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Blind Calibration of Mobile Sensors Using
Informed Nonnegative Matrix Factorization
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Abstract. In this paper, we assume several heterogeneous, geolocalized,
and time-stamped sensors to observe an area over time. We also assume
that most of them are uncalibrated and we propose a novel formulation
of the blind calibration problem as a Nonnegative Matrix Factorization
(NMF) with missing entries. Our proposed approach is generalizing our
previous informed and weighted NMF method, which is shown to be ac-
curate for the considered application and to outperform blind calibration
based on matrix completion and nonnegative least squares.

Keywords: Blind calibration, mobile sensor network, informed nonneg-
ative matrix factorization, missing values

1 Introduction

Monitoring a natural or an industrial area is usually obtained from automated
measurements provided by a set of sensors or from campaigns conducted by scien-
tists. In the first case, the collected data are very accurate but the high sensor cost
limits their number, hence a poor spatial sampling rate over the area. In the sec-
ond case, the geographical coverage is large but—as the cost of such campaigns
is high—sustaining them is difficult, hence a very low time sampling rate. Wire-
less Sensor Networks (WSN) were shown to solve the drawbacks of both above
strategies: sensors in WSN are usually cheap and mobile, thus allowing their
massive deployment for both an accurate time and spatial sampling. Moveover,
even if they are individually less accurate than high cost sensors, they globally
provide a similar accuracy while adding a finer spatial resolution [6]. However,
their calibration is an issue—as the sensors might not be accessible—and blind
sensor calibration techniques were proposed in, e.g., [1,4,9,11,12,14,16, 18] for
that purpose. These methods may be divided into two categories, depending if
the sensor network is mobile [9,12,14,18] or not [1,4,11,16]. Blind Mobile Sensor
Calibration (BMSC) techniques usually assume that sensors in the same vicin-
ity should provide the same data while Blind Fixed Sensor Calibration (BFSC)
methods need additional assumptions about the acquired signals in order to per-
form the calibration, namely the measurement matrix in a compressed sensing
framework [4,16] or the low-rank subspace in which the observed data lie [1,11].

In this paper, we investigate the BMSC problem as an informed matrix fac-
torization, since our formulation provides a specific structure of the matrix fac-
tors. Assuming the calibration parameters, the acquired signals, and the sensed



physical phenomenon to be nonnegative, we revisit blind calibration as an in-
formed Nonnegative Matrix Factorization (NMF) problem that we solve with an
extended version of our previous work [10].

The remainder of the paper is structured as follows. We introduce the con-
sidered problem in Section 2, for which we propose a solution in Section 3.
Section 4 investigates the experimental performance of our proposed method
while we conclude and discuss about future work in Section 5.

2 Problem Statement

In this paper, we assume that a geographical area is observed by m heteroge-
neous, geolocalized, time-stamped, and mobile sensors along time. Such a situa-
tion arises in crowdsensing for example [8], where volunteers share some sensed
information provided by their mobile device, e.g., their smartphone. The data
obtained with crowdsensing are usually irregularly sampled in both the time
and the space, hence the need of appropriate methods to process them. In this
paper, we focus on blindly calibrating the sensors, for which we first introduce
the definitions and assumptions used in this paper.

Definition 1 ([15]). A rendezvous is a temporal and spatial vicinity between
two sensors.

Sensors in rendezvous should acquire the same phenomenon, thus providing the
same data. Such rendezvous are classically used in BMSC. Most approaches—
e.g., [9,12]—consider that uncalibrated data are randomly distributed around the
calibrated ones, so that averaging the measurements in rendezvous performs the
calibration. However, the averaging-based calibration is not always applicable—
see [7, Fig. 2| for example. As an alternative, some authors consider rendezvous
between both calibrated and uncalibrated sensors [14] in order to locally perform
the calibration!. The newly calibrated sensors are then used to calibrate the still
uncalibrated ones in other rendezvous and so on. Such a multi-hop calibration
technique needs a dense network to be deployed, so that one can ensure each
sensor to be in rendezvous with a (newly) calibrated sensor [14]. However, multi-
hop calibration might suffer from propagating calibration estimation errors.

In this paper, we start from the same idea of rendezvous and the same hy-
pothesis of dense sensor network but we propose a matrix formulation allowing
to calibrate the whole sensor network without multiple hops. For that purpose,
we first introduce the following definition.

Definition 2. A scene S is a discretized area observed during a time interval
[t,t+ At). A spatial pizel has a size lower than Ad, where At and Ad define the
vicinity of the rendezvous.

A scene can thus be seen as a grid of locations where sensors go to and where
they sense a physical phenomenon. When two sensors share a common position

! Using calibrated and uncalibrated sensors has also been considered in BFSC [1,11].



in a scene, they are in rendezvous (Fig. 1). Setting At and Ad in order to
define a scene highly depends on the nature of the sensed phenomenon [15]. In
this paper, we assume to observe one scene’? S that we rearrange as a vector

Y 2 [y(1),...,y(n)]", where n is the number of space samples in S.
Sensors
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Fig. 1. From a scene S (with n = 16 spatial samples, m = 3 sensors and 2 rendezvous)
to the data matrix X (white pixels mean no observed value).

We now assume that m heterogeneous sensors are observing S (see Fig. 1).
Let (i, j) be the sample from Sensor j corresponding to the i-th sample in y.
Physically, (i, j) is a sensor-output voltage which is here assumed to be linked
to the sensed phenomenon y(i) according to an affine relationship, i.e.,

z(i, 7) ~= y(i) - o + B, (1)

where a; and f; are the unknown gain and offset associated with Sensor j,
respectively. These coefficients are assumed to be constant over the scene3.

We now define G and F', the n x 2 and 2 X m matrices which respectively

read
y(1) 1

N .. A | Q1 Qg s Qo
G= Do andF{&ﬁQ"'ﬁm} (2)
y(n) 1

If we assume each sensor to observe the whole scene S, the matrix form of Eq. (1)
then reads

X ~G-F, (3)
where X 2 [x(4, )] is a low-rank matrix, assumed to be well-conditioned. Solving

the blind calibration problem then consists of estimating F' from the observed
matrix X. In particular—considering the n x m weight matrix W defined as

(4)

Wi, j) 2 0 if x(i,j.) is not available,
’ p; otherwise,

2 The case of multiple scenes—out of the scope of this paper—is discussed in Section 5.
% Some authors, e.g., [9], consider the sensor responses to drift over time.



where p; is a weight coefficient associated with Sensor j—BMSC for Scene S
can be written as a weighted matrix factorization problem, i.e.,

in |[Wo(X-G-F)|} 5

olnin W e ( M (5)

where ||.|| ¢ is the Frobenius norm and where o denotes the Hadamard product.

In this paper, we assume X, G, and F' to be nonnegative, which is satisfied

in practice for several environmental sensors such as dust sensors [17]. We now
introduce our proposed weighted NMF method for estimating F'.

3 Proposed Blind Calibration Method

In this section, we introduce our proposed approach for BMSC. The problem (5)
may yield scale ambiguities in the columns of F, as for any source separation
problem. In order to solve them, we consider that one sensor—say Sensor m—is
calibrated and that its calibration parameters are respectively equal to*

Qm =1 and B, =0. (6)

i.e., if the value z;,, is available, we get x;, =~ y;. At this stage, it should be
noticed that the factorization problem in Eq. (5) is informed. Indeed, Egs. (2)
and (6) show the last column in both G and F to be known. Taking into account
such information should improve the factorization and fix the scale ambiguity
inherent to blind factorization.

Recently, informed NMF methods were proposed [5,10] and considered the
available information as a penalization term in the NMF optimization [5] or as
a specific parameterization which sets the known parameters [10]. As a penal-
ization term does not freeze the known entries of G—which do not depend on
the observed data—the latter strategy seems better suited for the considered
problem®. However, the parameterization in [10] only considers information on
F'. In this paper, we thus generalize [10] in order to apply it to the considered
BMSC problem.

Using the same formalism as in [10], we define 2F" and £2¢, the binary matri-
ces which inform the presence/absence of constraints in F' and G, respectively.
We then define ¢ and &, the sparse matrices of set entries in F' and G, re-
spectively. It should be noticed that

' =0FoF and &% =0%600G. (7)

Defining Fo AN oLy (respectively [ %) and AF (respectively
AG)—the matrix of free parameters in F' (respectively in G)—we extend [10]

* Actually, if no calibrated sensor is available, it is still possible to perform a relative
calibration, thus providing some consistency in the sensor responses [1,4,11].

® An alternative might consist of successively (i) updating F' or G with usual update
rules and (ii) replacing the known entries by their actual values at each iteration.
However, this strategy yielded a low performance in some preliminary tests.



and derive
F=0Fodf 1070 AF and G=0°00%+0%0AG. 8)

Solving Eq. (5) is then performed using an alternating technique, where we
successively aim to estimate F' and G using the parameterization in Eq. (8), i.e.,

min [|[Wo(X—-G-¢"~G-AF)||} and min [Wo(X—8% F—AG-F)|7. (9)
AF>0 AG>0
Using the same strategy as in [10]—the proof is omitted for space considera-

tions but it is based on a Majoration-Minimization optimization—we derive the
update rules which read, respectively:

- T o (X — (1. BF)+
F«dF + AF o2 o {G gf(w(f(G-GAi))) )} 7 .

. o S i !
and G « ¢ + AGo 2" o [(W(I/V(f(AZ : F;)F;F } "

The superscript * here denotes the function defined as (z)* £ max{e, z}, where
€ is a small user-defined threshold. It should be noticed that, contrary to [10],
we here consider a matrix factorization problem with missing entries. Let us
remind that calibration can only be done if the sensor network is dense enough,
as assumed in Section 2.

Lastly, in order to apply informed NMF to the considered problem, we must
initialize G and F', which is known to be tricky. Classical strategies consist of a
random initialization while some authors propose an initialization provided by
experts [10], the output of another factorization method [3], or a physical model
[13]. In this paper, we take advantage of the fact that X is low rank and that some
entries of X are equal some of G according to Eq. (6). Our proposed strategy
to initialize NMF then consists of applying a matrix completion technique [2]
to X. The completed matrix is denoted X hereafter. By construction, the last
column of X is an estimation of the first column of G. Estimating F' can then
be obtained from X and G using nonnegative least-squares. In this paper, we
study the enhancement provided by our proposed informed NMF with respect
to the matrix-completion-based calibration, that we use for initializing NMF.

4 Experimental Validation

In this section, we aim to investigate the enhancement provided by our proposed
informed NMF method for BMSC. For that purpose, we simulate a crowdsensing-
like particulate matter sensing during a time interval [¢, ¢ + At), which satisfies
the assumptions in Section 2. The scene is a 10 x 10 discretized area (the length
of y is thus equal to n = 100) which is observed by m = 26 sensors, i.e., m — 1
uncalibrated and mobile dust sensors [17] connected to mobile devices and one

calibrated, high quality, and mobile sensor®.

6 Actually, we get k fixed, calibrated, and accurate sensors whose obtained values are
modeled as those of the m-th sensor in the BMSC problem.



The observed concentrations in y range between 0 and 0.5 mg/m?, for which
the sensor response is assumed to be affine [17]. For each uncalibrated sen-
sor, each observed data point represents a nonnegative voltage linked to the
corresponding ground truth point in y according to Eq. (1). In particular, fol-
lowing the datasheet in [17], the gain and offset coefficients o and f3; are ran-
domly set according to a Gaussian distribution centered around 5 V/(mg/m?)
and 0.9 V, respectively, and then projected onto their respective interval of ad-
missible values—provided by the manufacturer [17]—.e., 3.5 < a; < 6.5 and
0<pB;<1.5,Vj=1,...,m—1. We then get a 26 x 100 theoretical observation
matrix for which we randomly keep k+1 samples in X only, where k (respectively,
1) is the number of calibrated (respectively, uncalibrated) sensor samples—with
k < l—hence providing the irregular spatial sampling over the scene. Lastly,
Gaussian noise realizations may be added to the observed uncalibrated sensor
data and the weight coefficients p; defined in Eq. (4) are set to

pi=1V=1,...,m—1, and p, =L (12)

In this section, we aim to explore the influence of the number of rendezvous
between calibrated and uncalibrated sensors, the number of missing entries in
X and the influence of the input SNR to the BMSC performance. For each test
condition—i.e., one number of rendezvous, one proportion of missing entries, or
one input SNR—25 simulations are performed. In each run, we randomly set the
positions of the samples in X in the three experiments and we generate different
noise realizations in the last one. The number k of calibrated sensor values in
the m-th column of X is set to & = 4 in all the tests. Except when we make
these values vary, the proportion of uncalibrated sensors to have rendezvous with
calibrated ones, and the proportion of missing entries in X are set to 30% and
90%, respectively.
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Fig. 2. Performance of the BMSC method vs (left) the proportion of missing values,
(center) the proportion of rendezvous between calibrated and uncalibrated sensors, and
(right) the input SNR.

Figure 2 shows the Root-Mean Square Error (RMSE) achieved by our pro-
posed method in the above test configurations. The RMSEs are computed over



the first line” of F, for the uncalibrated sensors only. Dark gray (respectively,
light gray) areas show the RMSE envelope while the solid lines (respectively,
dashed lines) represent the median RMSE obtained after 10 NMF iterations
(respectively, at initialization). On the left plot, we first investigate the effect
of the proportion of missing entries—ranging from 20 to 95%—on BMSC in a
noiseless configuration. Our proposed method is robust to the number of missing
entries (with consistent RMSEs below 10710 until 90% of missing values) and
outperforms the matrix-completion-based initialization (with a median RMSE
around 3). When 5% of the data in X are available, the dense network assump-
tion is not satisfied anymore and the performance drastically decreases.

The central plot shows the influence of the number of uncalibrated sensors to
have rendezvous with calibrated ones. The achieved performance is quite similar
to the previous one, except that the upper side of the dark gray envelope is much
higher than the median RMSE when the rendezvous proportion is equal to 10%.
Please note even when the calibration error is high, rows of F' are correctly
estimated, up to a scale coefficient which cannot be handled anymore.

The right plot shows the influence of the input SNR on the BMSC perfor-
mance. In addition to the noiseless case, we make vary the SNR from 11 to 70 dB.
The calibration accuracy decreases with the input SNR and is quite similar to
the one obtained with matrix completion for the lowest tested input SNRs.

5 Conclusion and Discussion

In this paper, we revisited blind mobile sensor calibration as a matrix factor-
ization problem. Assuming any of the matrices in the factorization to be non-
negative, we generalized our previous informed NMF [10] for the considered
application. The approach was shown to be robust to the number of missing
entries and to the number of rendezvous between calibrated and uncalibrated
sensors. However, some assumptions—e.g., the dense sensor network over the
considered zone, or the fact that X is well-conditioned—might seem restrictive.
It should be noticed that the approach proposed in this paper can be extended
to the case of multiple scenes, by stacking all the observed—and sufficiently
different—matrices in one unique well-conditioned matrix, so that we multiply
the number of both the known sensors and the rendezvous. In that case, it is
more likely that the calibration assumptions will be satisfied.

In future work, we aim to explore several directions. As mentioned above,
joint-factorization will be investigated. Moreover, the NMF method proposed in
this paper is an extension of the Lee and Seung multiplicative update algorithm,
which is known to be slow to converge when the size of the data matrix is
large. Extending recent and fast NMF methods to our informed framework will
be considered. We will also explore the calibration enhancement provided by
some spatial information about the scene S and the effects of the scene spatial
discretization on the calibration performance.

” RMSEs computed over the second line of F—not shown for space consideration—are
similar to those plotted in Fig. 2.
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