential is therefore of fundamental and pedagogical importance.

The exact evolution of quantum systems subjected to linear and quadratic

potentials has recently attracted some interest. The quantum propagator in the presence

of a linear potential has been studied in several works [2, 3, 4, 5]. The evolution

operator related to the most generic time-dependent quadratic potential (with linear

terms included) has been also analyzed in the literature by using quantum invariants

[6, 7]. Here, we re-derive the evolution operator in the presence of a scalar time-

independent linear potential by using the Zassenhaus formula [8]. Our simple approach

allows for several physical considerations that are laid out in the article.

In Sec. 2, we show that the wave-function of a state evolved in the presence of a

linear potential is given, up to a phase, by the free evolved wave-function (i.e., evolved

with no potential) whose argument is shifted by a certain quantity which depends on

the potential. In Sec. 3, we consider a gaussian wave-packet subjected to a linear

potential. We pay some attention to the problem of quantum tunneling, or quantum

diffusion, which is the phenomenon where a microscopic object (typically a particle or an

atom) can penetrate a potential barrier whose height is larger than the object’s kinetic

energy [9, 10]. Since such phenomenon is forbidden by classical laws of mechanics, it is

often referred to as a peculiar characteristic of quantum mechanics. We then move to

discuss, in Sec. 4, the form of the evolved state and the phases that it acquires. Some of

these phases are shown to stem from the non-commutativity of momentum and position

operators in quantum mechanics. A simple experimental scenario aimed at measuring

one of those phases is proposed. In Sec. 5, as a pedagogic application of our evolution

equations, we rigorously re-analyze the example of the Stern&Gerlach (SG) experiment.

In Sec. 6, we show how to manipulate spin of charged particles by using constant electric

fields, instead of the more commonly used magnetic fields. Finally, a summary is given

in Sec. 7.

2. Evolution Operator and evolved wave-functions

We consider a potential of the form V0x, where V0 is an arbitrary constant or any

operator which commutes with momentum and position operators. Without restriction

of generality and for simplicity, we consider only one dimension, which is the x direction.
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The hamiltonian may be thus written as

Ĥ =
p̂2

2m
+ V0x̂ , (1)

where p̂ is the linear momentum operator along the x direction and m is the particle

mass. Since the hamiltonian is time-independent, we may straightforwardly write down

the correspondent evolution operator from an initial time ti to t [11]:

Û(t, ti) = e
− i

~

(

p̂2

2m
+V0x̂

)

(t−ti)
, (2)

where ~ denotes the reduced Planck constant. However, since the argument of the

exponential in the equation above is made of non-commutative operators, its application

to ket states is non-trivial. In order to rewrite (2) in a more manageable way, we make

use of the Zassenhaus formula [8]:

eÂ+B̂ = eÂ eB̂
∞
∏

i=2

eĈi , (3)

where

Ĉ2 =
1

2

[

B̂, Â
]

,

Ĉ3 =
1

3

[[

B̂, Â
]

, B̂
]

+
1

6

[[

B̂, Â
]

, Â
]

,

Ĉ4 =
1

8

([[[

B̂, Â
]

, B̂
]

, B̂
]

+ [[[B,A] , A] , B]
)

+
1

24

[[[

B̂, Â
]

, Â
]

, Â
]

,

... ...

(4)

By choosing Â ≡ − i
~
V0x̂ (t − ti), B̂ ≡ − i

~

p̂2

2m
(t − ti) and by using

[

p̂2, x
]

= p̂ [p̂, x] +

[p̂, x] p̂ = −2i~p̂, we readily get Ĉ2 = + i
~

V0p̂
2m

(t − ti)
2, Ĉ3 = − i

~

V 2
0

6m
(t − ti)

3, Ĉi≥4 = 0.

Finally, by using the fact that eB̂ commutes with eĈ2 and that eĈ3 commutes with

anything, we may write the (exact) evolution operator as

Û(t, ti) = e−
i
~

V 2
0

6m
(t−ti)3e−

i
~
V0x̂(t−ti) e+

i
~

V0p̂
2m

(t−ti)2Û0(t, ti) , (5)

where

Û0(t, ti) = e−
i
~

p̂2

2m
(t−ti) (6)

is the evolution operator in the free case, i.e. if there were no potential. Alternatively,

by choosing B̂ ≡ − i
~
V0x̂ (t− ti), Â ≡ − i

~

p̂2

2m
(t− ti), one may analogously derive

Û(t, ti) = Û0(t, ti)e
+ i

~

V 2
0

3m
(t−ti)3 e−

i
~
V0x̂(t−ti)e−

i
~

V0p̂
2m

(t−ti)2 . (7)

Equation (5) coincides with Eq. (2.6) in Ref. [3].

We notice that, for times much shorter than the characteristic time of interaction

between potential and particle, we could neglect the terms ∼ (t− ti)
2 and ∼ (t− ti)

3 in
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the exponentials of Eqs. (7) and (5), in favor of the linear terms ∼ (t−ti). The form thus

obtained for the evolution operator Û(t, ti) would be equal to the one obtainable from

Eq. (2) by considering as if the kinetic energy operator ( p̂2

2m
) and the potential energy

operator (V0x̂) commuted. This means that, for short interaction times, the kinetic

and the potential energy operators may be considered to approximately commute. This

result is not unexpected, as it is indeed the basic step for the path integral formulation

of quantum mechanics [12].

Next, we apply (5) to an arbitrary initial state |α(ti)〉 defined at time ti, so as to

obtain the ket state at time t. By then multiplying by 〈x| from the left, we obtain the

wavefunction of the state at time t in the spatial representation:

Ψ(x, t) = 〈x|α(t)〉 = 〈x| Û(t, ti) |α(ti)〉

= e−
i
~

V 2
0

6m
(t−ti)

3

e−
i
~
V0x(t−ti) 〈x| e+ i

~

V0p̂
2m

(t−ti)
2 |α(t)〉0

(8)

where we defined |α(t)〉0 = Û0(t, ti) |α(ti)〉, which is just the state evolved by the free

evolution operator (6). By using exp
(

− ip̂∆x/~
)

|x〉 = |x+∆x〉, which follows from

the definition of momentum operator as generator of spatial translations [11], we finally

obtain

Ψ(x, t) = e−
i
~

V 2
0

6m
(t−ti)

3

e−
i
~
V0x(t−ti)Ψ0

(

x+
V0

2m
(t− ti)

2, t

)

. (9)

It is important to notice that, in the equation above, the free evolved wave-function Ψ0

can be of any form. In the special case Ψ0 is a plane-wave, then Ψ will be a solution

of the time-dependent Schrödinger equation related to the Hamiltonian (1) [13]. The

modulus squared of the wave-function (i.e., the probability density) simply satisfies

|Ψ(x, t)|2 =
∣

∣

∣

∣

Ψ0

(

x+
V0

2m
(t− ti)

2, t

)∣

∣

∣

∣

2

. (10)

We may obtain analogous relations in the momentum representation:

Ψ̃(p, t) = 〈p|α(t)〉 = 〈p| Û(t, ti) |α(ti)〉

= e+
i
~

V 2
0

3m
(t−ti)

3

e+
i
~

V0p

2m
(t−ti)

2

Ψ̃0

(

p+ V0(t− ti), t
)

, (11)

∣

∣

∣
Ψ̃(p, t)

∣

∣

∣

2

=
∣

∣

∣
Ψ̃0

(

p+ V0(t− ti), t
)∣

∣

∣

2

, (12)

where the relation exp
(

ix̂∆p/~
)

|p〉 = |p+∆p〉 has been used.

Equations (9), (11) relate the wave-functions (in the spatial and linear momentum

representations) of a general state evolved in the presence of a linear potential with the

wave-functions of the same state evolved without the linear potential. The evolved

wave-function is given, up to a phase, by the free evolved wave-function with its

argument evolved following the classical equation of motion in the presence of the

opposite potential. For example, in the case of spatial representation, the argument
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is evolved following x → x + V0

2m
(t − ti)

2, while the classical evolution of the position

given by the potential V0 would be x → x − V0

2m
(t − ti)

2. Although this might seem

counterintuitive at a first sight, in the next section we shall see that it is not.

3. Evolution of a Gaussian wave-packet

Let us consider at initial time ti a Gaussian wave-packet with momentum mean value p0,

spatial mean value x0 and standard deviation (or width) σ, which represents a realistic

state in standard experiments:

ΨG(x, ti) =
1

π1/4σ1/2
e

i
~
p0(x−x0)−

(x−x0)
2

2σ2 ≡ 〈x|G〉 . (13)

We shall denote with ΨG
0 (x, t) the free evolved Gaussian wave-packet at time t, i.e.

ΨG
0 (x, t) = 〈x| Û0(t, ti) |G〉. Using Eq. (10) with the Gaussian state (13) (i.e., replacing

Ψ0(x, t) → ΨG
0 (x, t)), the modulus squared of the wave-packet at time t is of the form:

∣

∣

∣
ΨG(x, t)

∣

∣

∣

2

=
∣

∣

∣
ΨG

0 (x+ V0

2m
(t− ti)

2, t)
∣

∣

∣

2

∝ e
−
(x+V0∆t2/2m−(x0+p0∆t/m))

2

|σ(∆t)|2

∝ e
−
(x−(x0+p0∆t/m−V0∆t2/2m))

2

|σ(∆t)|2

(14)

where ∆t = t − ti, and σ(∆t) denotes the spatial width of the Gaussian wave-packet

free evolved for a time ∆t. The term p0∆t/m comes from the free evolution of the

Gaussian wave-packet, as it could be expected. The detailed expression of σ(∆t) and

ΨG
0 (x, t) can be found in standard textbooks [14]. Evidently, equation (14) describes

the probability density of a Gaussian wave-packet whose spatial mean value obeys

non-relativistic classical kinematics. In other words, The spatial mean value has been

subjected to a constant acceleration equal to −V0

m
for a time interval ∆t. This result is

also in line with Ehrenfest’s theorem for the mean values [11]. In conclusion, the fact

that the wave-packet argument follows the classical equation of motion in the presence

of the opposite potential ensures that the wave-packet mean value follows the classical

equation of motion with the correct potential. The same analysis can be conducted in

the momentum representation, with the same classical results. We thus conclude that

the evolution equations (9) and (11) are physically plausible, when analyzed from the

point of view of classical kinematics. We furthermore notice that the presence of the

linear potential does not affect the spatial width σ, which is rather fully determined by

the free evolution in time.

Equation (14) may be also read in the following way: When the whole wave-packet

is subjected to a linear potential, the (modulus squared of the) wave-packet follows

the classical kinematics evolution. Now, let us consider a gaussian wave-packet that

hits a potential barrier whose initial part can be approximated to linear. This initial

(approximately) linear part of the potential shall be called D. The maximum value

of the potential in D is supposed to be higher than the initial average kinetic energy
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Figure 1. A gaussian wave-packet (blue curve) hits a potential barrier (black

curve) whose initial part (D) can be approximated to linear. The potential barrier

is in units of the initial average value for the kinetic energy of the wave-packet

(< Ein

kin
>= p20/(2m)). The red solid vertical bars denote the classical turning points

(a, b). The length D′ is chosen to be much larger than half wave-packet spatial width

as given at the time ta (D′ ≫ σ(ta−ti)
2 ). Here ta = p0/V0 is the time when the wave-

packet mean value is at the turning point a. For these settings, as a consequence of

the evolution given by Eq. (14), the wave-packet will be wholly pushed backwards and

no tunneling will be permitted.

of the wave-packet, where this latter is < Ein
kin >= p20/(2m). For convenience, this

situation is depicted in Fig. 1 and also showed in the animation available on line as

supplementary material (in the animation, also the evolution of the wave-packet in the

free case is displayed for comparison). Let us further suppose that the difference between

the furthermost point of D and the first classical turning point (a) is much bigger than

half wave-packet spatial width as given at the time ta (D′≫ σ(ta−ti)
2

). Here ta = p0/V0

is the time when the wave-packet mean value is at the turning point a. In other words,

we suppose that the DeBroglie wave-length of the wave-packet is small compared to the

characteristic distance over which the first derivative of the potential varies appreciably

‡. In these chosen settings, the whole wave-packet will be subjected to the same linear

potential up to the turning point a. The evolution given by Eq. (14) then dictates

that the wave-packet will be wholly pushed backwards, as one would expect from the

classical point of view. Consequently, no tunneling will be permitted to the wave-packet.

Therefore, in order to have any chance for quantum tunneling, the wave-packet spatial

width must be somewhat larger or comparable to D′ (σ & D′), so that the evolution

given by (14) may not be applicable.

‡ This is a less stringent approximation than the assumption for the validity of WKB approach. Within

WKB approach, which is widely used in quantum tunneling problems, the DeBroglie wave-length of

the packet is considered to be small compared to the characteristic distance over which the potential

varies appreciably [11].
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In the animation available on line as supplementary material, we chose the mean

position, the standard deviation and the velocity to be 0 m, 0.2 cm and 1 m/sec,

respectively, at time t = 0. The strength of the potential is chosen to allow the

wave-packet to travel for a length of 0.3 meters before reaching the classical turning

point. At the classical turning point, the spatial width will have grown of only 10% (see

animation). For the best comparison, we adopted the same length unit of the animation

for the abscissa in Fig. 1. Other settings for smaller length scale could be analogously

applied.

Based on the above considerations, we argue that quantum tunneling reflection and

transmission coefficients should directly depend on the spatial width of the wave-packet.

However, although studies on tunneling with Gaussian wave-packets have been made in

literature (see Ref. [15] and references therein), to the best of our knowledge no direct

relation between tunneling coefficients and spatial width of the wave-packet has been

suggested. In fact, transmission coefficients in quantum tunneling are not normally

given as dependent on the wave-packet spatial width but rather as solely dependent on

the energy of the particle (E) and the thickness of the barrier. For instance, within

WKB approximation, which is the most widely used approach for solving tunneling

problems, the transmission coefficient is given by T (E) = e−2σR/
(

1 + e−2σR/4
)2
, where

σR =
∫ b

a

√

2m
~2

(V (x)−E) dx > 0, and a, b are the classical turning points (i.e., L = b−a

is the classically forbidden region) [9]. An experimental assessment of the dependence

of tunneling coefficients on the spatial width would thus be desirable.

The direct dependence of tunneling coefficients on the spatial width of the wave-

packet could have application in many areas of science: Quantum tunneling could

be enhanced or suppressed by controlling the spatial width of the state, instead of

controlling the energy of the state or the environment surrounding it [16, 17].

Unfortunately, we cannot find here an explicit expression for transmission and

reflection coefficients for a realistic potential barrier with the present quantum

mechanical formalism. This is because the Zassenhaus formula does not converge for

potentials of order higher than linear, and because a realistic potential barrier cannot be

represented by a linear function. Nonetheless, any potential barrier can be approximated

to linear for short distances. Based on this, our claim that the tunneling coefficients

should depend on the spatial width of the wave-packet holds. In view of the fact

that the wave-packet spatial mean value (x0) follows the classical equation of motion,

our conjecture is that the fraction of the wave-packet beyond the potential barrier at

the classical turning point plays leading role in determining transmission coefficient in

quantum tunneling: Given wave-packets with the same linear momentum mean value,

those wave-packets with larger spatial width will tunnel more efficiently. This can be

simply checked by preparing Gaussian wave-packets and delaying the arrival of some of

them to the potential barrier. The spatial width σ(∆t) of the wave-packets increases

during the free evolution. Thus the delayed wave-packets will have larger spatial width

with respect to the non-delayed wave-packets.
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4. Discussion on the phases: Phase Shift Generator

We here discuss more extensively the expression for the evolution operator in Eq. (5).

The first
(

− i
~

V 2
0

6m
(t− ti)

3
)

and third
(

+ i
~

V0p̂
2m

(t− ti)
2
)

phases which multiply the

free evolution operator from the left in (5) stem directly from the non-commutativity

between momentum and position operators, and are thus purely quantum mechanical

corrections. On the other hand, the second phase
(

− i
~
V0x̂(t− ti)

)

and the free evolution

operator itself (Û0(t, ti)) somehow represent the evolution given by the potential and

kinetic energy gained by the traveling particle, respectively. If position and momentum

operators commuted, then only these two latter terms would be present.

It is somewhat interesting that the phase V0p̂
2m~

(t − ti)
2 is directly responsible in

equation (9) for the shift in the argument of the free evolved wave-function in the

spatial representation, such shift being V0/(2m) (t − ti)
2. In fact, that shift, together

with the shift p0∆t/m given by the free evolution, gives rise to the classical motion of the

spatial mean value of the state (see previous section). Therefore, the non-commutativity

of momentum and position operators turns out to be effectively responsible for the

non-relativistic classical motion of the spatial mean value of the wave-packet: x0 →
x0 + p0∆t/m− V0∆t2/2m. We may furthermore notice that the corresponding shift in

the momentum representation, which is responsible for the classical motion of the linear

momentum mean value, is directly given by the phase containing the linear potential,
(

− i
~
V0x̂(t− ti)

)

. We may therefore consider the term ∝ V0p̂
2m

as a linear potential in the

momentum space. In other words, the term ∝ V0p̂
2m

may be considered the dual of the

potential V0x̂(t− ti). The former is generated by the presence of the latter because the

latter does not commute with the free Hamiltonian. The presence of both potentials

gives symmetry to the evolution of the state in spatial and momentum representations

and ensures that in both representations the mean value is evolved following the non-

relativistic classical motion.

On the other hand, the phase −1
~

V 2
0

6m
(t− ti)

3 does not play any role on determining

the classical evolution of the state. Such a phase originates from the second (and last)

expansion term of the Zassenhaus formula, and it is therefore a higher correction with

respect to other terms. Indeed, this phase would be the only one missing if we replaced,

in the free plane wave e
i
~

(

px− p2

2m
(t−ti)

)

, the classical transformations x → x− V0

2m
(t− ti)

2,

p → p − V0

m
(t − ti), as one would do as a first attempt to guess the wave-function of a

state subjected to a linear potential. An experiment aimed at ascertaining the existence

of this last phase would thus probably be a useful test for quantum mechanics. To this

aim, here we sketch a simple experimental scenario which permits such a measurement.

Let us consider two electron beams along the z direction, where the electrons are

in phase one with another [18]. One of the two beams is accelerated and subsequently

decelerated along an axis orthogonal to the beam direction, for instance x. In order to

apply Eqs. (5)-(7), the acceleration and deceleration must be due to a linear potential.

As showed in Fig. 2, this could be realized, for instance, by a series of three capacitors
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−

+

−

+

−

+

exp







− i
h̄
2V 2

0 L
3

3mv3







 |~pi〉

L

|~pi〉

|~pi〉

|~pi〉

Figure 2. Sketch of a simple experimental scenario which allows to generate a phase

shift using the evolution operator in Eqs. (5), (7).

of lengths L = v∆t, 2L and L, where ∆t is the time the electron spends in the first

capacitor and v is the beam velocity along z (L must here be much larger than the

spatial width of the electron state). For this example, we must consider the three

dimensional generalization of Eq. (5), where p̂2 is replaced by p̂2 = p̂2
x + p̂2

y + p̂2
z.

Since position and momentum operators along different directions commute, such a

replacement can be safely made. By applying such generalized evolution operator to

the initial electron state |pi〉 ≃ |px = 0, py = 0, pz = p0〉, the electron state after the

electrostatic deflection (which lasts for a time 4∆t) can be easily calculated to be

e−
i
~

2V 2
0 L3

3mv3 Û0(4∆t) |pi〉 ≡ e−
i
~

2V 2
0 L3

3mv3 |pi〉. We have here redefined Û0(4∆t) |pi〉 ≡ |pi〉 since
the phase given by the free evolution operator is shared by both beams and therefore

not measurable. Thus, upon passing the capacitors, the beam acquires a phase-shift

equal to −1
~

2V 2
0 L3

3mv3
with respect to the other (non-deflected) beam. Such phase shift can

be measured when the beams are recombined. In what follows, we shall denote the

experimental apparatus sketched in Fig. 2 as Phase Shift Generator (PSG).

From the above considerations we see that, when different beams are subjected to

different accelerations, a phase difference proportional to the potential-difference squared

may appear, if the potentials responsible for the accelerations can be approximated to

linear. Therefore, Eqs. (5), (7) and Fig. 2 might be also useful for estimating the loss

of coherence in dealing with charged particles.

Phase shifts of quantum states have been very useful in physics and are object of

current research and debate (e.g., the gravitational phase shift [19, 20] and the Gouy

phase [21, 22]). Along the same lines, ascertaining the existence of the phase shift

generated by the PSG would be interesting for testing quantum mechanics and might

also have several applications. We shall see in Sec. 6 how such phase could be for

example used in quantum information and spintronics.
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5. Application to Stern&Gerlach experiment

The SG experiment [23] is rightfully considered of fundamental and pedagogical

importance for understanding quantum mechanics. The particles injected in the

SG apparatus are subjected to a linear potential. The SG apparatus is therefore

probably the best example for a clear application of equations (5)-(11). The following

brief analysis is also motivated by the fact that in textbooks the SG apparatus is

normally explained with intuitive, semi-classical arguments (e.g., see in Ref. [11]),

while in literature it is more rigorously explained with an involved quantum mechanical

formalism [24].

In the SG experiment, Silver atoms are injected in the apparatus [23]. Out of the 47

electrons of the Silver atom, only the outermost electron contributes to the atomic spin,

if we neglect the nuclear contribution (which is irrelevant to our discussion). Therefore

it is common to consider the spin state of such electron as characterizing the spin state

of the whole atomic system. Since no atomic excitations are to be considered, we may

disregard any atomic internal structure. The potential for a SG whose magnetic field

is along x is V̂SG ≃ −
(

e~
2me

B0

)

x̂ σ̂x, where e and me are the electric charge and mass

respectively, σ̂x is the Pauli spin operator along the x direction, while B0 is the strength

of the magnetic field. The state of the atoms before entering the SG is completely

mixed. Thus, it may not be described by a ket state, but rather it can be described by

the following density operator [11, 25]:

ρ̂(ti) = |p〉 〈p| ⊗ 1

2

(

|Sx,+〉 〈Sx,+|+ |Sx,−〉 〈Sx,−|
)

, (15)

where p = (0, 0, p0) and |Sx,±〉 are spin-1/2 states along the x direction. Setting

V0 → V̂0 ≡ −
(

e~
2me

B0

)

σ̂x in Eq. (5) (which is allowed, since σ̂x commutes with any

of the operators p̂x, p̂y, p̂z, x̂, ŷ, ẑ), the evolution of the density operator can be easily

computed [26]:

ρ̂(t) = Û(t, ti)ρ̂(ti)Û
†
(t, ti)

=
1

2

(

|p+〉 〈p+| ⊗ |Sx,+〉 〈Sx,+| + |p−〉 〈p−| ⊗ |Sx,−〉 〈Sx,−|
)

,

(16)

where p+ =
(

+ ∆p, 0, p0
)

and p− =
(

− ∆p, 0, p0
)

, while ∆p = e~
2me

B0(t − ti). The

probability density of measuring the generic state |p′〉 〈p′| after an interaction time

(t− ti) is therefore

Tr
[

|p′〉 〈p′| ρ̂(t)
]

=
1

2
δ(p′ − p±) , (17)

which is the well-known SG outcome.

6. Manipulating spin by employing electric fields

Manipulating spin by means of electric fields is currently subject of applied research

[27, 28, 29, 30, 31]. The advantage of controlling spin by using electric rather than
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Figure 3. a) A spin flipper built by employing SG and PSG apparatuses. b) By

removing the PSG, the spin is not flipped.

magnetic fields is that the former are easier to generate. Moreover, they allow for

controlling spins independently one from another, which is a requirement for building

quantum computers [32, 33]. Our goal here is to show how to manipulate spin of charged

particles by employing constant electric fields. This will be achieved by combining a

spin-beam splitter with a PSG apparatus. For our purposes and for simplicity, we will

consider electrons and we will use the SG apparatus as spin-beam splitter. A brief

discussion on the feasibility and on possible extensions is laid out at the end of the

present section.

We prepare an electron with, for example, momentum and spin along z. Its state is

therefore described by |p〉⊗|Sz,±〉, with p = (0, 0, p0). We let such electron sequentially

pass through a SG, then through a PSG, and finally through a second SG. While the

first SG is set along x direction, the second SG is set along −x direction. This gedanken

experiment is sketched in Fig. 3 (panel a). During the several steps, by using Eq. (5)

we find that the electron state is given by (up to an overall phase):

|p〉 ⊗ |Sz,±〉 = 1√
2
|p〉 ⊗

(

|Sx,+〉 ± |Sx,−〉
)

SG↑−−→ 1√
2

(

|p+〉 ⊗ |Sx,+〉 ± |p−〉 ⊗ |Sx,−〉
)

PSG−−−→ 1√
2

(

|p+〉 ⊗ |Sx,+〉 ± e−
i
~

2V 2
0 L3

3mv3 |p−〉 ⊗ |Sx,−〉
)

SG↓−−→ 1√
2
|p〉 ⊗

(

|Sx,+〉 ± e−
i
~

2V 2
0 L3

3mv3 |Sx,−〉
)

,

(18)

where p± has been defined previously and contains the linear momentum shift given

by the Lorentz force exerted on the electron in the intermediate steps. By setting

appropriate values for the PSG parameters, the wished final electron spin state is

obtained. In particular, by setting
2V 2

0 L3

3~mv3
= π, the initial spin state is reversed. By

removing the PSG, the spin is not flipped (Fig. 3, panel b). This entails that it is the

electric field in PSG that is responsible for the spin flip, while the magnetic field in the

SG apparatuses is just used to feed the PSG.

The employment of a SG apparatus to split electron beams of different spins has
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been widely discussed in the past. Since the beginning ot the last century, it has been

several times argued that the SG apparatus cannot successfully split electron beams.

Conversely, more recently this viewpoint has been confuted and an effective spin-beam

splitter for electrons using SG has been proposed (see Ref. [34] and references therein).

Here, we used the SG apparatus for simplicity, but any spin-beam splitter would work

and would produce the shown results. Spin-beam splitters of nano- and meso-scopic

dimensions have been in fact realized for electrons (e.g., [35, 36, 37, 38]). Our scenario

for spin manipulation is therefore feasible with the current state-of-the-art technology.

A microscopic realization of PSG jointly with a spin-beam splitter may be applied,

for instance, in quantum information and spintronics (including atomtronics, if charged

atoms are employed) [39, 40, 41, 42]. In fact, as showed in this section, such a

combination works as a gate |0〉+ |1〉 → |0〉+ eiµ |1〉, where µ is any wished phase.

7. Summary

In summary, we used the Zassenhaus formula to re-derive the quantum mechanical

evolution operator in the presence of a scalar linear potential. We discussed the

form of the wave-function of the evolved state paying special attention to quantum

tunneling. We then analyzed the phases that the evolved state acquires. We

proposed an experimental scenario for measuring one particular phase given by the

non-commutativity of momentum and position operators. We applied the evolution

equations to rigorously re-analyze the Stern&Gerlach experiment and to show how to

manipulate spin by using constant electric fields.
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