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Introduction

The constitutive modeling and data-driven calibration of the mechanical behavior of soft biological tissues is of paramount importance in a wide range of applications from bioengineering and computational -and potentially, multiscale -mechanics of hierarchical biomaterials (see [START_REF] Gasser | Hyperelastic modelling of arterial layers with distributed collagen fibre orientations[END_REF][START_REF] Holzapfel | Constitutive modelling 455 of arteries[END_REF][START_REF] Holzapfel | A new constitutive framework for arterial wall mechanics and a comparative study of material models[END_REF] for the modeling of arteries, for instance) to computed-assisted surgery (CAS). While the definition of suitable models is still the matter of active research, due to the great complexity and multiphysics aspects of the mechanisms governing the macroscopic behavior, one additional difficulty lies in the fact that the experimental characterization of such materials typically exhibits a large variability; see, in a non-exhaustive manner, [START_REF] Miller | Constitutive modelling of brain tissue: experiment and theory[END_REF][START_REF]Mechanical properties of brain tissue in tension[END_REF][START_REF] Velardi | Anisotropic constitutive equations and experimental tensile behavior of brain tissue[END_REF][START_REF] Hrapko | Characterisation of the mechanical behaviour of brain tissue in 460 compression and shear[END_REF][START_REF] Rashid | Mechani-500 cal characterization of brain tissue in compression at dynamic strain rates[END_REF][START_REF] Rashid | Experimental 510 characterisation of neural tissue at collision speeds[END_REF][START_REF] Jin | A comprehensive experimental study on material properties of human brain tissue[END_REF][START_REF]Mechanical characterization of brain tissue in simple shear at dynamic strain rates[END_REF][START_REF]Mechanical characterization of brain tissue in tension at dynamic strain rates[END_REF], [START_REF] Sakuma | In vitro measurement of mechanical properties of liver tissue under compression and elongation using a new test piece holding method with surgical glue[END_REF]6,[START_REF] Roan | The nonlinear material proper-515 ties of liver tissue determined from no-slip uniaxial compression experiments[END_REF][START_REF]Strain rate-dependent viscohyperelastic constitutive modeling of bovine liver tissue[END_REF], [START_REF] Sparrey | Compression behavior of porcine spinal cord white matter[END_REF] and [START_REF] Umale | Experimental mechanical characterization of abdominal organs: liver, kidney & spleen[END_REF] for experimental characterizations of brain tissues, liver tissues, spinal cord white matter and abdominal organs, respectively. These uncertainties, which may be due to various ˚Corresponding author Email address: johann.guilleminot@u-pem.fr (J. Guilleminot) factors (such as microstructural randomness, subject-to-20 subject variability, age, gender or even potential disease), may critically impact simulation predictiveness or clinical diagnosis for example. In practice, these fluctuations are usually ignored and smoothed out through an averaging procedure along the 25 statistical dimension. This mean response is subsequently fitted by solving a least-squares problem by means of a deterministic optimization method (see [START_REF] Ogden | Fitting hyperelastic models to experimental data[END_REF]). Whereas such approximations may be found satisfactory in some cases, depending on the application under consideration, 30 performing high-fidelity computations or making informed decisions requires the modeling and calibration issues to be both addressed in a probabilistic framework. From a stochastic standpoint, the Bayesian paradigm provides a sound approach to data-driven modeling for deterministic [START_REF] Sakuma | In vitro measurement of mechanical properties of liver tissue under compression and elongation using a new test piece holding method with surgical glue[END_REF] and random parameters [START_REF] Bernado | Bayesian Theory[END_REF][START_REF] Gelman | Bayesian 445 Data Analysis[END_REF]. This natural path was very recently pursued in [START_REF]Bayesian calibration of hyperelastic constitutive models of soft tissue[END_REF] and previously used by the same authors for model selection in [START_REF] Madireddy | A bayesian ap-475 proach to selecting hyperelastic constitutive models of soft tissue[END_REF].

In this work, we propose an alternative methodology where the probability density functions defining the set 40 of randomized parameters are constructed explicitly. The main advantage of such a formulation (in contrast to a Bayesian approach where the posterior distributions are generally unknown analytically) is that it allows existence results for the solution of the associated boundary value problem to be invoked (with probability one). In practice, the proposed class of stochastic stored energy functions can purposely be used as:

• an admissible model making the identification task well-posed (from a mechanical standpoint) whenever experimental data are limited;

• a prior model in a Bayesian setting, especially when the number of the parameters defining the model (which are referred to as hyperparameters) is large; see [START_REF] Soize | A computational inverse method for identification of non-gaussian random fields using the bayesian approach in very high dimension[END_REF] for an example in three-dimensional linear elasticity.

The aim of this research is twofold. First, it attempts to lay out a framework, based on information theory, for the modeling of stochastic stored energy functions. To this purpose, we provide a self-contained and applicationoriented presentation of a stochastic model derived for the Ogden class of stored energy functions [START_REF] Staber | Stochastic modeling of a class of stored energy functions for incompressible hyperelastic materials with uncertainties[END_REF][START_REF]Stochastic modeling of the ogden class of stored energy functions for hyperelastic materials: the compressible case[END_REF]. This class turns out to be relevant to the modeling of some isotropic biological materials (see [START_REF] Chagnon | Hyperelastic energy densities for soft biological tissues: A review[END_REF] for example). Additionally, we address the definition of a calibration methodology. The latter specifically allows for the identification of the model hyperparameters using mean and variance estimates along a loading curve. Second, it aims at assessing the capability of these models to reproduce the experimental variability that is observed in the mechanical response of biological tissues at large strains (and small strain rates). From a clinical perspective, these statistical fluctuations may be considered as informative quantities in the early stage prognosis of diseases affecting the mechanical response of the tissues under consideration.

This outline of this paper is as follows. In Section 2, we first set up notation and provide a brief reminder on deterministic constitutive modeling in hyperelasticity. The information-theoretic stochastic model and the calibration procedure are then presented in Section 3. Finally, some applications involving experimental results taken from the literature are discussed in Section 4.

Notation

Throughout this paper, deterministic scalars, vectors and second-order tensors are denoted by a, a and rAs. which may change from line to line.

Their stochastic counterparts are respectively denoted by

Deterministic constitutive model

Basic notation and kinematics

Let Ω be the region in R 3 occupied by the body under consideration at rest and let BΩ denote its boundary. The 95 body is assumed to undergo a deformation ϕ : Ω Q x Þ Ñ x ϕ P Ω ϕ , where Ω ϕ is the current configuration. The mapping ϕ is classically assumed to be sufficiently smooth, orientation-preserving and injective.

The associated deformation gradient rF s is defined as

rF pxqs " ∇ x ϕpxq , @x P Ω , (1) 
and satisfies the condition detprF sq ą 0 in Ω. For the sake of notational convenience, spatial indexing is omitted from now on. The principal stretches of the deformation gradient are denoted as tυ j prF squ 

where rT s is the first Piola-Kirchhoff stress tensor (which is also referred to as the engineering stress), rF s denotes the deformation gradient (with unitary determinant) and is a Lagrange multiplier raised by the incompressibility condition. Additionally, we focus on Ogden-type stored energy functions for isotropic hyperelastic materials. Such functions are defined, at orders m ě 1 and n ě 1, as [START_REF] Ogden | Non-Linear Elastic Deformations[END_REF] wprF sq "

m ÿ i"1 p i Φ ηi prF sq `m`n ÿ j"m`1 p j Υ ηj prF sq , (4) with 
Φ ηi prF sq " υ ηi 1 `υηi 2 `υηi 3 ´3 (5) 
(with a slight abuse of notation) and Υ ηj prF sq " pυ 1 υ 2 q ηj `pυ 1 υ 3 q ηj `pυ 2 υ 3 q ηj ´3 ,

where it is recalled that tυ j u 3 j"1 are the principal stretches associated with the deformation gradient rF s.

Upon expanding the stored energy function near the reference configuration, it is found that the parameters p " pp 1 , . . . , p np q and η " pη 1 , . . . , η np q must satisfy the following additional consistency relation [START_REF] Ogden | Non-Linear Elastic Deformations[END_REF]:

np ÿ k"1 p k η 2 k " 2µ , (7) 
where µ ą 0 is the shear modulus.

The applications considered in this paper consist in simple compression tests along a principal direction, say e 3 " p0, 0, 1q. In this case, and by combining Eq. ( 3) and the incompressibility condition υ 1 υ 2 υ 3 " 1, one can show (see e.g. [START_REF] Ogden | Non-Linear Elastic Deformations[END_REF][START_REF] Holzapfel | A new constitutive framework for arterial wall mechanics and a comparative study of material models[END_REF]) that the resulting principal Piola-Kirchhoff stress σ writes σpυq "

m ÿ i"1 p i η i pυ ηi´1 ´υ´1´ηi{2 q ´m`n ÿ j"m`1 p j η j pυ ´ηj ´1 ´υ´1`ηj{2 q , ( 8 
)
where the substitution υ " υ 3 has been introduced for notational convenience. 

Fundamental assumptions

From a theoretical standpoint, the available existence theorems for boundary value problems in hyperelasticity (see the references hereinafter) rely on the existence of minimizers for the total potential energy function and were 110 established by resorting on the calculus of variations. Not surprisingly, the investigation of sufficient conditions on the stored energy function such that the aforementioned existence results can effectively be proven has attracted much attention from researchers in applied mathematics and theoretical mechanics. To date, minimal requirements are essentially concerned with some generalized convexity conditions, as well as with a coerciveness inequality that models an asymptotic behavior at large strains; see the seminal work reported in [START_REF] Morrey | Quasi-convexity and the lower semicontinuity of multiple integrals[END_REF], as well as the textbook [START_REF] Ciarlet | Mathematical elasticity: Three-dimensional elasticity[END_REF].

Certainly one of the most invoked assumption is that of polyconvexity, introduced by Ball in [START_REF] Ball | Convexity conditions and existence theorems in nonlinear elasticity[END_REF]. This fundamental property, when complemented by a set of suitable growth conditions, insures the existence of at least one minimizer for the total potential energy; hence ensuring the well-125 posedness of the nonlinear boundary value problem (see also [START_REF] Balzani | A polyconvex framework for soft biological tissues. adjustment 425 to experimental data[END_REF] for a specific discussion on biological materials).

In what follows, and following the result by Müller et al. [START_REF] Müller | On a new class of elastic deformations not allowing for cavitation[END_REF], we assume that (see [START_REF]Some recent developments in nonlinear elasticity and 420 its applications to materials science[END_REF])

p k ą 0 , 1 ď k ď n p , (9a) 
η 1 ě ¨¨¨ě η m ě 1 , η 1 ě 2 , (9b) 
η m`1 ě ¨¨¨ě η np ě 1 , η m`1 ě 3 2 , (9c) 
with n p " m `n, ensuring the existence of at least one minimizer for the total potential energy.

Remark 1. The single term stored energy function

wprF sq " p pυ η 1 `υη 2 `υη 3 ´3q (10) 
is covered by the existence results if p ą 0 and η ě 3 (see [START_REF] Ball | Convexity conditions and existence theorems in nonlinear elasticity[END_REF]). Moreover, the consistency with linearized elasticity yields pη 2 " 2µ, so that the stored energy function writes:

wprF sq " 2µ η 2 pυ η 1 `υη 2 `υη 3 ´3q . ( 11 
)
The particular case η " 2 leads to the well known Neo-130

Hookean model in three-dimensional elasticity, which is not covered by the existence results invoked in this paper.

In the next section, we first discuss the randomization of Ogden-type stored energy functions. A new methodology allowing for the calibration of the probabilistic model is 135 subsequently proposed.

Stochastic hyperelastic constitutive models

The generalization of hyperelastic constitutive laws in a stochastic context has received little attention to date. The main difficulty raised by such a generalization stems 140 from the fact that the stochastic stored energy functions are simultaneously required (i) to accurately reproduce the experimental trends, and (ii) to be consistent with the theory of nonlinear elasticity (see Section 2.3). It should be noticed that considering one single constraint apart from 145 the other one may lead to models that • fit dispersed data very well (in terms of mean and variance at a given stretch for example), but are not consistent with theoretical aspects -hence yielding non-admissible samples for subsequent analysis; 150

• are fully consistent with existence theorems, but may not satisfactorily reproduce observed experimental results.

Clearly, any of the above situations reduces the predictive capabilities of the associated modeling framework. Note 155 in addition that experimental data are often very limited, so that the direct computation of statistical estimators at a reasonable level of convergence is itself an issue -in this case, the use of the maximum likelihood method may alternatively be considered.

160

Very recently, new contributions accommodating the aforementioned modeling constraints in the framework of information theory [START_REF] Jaynes | Information theory and stastitical mechanics ii[END_REF][START_REF]Information theory and statistical mechanics i[END_REF] were proposed; see [START_REF] Staber | Stochastic modeling of a class of stored energy functions for incompressible hyperelastic materials with uncertainties[END_REF] for the case of incompressible materials, as well as [START_REF]Stochastic modeling of the ogden class of stored energy functions for hyperelastic materials: the compressible case[END_REF] for the compressible case. In these works, stochastic stored energy 165 functions are constructed by randomizing, in a proper way, some parameters involved in the definition of classical, e.g. Ogden-type stored energy functions. More specifically, and following the maximum entropy (MaxEnt) principle, the probability density functions defining these random 170 parameters are constructed by maximizing the so-called Shannon differential entropy [START_REF] Shannon | A mathematical theory of communication[END_REF] over the set of probability density functions that satisfy a set of contraint equations (see Appendix A for more details). The latter, which are expressed in the form of mathematical expectations, are essentially induced by the information that is available on the set of random model parameters. This information is typically inferred from the properties ensuring the wellposedness of the associated variational formulation, such as positiveness, or from known statistical moments. By construction, such an approach reduces the modeling bias, especially when compared to methodologies relying on the a priori choice of standard statistical distributions, and readily ensures that all sufficient mathematical conditions are fulfilled (in accordance with the results from Section 2.3). The main result derived in [START_REF] Staber | Stochastic modeling of a class of stored energy functions for incompressible hyperelastic materials with uncertainties[END_REF] is first presented for completeness in Section 3.1. A novel methodology allowing for the calibration of the stochastic stored energy function using typically available experimental results (namely, the mean and variance evolutions) is then proposed in Section 3.2. This calibration strategy will be tested for various biological tissues in Section 4.

Construction of stochastic Ogden-type stored energy functions

Let P and µ be the random variables corresponding to the stochastic modeling of the vector-valued parameter p and the shear modulus µ, respectively. The stochastic version W of the Ogden potential w is then written as

W prF sq " m ÿ i"1 P i Φ ηi prF sq `m`n ÿ j"m`1 P j Υ ηj prF sq , ( 12 
)
where Φ ηi and Υ ηj are defined by Eqs. ( 5)-( 6), and the exponents tη k u np k"1 are kept deterministic and such that the restrictions given by Eqs. (9b)-(9c) hold. The random variables P and µ also satisfy the consistency relation (see Eq. ( 7))

np ÿ k"1 P k η 2 k " 2µ (13) 
almost surely. It should be noticed that the stochastic models of P and µ completely define the probabilistic model of the stochastic stored energy function W for a given value of the deformation gradient rF s.

In a first step, the probability density function p µ of the random shear modulus µ is constructed by taking into account that µ ą 0 almost surely, the mean constraint

E tµu " µ , µ ą 0 , (14) 
and the additional constraint:

E tlogpµqu " ν , |ν| ă `8 . ( 15 
)
From a theoretical standpoint, Eq. ( 15) ensures that µ and µ ´1 are both second-order random variables (see [START_REF] Guilleminot | On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties[END_REF]).

According to the MaxEnt principle (see Appendix A.2 for technical details), the random variable µ then follows a Gamma distribution:

µ " Gpρ 1 , ρ 2 q , (16) 
where the parameters ρ 1 ą 0 and ρ 2 ą 0 are raised by the MaxEnt principle.

200

In a second step, we introduce for technical convenience an auxiliary random variable U " pU 1 , . . . , U np´1 q such that (see Eq. ( 13))

P k " 2µ η 2 k U k , 1 ď k ď n p ´1 (17) 
and

P np " 2µ η 2 np ˜1 ´np´1 ÿ k"1 U k ¸. ( 18 
)
By construction (see Eq. (9a)), the random variable U takes its values in the admissible set

S " tu P ps0, 1rq np´1 | 1 ´řnp´1 k"1 u k ą 0u ( 19 
)
that corresponds to the interior of a pn p ´1q-dimensional simplex. The probability density function p U of U is derived by invoking the principle of maximum entropy under constraints that are induced by Eq. (9a) (or equivalently, by Eq. [START_REF] Luenberger | Optimization by vector space methods[END_REF]; see [START_REF] Staber | Stochastic modeling of a class of stored energy functions for incompressible hyperelastic materials with uncertainties[END_REF]), namely:

E tlog pU k qu " ν k , 1 ď k ď n p ´1 , (20) 
E # log ˜1 ´np´1 ÿ k"1 U k ¸+ " ν np , (21) 
where |ν k | ă `8 for 1 ď k ď n p . It can then be shown (see Appendix A.3) that the random variable U follows a Dirichlet distribution:

U " Dirpλ 1 , . . . , λ np q , (22) 
where the strictly positive parameters pλ 1 , . . . , λ np q are the Lagrange multipliers that are introduced by the MaxEnt principle.

Note that the marginal probability distributions of U thus obtained are unimodal when λ k ą 1, 1 ď k ď n p .

205

Whenever required, the case of multimodal distributions can be handled, either by defining a mixture of the proposed unimodal distributions (provided that a one-to-one correspondence between the modes of the random variables can be identified), or by using other probabilistic re-210 presentations, such as mixtures of polynomial chaos expansions (PCEs) [START_REF] Nouy | Identification of multi-modal random variables through mixtures of polynomial chaos expansions[END_REF] or PCEs defined with respect to multimodal probability distributions [START_REF]Polynomial chaos expansion of a multimodal random vector[END_REF].

The main result derived in [START_REF] Staber | Stochastic modeling of a class of stored energy functions for incompressible hyperelastic materials with uncertainties[END_REF] then states that the stochastic stored energy function defined by Eq. ( 12), where

215

• P is defined by Eqs. ( 17)-( 18),

• µ " Gpρ 1 , ρ 2 q, with ρ 1 ą 0 and ρ 2 ą 0,

• U " Dirpλ 1 , . . . , λ np q with λ i ą 0 for 1 ď i ď n p , is covered by the existence results (outlined in Section 2.3) and consistent with linearized elasticity almost surely. It is therefore admissible almost surely, which in turn implies that the associated stochastic nonlinear boundary value problem admits at least one solution.

The stochastic constitutive law is finally defined as rT s " BW prF sq BrF s

´ rF s ´T ,

where rT s denotes the random first Piola-Kirchhoff stress tensor. Using Eq. ( 8), it can be deduced that the random Piola-Kirchhoff stress Σ for a simple tensile (or compression) test writes Σpυq "

m ÿ i"1 P i η i pυ ηi´1 ´υ´1´ηi{2 q ´m`n ÿ j"m`1 P j η j pυ ´ηj ´1 ´υ´1`ηj{2 q . ( 24 
)
Remark 2. It is observed that the variance of the Piola-Kirchhoff stress Σpυq is monotonically increasing with υ.

It follows that the proposed stochastic approach is indeed relevant to situations where the variance increases along the loading path (this feature being frequently encountered in practice). Nevertheless, some cases where the variance of the experimental stress does not increase together with the principal stretch may be addressed by randomizing the model exponents tη k u np k"1 . While such a model could certainly be constructed by pursuing a similar informationtheoretic methodology, such a strategy would introduce a set of hyperparameters belonging to high-dimensional spaces -hence making the calibration step more intricate. Remark 3. A robust generator for the random variable U can be obtained by introducing a set of Gamma random variables tY i u np i"1 , with

Y i " Gpλ i , 1q , (25) 
and by sampling U through the component-wise mapping (see [START_REF] Devroye | Non-Uniform Random Variate Generation[END_REF])

U i :" Y i ˆ˜np ÿ k"1 Y k ¸´1 , 1 ď i ď n p ´1 . (26) 
In the case n p " 2, U becomes a scalar random variable U which follows a Beta distribution. The Matlab functions gamrnd and betarnd might be useful in order to generate samples of Gamma and Beta random variables.

Identification of the stochastic stored energy functions based on experimental data: methodological aspects

In this section, we propose a methodology aiming at the calibration of the model parameters, which are gathered in the vector-valued Lagrange multipliers λ " pλ 1 , . . . , λ np q 245 and ρ " pρ 1 , ρ 2 q, using standard experimental data.

More specifically, let tξ exp k u N k"1 and tς exp k u N k"1 denote the sets of values for the mean and standard deviation of the random stress at prescribed stretches tυ exp k u N k"1 . These sets define the experimental information based on which 250 the stochastic representation has to be identified. For ease of explanation, we consider below the case of first-order stored energy functions (m " n " 1; hence n p " 2). The approach can easily be generalized to arbitrary orders at the expense of notational complexity. Closed-form expres-255 sions that are relevant to this case are first derived in Section 3.2.1. The two sequential steps involved in the calibration methodology are then described in Sections 3.2.2 and 3.2.3.

3.2.1.

Closed-form relations for first-order stochastic stored 260 energy functions When m " n " 1, the random stored energy function writes

W prF sq " P 1 pυ η1 1 `υη1 2 `υη1 3 ´3q `P2 ppυ 1 υ 2 q η2 `pυ 1 υ 3 q η2 `pυ 2 υ 3 q η2 ´3q , (27) 
where the random variables P 1 and P 2 are given by

P 1 " 2µ η 2 1 U , P 2 " 2µ η 2 2 p1 ´U q , (28) 
with η 1 ě 2 and η 2 ě 3{2. It is recalled that µ follows a Gamma distribution with parameters pρ 1 , ρ 2 q, and that the random variable U follows a Dirichlet distribution with parameters pλ 1 , λ 2 q. According to Eq. ( 24), the associated random Piola-Kirchhoff stress Σ is given, for a uniaxial tensile (or compression) test, by

Σpυq "P 1 Ψ 1 pυq `P2 Ψ 2 pυq , (29) 
where the functions Ψ 1 and Ψ 2 are defined as

Ψ 1 pυq " η 1 ´υη1´1 ´υ´1´η1{2 ¯(30) and Ψ 2 pυq " ´η2 ´υ´η2´1 ´υ´1`η2{2 ¯. (31) 
Moreover, it is readily deduced from Eq. ( 29) that the variance of Σpυq is given by

VartΣpυqu "VartP 1 uΨ 2 1 pυq `VartP 2 uΨ 2 2 pυq `2CovtP 1 , P 2 uΨ 1 pυqΨ 2 pυq , (32) 
where VartP j u and CovtP 1 , P 2 u denote the variance of P j and the covariance between P 1 and P 2 , respectively. Next, and upon using the probabilistic properties of µ and U , it is found that:

VartP 1 u " 4ρ 1 ρ 2 2 η 4 1 λ 1 pλ 1 `λ2 `λ1 λ 2 `λ2 1 `ρ1 λ 2 q pλ 1 `λ2 q 2 p1 `λ1 `λ2 q , (33) 
VartP 2 u "

4ρ 1 ρ 2 2 η 4 2 λ 2 pλ 1 `λ2 `λ1 λ 2 `λ2 2 `ρ1 λ 1 q pλ 1 `λ2 q 2 p1 `λ1 `λ2 q , (34) 
and

CovtP 1 , P 2 u " 4ρ 1 ρ 2 2 η 2 1 η 2 2 λ 1 λ 2 pλ 1 `λ2 ´ρ1 q pλ 1 `λ2 q 2 p1 `λ1 `λ2 q . ( 35 
)
Substituting Eqs. ( 33), ( 34) and ( 35) into Eq. ( 32) allows us to estimate the variance of the stress Σpυq for given values of the hyperparameters (without resorting to Monte Carlo simulations).

Defining Step 1: calibration of the mean model

In the first step of the approach, which is formulated deterministically, the mean value p " pp 1 , p 2 q :" EtP u of the random variable P is identified, in a classical manner [START_REF] Ogden | Fitting hyperelastic models to experimental data[END_REF], by fitting the mean experimental response with an Ogden-type constitutive model of orders m " n " 1: pp, ηq :" argmin pa,bq P AˆB J pa, bq ,

where the cost function J is given by J pa, bq :"

N ÿ k"1 ´σpυ exp k ; a, bq ´ξexp k ¯2 , (37) 
and σpυ exp k ; a, bq is the predicted mean stress at the stretch υ exp k , obtained by substituting pa, bq for pp, ηq in Eq. ( 8) (with m " n " 1). The solution search is performed over the admissibles sets

A " pR ˚q2 (38) 
and

B " tη P R 2 , η 1 ě 2 , η 2 ě 3{2u (39) 
induced by Eqs. (9a)-(9c). This optimization problem can be solved by using a standard algorithm for constrained nonlinear problems.

Defining

Step 2: calibration of pρ 1 , ρ 2 q and pλ 1 , λ 2 q 270 Let us address the calibration of the remaining hyperparameters pρ 1 , ρ 2 q and pλ 1 , λ 2 q. From Eq. ( 28) and the statistical independence of µ and P j , we deduce that

p 1 " 2Etµu η 2 1 EtU u ( 40 
)
and

p 2 " 2Etµu η 2 2 p1 ´EtU uq . ( 41 
)
Since µ " Gpρ 1 , ρ 2 q and U " Dirpλ 1 , λ 2 q (note that the Dirichlet distribution corresponds to the Beta distribution for univariate random variables), one has

µ " ρ 1 ρ 2 (42) 
and

p 1 " 2µ η 2 1 λ 1 λ 1 `λ2 , p 2 " 2µ η 2 2 λ 2 λ 1 `λ2 . ( 43 
)
Solving for ρ 2 and λ 1 in Eq. ( 42) and in the first equation of Eq. ( 43), it is found that

ρ 2 " µ ρ 1 , (44) 
and

λ 1 " η 2 1 p 1 η 2 2 p 2 λ 2 " u 1 ´u λ 2 , ( 45 
)
where u :" EtU u and use was made of Eqs. ( 40)- [START_REF]Stochastic modeling of the ogden class of stored energy functions for hyperelastic materials: the compressible case[END_REF]. The idea in this final step is to define the parameters ρ 2 and λ 1 through Eqs. ( 44) and (45) (recall that tη k u 2 k"1 and tp k u 2 k"1 are known from Step 1), and to consider ρ 1 and λ 2 as the only hyperparameters to be calibrated. For this purpose, let us introduce the cost function K defined as Kpx, yq :"

N ÿ k"1 pς Σ pυ exp k ; x, yq ´ςexp k q 2 , ( 46 
)
where ς Σ pυ exp k ; x, yq is the standard deviation of the stress Σ at stretch υ exp k (which can be estimated by using the closed-form expressions provided at the end of section 3.2.1), with

µ " G ´x, µ x ¯, (47) 
and

U " Dir ˜η2 1 p 1 η 2 2 p 2 y, y ¸. (48) 
The hyperparameters ρ 1 and λ 2 are then defined as the solution of the minimization problem: pρ 1 , λ 2 q :" argmin px,yq P s0,`8rˆs1,`8r

Kpx, yq .

In this work, the optimization problems defined by Eq. ( 36) and Eq. ( 49) are solved by using the Matlab function fmincon (with an sqp algorithm) for a set of 1, 000 initial guesses determined by Latin Hypercube sampling. Here, the randomization of the starting points aims at reducing 275 in part the impact of the local optimization technique.

Discussion

A number of remarks regarding the calibration strategy are relevant at this point. First of all, the generalization of the calibration method to arbitrary orders shows that 280 the dimension of the problem related to the calibration of ρ 1 and λ np (which corresponds to λ 2 in the previous section) is, indeed, independent of the values of m and n. As a consequence, the methodology does not suffer from a curse of dimensionality and turns out to be very robust in 285 that sense.

Secondly, and while the set of model parameters can be shown to be unique when the constraint equations (given by Eqs. ( 14), ( 15), ( 20) and ( 21)) can be all estimated from experiments, considering the mean and the variability of the stress response does not allow the hyperparameters to be uniquely defined. In fact, it should be observed that the random stress involves nonlinear functions of µ and U . Therefore, a given variability in the random stress may equivalently be generated by different combinations of fluctuations in µ and U (see Eq. ( 32), ( 33), ( 34) and ( 35)). Note that issues related to (non)uniqueness are also encountered in a deterministic context (which is relevant to the identification of pη 1 , η 2 q and pp 1 , p 2 q within Step 1); see the discussion in [START_REF] Ogden | Fitting hyperelastic models to experimental data[END_REF] for instance.

Additionally, the choice of the hyperparameters to be identified within Step 2 turns out to be arbitrary, so that the associated optimization problem may alternatively be formulated by selecting any couple pρ k , λ q for 1 ď k ď 2 and 1 ď ď 2.

Finally, it should be noted that Eq. ( 45) can be used in order to investigate the sensitivity of the cost function K (see Eq. ( 46)) with respect to the second design variable. Indeed, the coefficient of variation δ U of U is given by

δ U " d λ 2 λ 1 pλ 1 `λ2 `1q , (50) 
with

λ 1 " u 1 ´u λ 2 . (51) 
When the mean value u (which can be estimated within

Step 1 by using Eq. ( 40) for example) takes small positive values (it is recalled that 0 ă U ă 1 almost surely), one has λ 1 ! λ 2 and U exhibits large statistical fluctuations. Similarly, it is seen that λ 1 " λ 2 when u is close to 1, in which case the fluctuations of U may become very small. In both cases, the coefficient of variation δ U quickly reaches a plateau as λ 2 becomes larger, and this behavior may decrease the robustness of the formulation within Step 2.

Applications to soft biological tissues

In this section, the stochastic stored energy functions (with m " n " 1) and the identification methodology are applied in order to model the variability exhibited by various soft biological tissues, including brain and liver tissues, as well as spinal cord white matter.

Brain tissue

In this first application, we address the modeling of the variability exhibited by brain tissues. Toward this aim, we consider the experimental results provided in [START_REF] Jin | A comprehensive experimental study on material properties of human brain tissue[END_REF]. The database is composed of 72 samples of brain tissues tested for strains ranging up to 50% and for strain rates 9 ε P t0.5, 5, 30u s ´1. Below, we address the calibration task in unconfined compression for low and medium strain rates. Experimental data are given for white and gray matter, and final data are expressed in terms of mean and standard deviation plots at increasing stretches.

The optimal mean parameters and exponents pp, ηq, computed within Step 1 (see section 3.2), are reported in Tables 1 and2 
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It is seen that the inequality constraints raised by the polyconvexity and coerciveness properties (see Eqs. (9a)-(9c)) are fulfilled, so that the mean model is admissible. Regarding the computation of the Lagrange multipliers ρ 1 and λ 2 , performed within the second step of the methodol-340 ogy, the algorithm is found to converge in a few iterations, regardless of the initial guess. The mean and variability of the random stress predicted by the calibrated stochastic model are quantitatively compared with experimental data in Figs. 1, 2, 3 and4, where the confidence interval 345 at 95% is also reported.

It can be observed that the first-order stochastic stored energy function can reproduce the experimental results very well for both gray and white matters at strain rates 9 ε P t0.5, 5, 30u s ´1. Black lines: experimental data extracted from [START_REF] Jin | A comprehensive experimental study on material properties of human brain tissue[END_REF]. Red lines: calibrated stochastic model. Yellow area: 95% confidence region.

Liver tissue

As a second example, we now turn to the modeling of bovine liver tissue. Specifically, the statistical results are extracted from [START_REF] Roan | The nonlinear material proper-515 ties of liver tissue determined from no-slip uniaxial compression experiments[END_REF], in which uniaxial compression tests were performed at a 0.01 s ´1 strain rate. It should be noted that the (deterministic) fitting in the above reference was obtained by using an exponential-type stored energy function. The calibrated parameters are listed in Table 3. A qualitative comparison between the statistical properties estimated by means of Monte Carlo simulations with the calibrated stochastic model and those computed from the experiments can be visualized in Fig. 5. Similarly to the case of brain tissues, it is seen that the probabilistic model and the identification strategy allows the data to be reproduced with a reasonably high level of accuracy, hence 365 showing the relevance of the overall methodology.

Spinal cord white matter

In this final application, we address the modeling of the variability exhibited by porcine spinal cord white matter under unconfined compression. Experimental data can be 370 found in [START_REF] Sparrey | Compression behavior of porcine spinal cord white matter[END_REF], where the mechanics of spinal cord injury and its finite element implementation are investigated. The database is composed of 104 independent samples extracted from Yorkshire pigs. Unconfined compression tests were performed for strains ranging up to 40% and for a strain 

Experimental data Stochastic model Confidence region

Figure 5: Graph of υ Þ Ñ Σpυq (kPa) and υ Þ Ñ ς Σ pυq (kPa) for liver tissues in uniaxial compression at 9 ε " 0.01 s ´1. Black lines: experimental data extracted from [START_REF]Strain rate-dependent viscohyperelastic constitutive modeling of bovine liver tissue[END_REF]. Red lines: calibrated stochastic model. Yellow area: 95% confidence region.

are listed in Table 4 and the predicted results are compared with the experimental ones in Figs. 6, 7 and 8.

A very good agreement is again observed between the predictions of the stochastic model and the experimental results.

Conclusion

In this paper, we have addressed the construction and inverse identification of stochastic constitutive models for hyperelastic biological tissues. The approach builds upon information theory, which essentially allows the constraints related to existence theorems in nonlinear elasticity to be taken into account. This ingredient is key to deriving a stochastic constitutive law that is both physically sound and mathematically consistent. The model can, indeed, be seen as a stochastic extension of the Ogden class of polyconvex stored energy functions, and relies on a low- 
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Figure 1 :

 1 Figure 1: Graph of υ Þ Ñ Σpυq (kPa) and υ Þ Ñ ς Σ pυq (kPa) for gray matter tissues in unconfined compression at 9ε " 0.5 s ´1. Black lines: experimental data extracted from[START_REF] Jin | A comprehensive experimental study on material properties of human brain tissue[END_REF]. Red lines: calibrated stochastic model. Yellow area: 95% confidence region.

Figure 2 :

 2 Figure2: Graph of υ Þ Ñ Σpυq (kPa) and υ Þ Ñ ς Σ pυq (kPa) for gray matter tissues in unconfined compression at 9 ε " 5 s ´1. Black lines: experimental data extracted from[START_REF] Jin | A comprehensive experimental study on material properties of human brain tissue[END_REF]. Red lines: calibrated stochastic model. Yellow area: 95% confidence region.

Figure 3 :

 3 Figure 3: Graph of υ Þ Ñ Σpυq (kPa) and υ Þ Ñ ς Σ pυq (kPa) for white matter tissues in unconfined compression at 9ε " 0.5 s ´1. Black lines: experimental data extracted from[START_REF] Jin | A comprehensive experimental study on material properties of human brain tissue[END_REF]. Red lines: calibrated stochastic model. Yellow area: 95% confidence region.

Figure 4 :

 4 Figure4: Graph of υ Þ Ñ Σpυq (kPa) and υ Þ Ñ ς Σ pυq (kPa) for white matter tissues in unconfined compression at 9 ε " 5 s ´1. Black lines: experimental data extracted from[START_REF] Jin | A comprehensive experimental study on material properties of human brain tissue[END_REF]. Red lines: calibrated stochastic model. Yellow area: 95% confidence region.

Figure 6 :

 6 Figure 6: Graph of υ Þ Ñ Σpυq (kPa) and υ Þ Ñ ς Σ pυq (kPa) for spinal cord white matter in unconfined compression at 9ε " 0.005 s ´1. Black lines: experimental data extracted from[START_REF] Sparrey | Compression behavior of porcine spinal cord white matter[END_REF]. Red lines: calibrated stochastic model. Yellow area: 95% confidence region.

Figure 7 :

 7 Figure 7: Graph of υ Þ Ñ Σpυq (kPa) and υ Þ Ñ ς Σ pυq (kPa) for spinal cord white matter in unconfined compression at 9ε " 0.05 s ´1. Black lines: experimental data extracted from[START_REF] Sparrey | Compression behavior of porcine spinal cord white matter[END_REF]. Red lines: calibrated stochastic model. Yellow area: 95% confidence region.

Figure 8 :

 8 Figure 8: Graph of υ Þ Ñ Σpυq (kPa) and υ Þ Ñ ς Σ pυq (kPa) for spinal cord white matter in unconfined compression at 9ε " 0.5 s ´1. Black lines: experimental data extracted from[START_REF] Sparrey | Compression behavior of porcine spinal cord white matter[END_REF]. Red lines: calibrated stochastic model. Yellow area: 95% confidence region.

  A, A and rAs. The table of main notations is reported below (here, stresses are defined for a uniaxial compression test).

			Σ	Random principal first Piola-Kirchoff stress
			Et¨u	Mathematical expectation
			}rAs}	Frobenius norm of rAs
		90	Finally, k 0 denotes a normalization constant, the value of
	w	Deterministic stored energy function
	W	Random stored energy function
	µ	Deterministic shear modulus
	µ	Random shear modulus
	σ	Principal first Piola-Kirchoff stress

Table 1 :

 1 for the compression tests at different strain rates. calibrated parameters (gray matter in compression).

	9 ε	0.5 s ´1	5 s ´1
	p 1 (kPa)	0.1467	0.1881
	p 2 (kPa)	0.0457	0.7823
	η 1	5.5945	4.5907
	η 2	1.991	1.5
	µ (kPa)	2.3863	2.3863
	λ 1	253.5375 22.461
	λ 2	9.9982	9.9732
	ρ 1	2.3679	6.6398
	ρ 2	1.0078	0.4311
	9 ε	0.5 s ´1	5 s ´1
	p 1 (kPa) 1.1131	1.4720
	p 2 (kPa) 1.1120	0.4897
	η 1	2	2.6185
	η 2	1.5	1.5
	µ (kPa)	3.4772	5.5973
	λ 1	3.2290 91.5357
	λ 2	1.8146	9.9919
	ρ 1	33.2721 6.6819
	ρ 2	0.1045	0.8377

Table 2 :

 2 calibrated parameters (white matter in compression).

Table 3 :

 3 calibrated parameters (liver tissues in compression).

	375
	rate 9 ε P t0.005, 0.05, 0.5u s ´1. The calibrated parameters

Table 4 :

 4 calibrated parameters (spinal white matter in compression).

	9 ε	0.005 s ´1	0.05 s ´1 0.5 s ´1
	p 1 (kPa) 1.0003 ˆ10 ´10	0.0102	0.0019
	p 2 (kPa)	0.0518	0.0060	0.0111
	η 1	2.1306	10.3693 11.4817
	η 2	4.5327	4.2260	5.3651
	µ (kPa)	0.5317	0.6048	0.2862
	λ 1	4.2683 ˆ10 ´9	10.2379	7.9405
	λ 2	9.9991	1	10
	ρ 1	25.3357	16.6017 23.7158
	ρ 2	0.0210	0.0364	0.0121

Appendix A.1. General derivations

Let A be a vector-valued random variable defined by a probability density function p A . We assume that the probability density function p A , defined from R n into R `, has a support which is denoted by S A (hence, p A paq " 0 for a R S A ), with S A Ď R n . It is assumed that some objective information is available and can be formalized in the form of a mathematical expectation:

where h is a given measurable mapping from R n into R N , with N ě 1, and f is a given vector in R N . The MaxEnt principle then states that the most objective model, given the above constraints, is given by [START_REF]Information theory and statistical mechanics i[END_REF][START_REF] Jaynes | Information theory and stastitical mechanics ii[END_REF][START_REF] Shannon | A mathematical theory of communication[END_REF] p A " argmax

where Stpu :" ´żR n ppAq log pppAqq da (A. [START_REF] Balzani | A polyconvex framework for soft biological tissues. adjustment 425 to experimental data[END_REF] is the so-called Shannon's entropy of p and C A is the set of all probability density functions, with support S A , satisfying the constraints defined by Eq. (A.1). In order to solve the above functional optimization problem, a Lagrange multiplier τ with values in an admissible set T Ă R N and associated with Eq. (A.1) is introduced. Proceeding with the calculus of variation on the associated Lagrangian (see e.g. [START_REF] Luenberger | Optimization by vector space methods[END_REF]), the solution is found to be defined as

where 1 S A is the indicator function of S A and k 0 is a normalization constant such that ş S A p A paq da " 1.
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Appendix A.2. Application 1: probabilistic modeling of the random shear modulus µ

It is assumed that the constraints related to the random shear modulus µ are given by Eqs. ( 15) and ( 16). Hence, one has

with n " 1 and N " 2 in this particular case. Let p1 τ1 q and τ 2 be two Lagrange multipliers associated with the two constraints. Using Eq. (A.4), it is found that the probability density function p µ writes p µ pµq " 1 R ˚pµq k 0 exp p´τ 2 µ ´p1 ´τ1 q logpµqq . (A.6) Upon using the changes of variables ρ 1 " τ 1 and ρ 2 " 1{τ 2 , it is seen that p µ can be written as

As a result, the random shear modulus µ is a Gamma random variable with parameters ρ 1 ą 0 and ρ 2 ą 0.

Appendix A.3. Application 2: probabilistic modeling of the 410 normalized random variable U

The probability density function p U of random variable U is constructed by considering that the only available information is given by Eqs. ( 20) and ( 21), with n " n p ´1, N " n p and

Let p1 ´λk q, for 1 ď k ď n p , be n p Lagrange multipliers associated with the above constraints. Applying the Max-Ent principle (see Eq. (A.4)), it is found that p U takes the form

where the support S is given by Eq. ( 19). After little algebra, it is found that p U reads as

(A.10) As a result, see e.g. [START_REF] Johnson | Continuous 470 multivariate distributions, volume 1, models and applications[END_REF], random variable U follows a Dirichlet distribution with parameters pλ 1 , λ 2 , . . . , λ np q. Note that the Dirichlet distribution corresponds to a classical Beta distribution for n p " 2.