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Abstrat. In this paper, we assume several heterogeneous, geoloalized,

and time-stamped sensors to observe an area over time. We also assume

that most of them are unalibrated and we propose a novel formulation

of the blind alibration problem as a Nonnegative Matrix Fatorization

(NMF) with missing entries. Our proposed approah is generalizing our

previous informed and weighted NMF method, whih is shown to be a-

urate for the onsidered appliation and to outperform blind alibration

based on matrix ompletion and nonnegative least squares.

Keywords: Blind alibration, mobile sensor network, informed nonneg-

ative matrix fatorization, missing values

1 Introdution

Monitoring a natural or an industrial area is usually obtained from automated

measurements provided by a set of sensors or from ampaigns onduted by sien-

tists. In the �rst ase, the olleted data are very aurate but the high sensor ost

limits their number, hene a poor spatial sampling rate over the area. In the se-

ond ase, the geographial overage is large but�as the ost of suh ampaigns

is high�sustaining them is di�ult, hene a very low time sampling rate. Wire-

less Sensor Networks (WSN) were shown to solve the drawbaks of both above

strategies: sensors in WSN are usually heap and mobile, thus allowing their

massive deployment for both an aurate time and spatial sampling. Moveover,

even if they are individually less aurate than high ost sensors, they globally

provide a similar auray while adding a �ner spatial resolution [6℄. However,

their alibration is an issue�as the sensors might not be aessible�and blind

sensor alibration tehniques were proposed in, e.g., [1, 4, 9, 11, 12, 14, 16, 18℄ for

that purpose. These methods may be divided into two ategories, depending if

the sensor network is mobile [9,12,14,18℄ or not [1,4,11,16℄. Blind Mobile Sensor

Calibration (BMSC) tehniques usually assume that sensors in the same viin-

ity should provide the same data while Blind Fixed Sensor Calibration (BFSC)

methods need additional assumptions about the aquired signals in order to per-

form the alibration, namely the measurement matrix in a ompressed sensing

framework [4,16℄ or the low-rank subspae in whih the observed data lie [1,11℄.

In this paper, we investigate the BMSC problem as an informed matrix fa-

torization, sine our formulation provides a spei� struture of the matrix fa-

tors. Assuming the alibration parameters, the aquired signals, and the sensed



physial phenomenon to be nonnegative, we revisit blind alibration as an in-

formed Nonnegative Matrix Fatorization (NMF) problem that we solve with an

extended version of our previous work [10℄.

The remainder of the paper is strutured as follows. We introdue the on-

sidered problem in Setion 2, for whih we propose a solution in Setion 3.

Setion 4 investigates the experimental performane of our proposed method

while we onlude and disuss about future work in Setion 5.

2 Problem Statement

In this paper, we assume that a geographial area is observed by m heteroge-

neous, geoloalized, time-stamped, and mobile sensors along time. Suh a situa-

tion arises in rowdsensing for example [8℄, where volunteers share some sensed

information provided by their mobile devie, e.g., their smartphone. The data

obtained with rowdsensing are usually irregularly sampled in both the time

and the spae, hene the need of appropriate methods to proess them. In this

paper, we fous on blindly alibrating the sensors, for whih we �rst introdue

the de�nitions and assumptions used in this paper.

De�nition 1 ([15℄). A rendezvous is a temporal and spatial viinity between

two sensors.

Sensors in rendezvous should aquire the same phenomenon, thus providing the

same data. Suh rendezvous are lassially used in BMSC. Most approahes�

e.g., [9,12℄�onsider that unalibrated data are randomly distributed around the

alibrated ones, so that averaging the measurements in rendezvous performs the

alibration. However, the averaging-based alibration is not always appliable�

see [7, Fig. 2℄ for example. As an alternative, some authors onsider rendezvous

between both alibrated and unalibrated sensors [14℄ in order to loally perform

the alibration

1

. The newly alibrated sensors are then used to alibrate the still

unalibrated ones in other rendezvous and so on. Suh a multi-hop alibration

tehnique needs a dense network to be deployed, so that one an ensure eah

sensor to be in rendezvous with a (newly) alibrated sensor [14℄. However, multi-

hop alibration might su�er from propagating alibration estimation errors.

In this paper, we start from the same idea of rendezvous and the same hy-

pothesis of dense sensor network but we propose a matrix formulation allowing

to alibrate the whole sensor network without multiple hops. For that purpose,

we �rst introdue the following de�nition.

De�nition 2. A sene S is a disretized area observed during a time interval

[t, t+∆t). A spatial pixel has a size lower than ∆d, where ∆t and ∆d de�ne the

viinity of the rendezvous.

A sene an thus be seen as a grid of loations where sensors go to and where

they sense a physial phenomenon. When two sensors share a ommon position

1

Using alibrated and unalibrated sensors has also been onsidered in BFSC [1,11℄.



in a sene, they are in rendezvous (Fig. 1). Setting ∆t and ∆d in order to

de�ne a sene highly depends on the nature of the sensed phenomenon [15℄. In

this paper, we assume to observe one sene

2 S that we rearrange as a vetor

y , [y(1), . . . , y(n)]T , where n is the number of spae samples in S.

Sensor 1

Sensor 2

Sensor 3

Rendezvous

Sene S

staking

Column

Observed matrix X

Sensors

Spatial

samples

Fig. 1. From a sene S (with n = 16 spatial samples, m = 3 sensors and 2 rendezvous)

to the data matrix X (white pixels mean no observed value).

We now assume that m heterogeneous sensors are observing S (see Fig. 1).

Let x(i, j) be the sample from Sensor j orresponding to the i-th sample in y.

Physially, x(i, j) is a sensor-output voltage whih is here assumed to be linked

to the sensed phenomenon y(i) aording to an a�ne relationship, i.e.,

x(i, j) ≃ y(i) · αj + βj , (1)

where αj and βj are the unknown gain and o�set assoiated with Sensor j,

respetively. These oe�ients are assumed to be onstant over the sene

3

.

We now de�ne G and F , the n × 2 and 2 ×m matries whih respetively

read

G ,







y(1) 1
.

.

.

.

.

.

y(n) 1






and F ,

[

α1 α2 · · · αm

β1 β2 · · · βm

]

. (2)

If we assume eah sensor to observe the whole sene S, the matrix form of Eq. (1)

then reads

X ≃ G · F, (3)

whereX , [x(i, j)] is a low-rank matrix, assumed to be well-onditioned. Solving

the blind alibration problem then onsists of estimating F from the observed

matrix X . In partiular�onsidering the n×m weight matrix W de�ned as

W (i, j) ,

{

0 if x(i, j) is not available,
ρj otherwise,

(4)

2

The ase of multiple senes�out of the sope of this paper�is disussed in Setion 5.

3

Some authors, e.g., [9℄, onsider the sensor responses to drift over time.



where ρj is a weight oe�ient assoiated with Sensor j�BMSC for Sene S
an be written as a weighted matrix fatorization problem, i.e.,

min
G≥0,F≥0

‖W ◦ (X −G · F )‖2f , (5)

where ‖.‖f is the Frobenius norm and where ◦ denotes the Hadamard produt.

In this paper, we assume X , G, and F to be nonnegative, whih is satis�ed

in pratie for several environmental sensors suh as dust sensors [17℄. We now

introdue our proposed weighted NMF method for estimating F .

3 Proposed Blind Calibration Method

In this setion, we introdue our proposed approah for BMSC. The problem (5)

may yield sale ambiguities in the olumns of F , as for any soure separation

problem. In order to solve them, we onsider that one sensor�say Sensor m�is

alibrated and that its alibration parameters are respetively equal to

4

αm = 1 and βm = 0. (6)

i.e., if the value xim is available, we get xim ≃ yi. At this stage, it should be

notied that the fatorization problem in Eq. (5) is informed. Indeed, Eqs. (2)

and (6) show the last olumn in both G and F to be known. Taking into aount

suh information should improve the fatorization and �x the sale ambiguity

inherent to blind fatorization.

Reently, informed NMF methods were proposed [5, 10℄ and onsidered the

available information as a penalization term in the NMF optimization [5℄ or as

a spei� parameterization whih sets the known parameters [10℄. As a penal-

ization term does not freeze the known entries of G�whih do not depend on

the observed data�the latter strategy seems better suited for the onsidered

problem

5

. However, the parameterization in [10℄ only onsiders information on

F . In this paper, we thus generalize [10℄ in order to apply it to the onsidered

BMSC problem.

Using the same formalism as in [10℄, we de�ne ΩF
and ΩG

, the binary matri-

es whih inform the presene/absene of onstraints in F and G, respetively.

We then de�ne ΦF
and ΦG

, the sparse matries of set entries in F and G, re-

spetively. It should be notied that

ΦF = ΩF ◦ F and ΦG = ΩG ◦G. (7)

De�ning Ω
F

, 1 − ΩF
(respetively Ω

G
, 1 − ΩG

) and ∆F (respetively

∆G)�the matrix of free parameters in F (respetively in G)�we extend [10℄

4

Atually, if no alibrated sensor is available, it is still possible to perform a relative

alibration, thus providing some onsisteny in the sensor responses [1, 4, 11℄.

5

An alternative might onsist of suessively (i) updating F or G with usual update

rules and (ii) replaing the known entries by their atual values at eah iteration.

However, this strategy yielded a low performane in some preliminary tests.



and derive

F = ΩF ◦ ΦF +Ω
F
◦∆F and G = ΩG ◦ ΦG +Ω

G
◦∆G. (8)

Solving Eq. (5) is then performed using an alternating tehnique, where we

suessively aim to estimate F and G using the parameterization in Eq. (8), i.e.,

min
∆F≥0

‖W ◦(X−G·ΦF−G·∆F )‖2f and min
∆G≥0

‖W ◦(X−ΦG·F−∆G·F )‖2f . (9)

Using the same strategy as in [10℄�the proof is omitted for spae onsidera-

tions but it is based on a Majoration-Minimization optimization�we derive the

update rules whih read, respetively:

F ← ΦF +∆F ◦Ω
F
◦

[

GT (W ◦ (X −G · ΦF )+)

GT (W ◦ (G ·∆F ))

]

, (10)

and G← ΦG +∆G ◦Ω
G
◦

[

(W ◦ (X − ΦG · F )+)FT

(W ◦ (∆G · F ))FT

]

. (11)

The supersript

+
here denotes the funtion de�ned as (z)+ , max{ǫ, z}, where

ǫ is a small user-de�ned threshold. It should be notied that, ontrary to [10℄,

we here onsider a matrix fatorization problem with missing entries. Let us

remind that alibration an only be done if the sensor network is dense enough,

as assumed in Setion 2.

Lastly, in order to apply informed NMF to the onsidered problem, we must

initialize G and F , whih is known to be triky. Classial strategies onsist of a

random initialization while some authors propose an initialization provided by

experts [10℄, the output of another fatorization method [3℄, or a physial model

[13℄. In this paper, we take advantage of the fat thatX is low rank and that some

entries of X are equal some of G aording to Eq. (6). Our proposed strategy

to initialize NMF then onsists of applying a matrix ompletion tehnique [2℄

to X . The ompleted matrix is denoted X̃ hereafter. By onstrution, the last

olumn of X̃ is an estimation of the �rst olumn of G. Estimating F an then

be obtained from X̃ and G using nonnegative least-squares. In this paper, we

study the enhanement provided by our proposed informed NMF with respet

to the matrix-ompletion-based alibration, that we use for initializing NMF.

4 Experimental Validation

In this setion, we aim to investigate the enhanement provided by our proposed

informed NMFmethod for BMSC. For that purpose, we simulate a rowdsensing-

like partiulate matter sensing during a time interval [t, t+∆t), whih satis�es

the assumptions in Setion 2. The sene is a 10× 10 disretized area (the length

of y is thus equal to n = 100) whih is observed by m = 26 sensors, i.e., m− 1
unalibrated and mobile dust sensors [17℄ onneted to mobile devies and one

alibrated, high quality, and mobile sensor

6

.

6

Atually, we get k �xed, alibrated, and aurate sensors whose obtained values are

modeled as those of the m-th sensor in the BMSC problem.



The observed onentrations in y range between 0 and 0.5 mg/m

3
, for whih

the sensor response is assumed to be a�ne [17℄. For eah unalibrated sen-

sor, eah observed data point represents a nonnegative voltage linked to the

orresponding ground truth point in y aording to Eq. (1). In partiular, fol-

lowing the datasheet in [17℄, the gain and o�set oe�ients αj and βj are ran-

domly set aording to a Gaussian distribution entered around 5 V/(mg/m

3
)

and 0.9 V, respetively, and then projeted onto their respetive interval of ad-

missible values�provided by the manufaturer [17℄�i.e., 3.5 < αj < 6.5 and

0 < βj < 1.5, ∀j = 1, . . . ,m− 1. We then get a 26× 100 theoretial observation
matrix for whih we randomly keep k+l samples inX only, where k (respetively,

l) is the number of alibrated (respetively, unalibrated) sensor samples�with

k ≪ l�hene providing the irregular spatial sampling over the sene. Lastly,

Gaussian noise realizations may be added to the observed unalibrated sensor

data and the weight oe�ients ρj de�ned in Eq. (4) are set to

ρj = 1, ∀j = 1, . . . ,m− 1, and ρm = l. (12)

In this setion, we aim to explore the in�uene of the number of rendezvous

between alibrated and unalibrated sensors, the number of missing entries in

X and the in�uene of the input SNR to the BMSC performane. For eah test

ondition�i.e., one number of rendezvous, one proportion of missing entries, or

one input SNR�25 simulations are performed. In eah run, we randomly set the

positions of the samples in X in the three experiments and we generate di�erent

noise realizations in the last one. The number k of alibrated sensor values in

the m-th olumn of X is set to k = 4 in all the tests. Exept when we make

these values vary, the proportion of unalibrated sensors to have rendezvous with

alibrated ones, and the proportion of missing entries in X are set to 30% and

90%, respetively.
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Fig. 2. Performane of the BMSC method vs (left) the proportion of missing values,

(enter) the proportion of rendezvous between alibrated and unalibrated sensors, and

(right) the input SNR.

Figure 2 shows the Root-Mean Square Error (RMSE) ahieved by our pro-

posed method in the above test on�gurations. The RMSEs are omputed over



the �rst line

7

of F , for the unalibrated sensors only. Dark gray (respetively,

light gray) areas show the RMSE envelope while the solid lines (respetively,

dashed lines) represent the median RMSE obtained after 106 NMF iterations

(respetively, at initialization). On the left plot, we �rst investigate the e�et

of the proportion of missing entries�ranging from 20 to 95%�on BMSC in a

noiseless on�guration. Our proposed method is robust to the number of missing

entries (with onsistent RMSEs below 10−10
until 90% of missing values) and

outperforms the matrix-ompletion-based initialization (with a median RMSE

around 3). When 5% of the data in X are available, the dense network assump-

tion is not satis�ed anymore and the performane drastially dereases.

The entral plot shows the in�uene of the number of unalibrated sensors to

have rendezvous with alibrated ones. The ahieved performane is quite similar

to the previous one, exept that the upper side of the dark gray envelope is muh

higher than the median RMSE when the rendezvous proportion is equal to 10%.

Please note even when the alibration error is high, rows of F are orretly

estimated, up to a sale oe�ient whih annot be handled anymore.

The right plot shows the in�uene of the input SNR on the BMSC perfor-

mane. In addition to the noiseless ase, we make vary the SNR from 11 to 70 dB.

The alibration auray dereases with the input SNR and is quite similar to

the one obtained with matrix ompletion for the lowest tested input SNRs.

5 Conlusion and Disussion

In this paper, we revisited blind mobile sensor alibration as a matrix fator-

ization problem. Assuming any of the matries in the fatorization to be non-

negative, we generalized our previous informed NMF [10℄ for the onsidered

appliation. The approah was shown to be robust to the number of missing

entries and to the number of rendezvous between alibrated and unalibrated

sensors. However, some assumptions�e.g., the dense sensor network over the

onsidered zone, or the fat that X is well-onditioned�might seem restritive.

It should be notied that the approah proposed in this paper an be extended

to the ase of multiple senes, by staking all the observed�and su�iently

di�erent�matries in one unique well-onditioned matrix, so that we multiply

the number of both the known sensors and the rendezvous. In that ase, it is

more likely that the alibration assumptions will be satis�ed.

In future work, we aim to explore several diretions. As mentioned above,

joint-fatorization will be investigated. Moreover, the NMF method proposed in

this paper is an extension of the Lee and Seung multipliative update algorithm,

whih is known to be slow to onverge when the size of the data matrix is

large. Extending reent and fast NMF methods to our informed framework will

be onsidered. We will also explore the alibration enhanement provided by

some spatial information about the sene S and the e�ets of the sene spatial

disretization on the alibration performane.

7

RMSEs omputed over the seond line of F�not shown for spae onsideration�are

similar to those plotted in Fig. 2.
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