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Abstra
t. In this paper, we assume several heterogeneous, geolo
alized,

and time-stamped sensors to observe an area over time. We also assume

that most of them are un
alibrated and we propose a novel formulation

of the blind 
alibration problem as a Nonnegative Matrix Fa
torization

(NMF) with missing entries. Our proposed approa
h is generalizing our

previous informed and weighted NMF method, whi
h is shown to be a
-


urate for the 
onsidered appli
ation and to outperform blind 
alibration

based on matrix 
ompletion and nonnegative least squares.

Keywords: Blind 
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1 Introdu
tion

Monitoring a natural or an industrial area is usually obtained from automated

measurements provided by a set of sensors or from 
ampaigns 
ondu
ted by s
ien-

tists. In the �rst 
ase, the 
olle
ted data are very a

urate but the high sensor 
ost

limits their number, hen
e a poor spatial sampling rate over the area. In the se
-

ond 
ase, the geographi
al 
overage is large but�as the 
ost of su
h 
ampaigns

is high�sustaining them is di�
ult, hen
e a very low time sampling rate. Wire-

less Sensor Networks (WSN) were shown to solve the drawba
ks of both above

strategies: sensors in WSN are usually 
heap and mobile, thus allowing their

massive deployment for both an a

urate time and spatial sampling. Moveover,

even if they are individually less a

urate than high 
ost sensors, they globally

provide a similar a

ura
y while adding a �ner spatial resolution [6℄. However,

their 
alibration is an issue�as the sensors might not be a

essible�and blind

sensor 
alibration te
hniques were proposed in, e.g., [1, 4, 9, 11, 12, 14, 16, 18℄ for

that purpose. These methods may be divided into two 
ategories, depending if

the sensor network is mobile [9,12,14,18℄ or not [1,4,11,16℄. Blind Mobile Sensor

Calibration (BMSC) te
hniques usually assume that sensors in the same vi
in-

ity should provide the same data while Blind Fixed Sensor Calibration (BFSC)

methods need additional assumptions about the a
quired signals in order to per-

form the 
alibration, namely the measurement matrix in a 
ompressed sensing

framework [4,16℄ or the low-rank subspa
e in whi
h the observed data lie [1,11℄.

In this paper, we investigate the BMSC problem as an informed matrix fa
-

torization, sin
e our formulation provides a spe
i�
 stru
ture of the matrix fa
-

tors. Assuming the 
alibration parameters, the a
quired signals, and the sensed



physi
al phenomenon to be nonnegative, we revisit blind 
alibration as an in-

formed Nonnegative Matrix Fa
torization (NMF) problem that we solve with an

extended version of our previous work [10℄.

The remainder of the paper is stru
tured as follows. We introdu
e the 
on-

sidered problem in Se
tion 2, for whi
h we propose a solution in Se
tion 3.

Se
tion 4 investigates the experimental performan
e of our proposed method

while we 
on
lude and dis
uss about future work in Se
tion 5.

2 Problem Statement

In this paper, we assume that a geographi
al area is observed by m heteroge-

neous, geolo
alized, time-stamped, and mobile sensors along time. Su
h a situa-

tion arises in 
rowdsensing for example [8℄, where volunteers share some sensed

information provided by their mobile devi
e, e.g., their smartphone. The data

obtained with 
rowdsensing are usually irregularly sampled in both the time

and the spa
e, hen
e the need of appropriate methods to pro
ess them. In this

paper, we fo
us on blindly 
alibrating the sensors, for whi
h we �rst introdu
e

the de�nitions and assumptions used in this paper.

De�nition 1 ([15℄). A rendezvous is a temporal and spatial vi
inity between

two sensors.

Sensors in rendezvous should a
quire the same phenomenon, thus providing the

same data. Su
h rendezvous are 
lassi
ally used in BMSC. Most approa
hes�

e.g., [9,12℄�
onsider that un
alibrated data are randomly distributed around the


alibrated ones, so that averaging the measurements in rendezvous performs the


alibration. However, the averaging-based 
alibration is not always appli
able�

see [7, Fig. 2℄ for example. As an alternative, some authors 
onsider rendezvous

between both 
alibrated and un
alibrated sensors [14℄ in order to lo
ally perform

the 
alibration

1

. The newly 
alibrated sensors are then used to 
alibrate the still

un
alibrated ones in other rendezvous and so on. Su
h a multi-hop 
alibration

te
hnique needs a dense network to be deployed, so that one 
an ensure ea
h

sensor to be in rendezvous with a (newly) 
alibrated sensor [14℄. However, multi-

hop 
alibration might su�er from propagating 
alibration estimation errors.

In this paper, we start from the same idea of rendezvous and the same hy-

pothesis of dense sensor network but we propose a matrix formulation allowing

to 
alibrate the whole sensor network without multiple hops. For that purpose,

we �rst introdu
e the following de�nition.

De�nition 2. A s
ene S is a dis
retized area observed during a time interval

[t, t+∆t). A spatial pixel has a size lower than ∆d, where ∆t and ∆d de�ne the

vi
inity of the rendezvous.

A s
ene 
an thus be seen as a grid of lo
ations where sensors go to and where

they sense a physi
al phenomenon. When two sensors share a 
ommon position

1

Using 
alibrated and un
alibrated sensors has also been 
onsidered in BFSC [1,11℄.



in a s
ene, they are in rendezvous (Fig. 1). Setting ∆t and ∆d in order to

de�ne a s
ene highly depends on the nature of the sensed phenomenon [15℄. In

this paper, we assume to observe one s
ene

2 S that we rearrange as a ve
tor

y , [y(1), . . . , y(n)]T , where n is the number of spa
e samples in S.

Sensor 1

Sensor 2

Sensor 3

Rendezvous

S
ene S

sta
king

Column

Observed matrix X

Sensors

Spatial

samples

Fig. 1. From a s
ene S (with n = 16 spatial samples, m = 3 sensors and 2 rendezvous)

to the data matrix X (white pixels mean no observed value).

We now assume that m heterogeneous sensors are observing S (see Fig. 1).

Let x(i, j) be the sample from Sensor j 
orresponding to the i-th sample in y.

Physi
ally, x(i, j) is a sensor-output voltage whi
h is here assumed to be linked

to the sensed phenomenon y(i) a

ording to an a�ne relationship, i.e.,

x(i, j) ≃ y(i) · αj + βj , (1)

where αj and βj are the unknown gain and o�set asso
iated with Sensor j,

respe
tively. These 
oe�
ients are assumed to be 
onstant over the s
ene

3

.

We now de�ne G and F , the n × 2 and 2 ×m matri
es whi
h respe
tively

read

G ,







y(1) 1
.

.

.

.

.

.

y(n) 1






and F ,

[

α1 α2 · · · αm

β1 β2 · · · βm

]

. (2)

If we assume ea
h sensor to observe the whole s
ene S, the matrix form of Eq. (1)

then reads

X ≃ G · F, (3)

whereX , [x(i, j)] is a low-rank matrix, assumed to be well-
onditioned. Solving

the blind 
alibration problem then 
onsists of estimating F from the observed

matrix X . In parti
ular�
onsidering the n×m weight matrix W de�ned as

W (i, j) ,

{

0 if x(i, j) is not available,
ρj otherwise,

(4)

2

The 
ase of multiple s
enes�out of the s
ope of this paper�is dis
ussed in Se
tion 5.

3

Some authors, e.g., [9℄, 
onsider the sensor responses to drift over time.



where ρj is a weight 
oe�
ient asso
iated with Sensor j�BMSC for S
ene S

an be written as a weighted matrix fa
torization problem, i.e.,

min
G≥0,F≥0

‖W ◦ (X −G · F )‖2f , (5)

where ‖.‖f is the Frobenius norm and where ◦ denotes the Hadamard produ
t.

In this paper, we assume X , G, and F to be nonnegative, whi
h is satis�ed

in pra
ti
e for several environmental sensors su
h as dust sensors [17℄. We now

introdu
e our proposed weighted NMF method for estimating F .

3 Proposed Blind Calibration Method

In this se
tion, we introdu
e our proposed approa
h for BMSC. The problem (5)

may yield s
ale ambiguities in the 
olumns of F , as for any sour
e separation

problem. In order to solve them, we 
onsider that one sensor�say Sensor m�is


alibrated and that its 
alibration parameters are respe
tively equal to

4

αm = 1 and βm = 0. (6)

i.e., if the value xim is available, we get xim ≃ yi. At this stage, it should be

noti
ed that the fa
torization problem in Eq. (5) is informed. Indeed, Eqs. (2)

and (6) show the last 
olumn in both G and F to be known. Taking into a

ount

su
h information should improve the fa
torization and �x the s
ale ambiguity

inherent to blind fa
torization.

Re
ently, informed NMF methods were proposed [5, 10℄ and 
onsidered the

available information as a penalization term in the NMF optimization [5℄ or as

a spe
i�
 parameterization whi
h sets the known parameters [10℄. As a penal-

ization term does not freeze the known entries of G�whi
h do not depend on

the observed data�the latter strategy seems better suited for the 
onsidered

problem

5

. However, the parameterization in [10℄ only 
onsiders information on

F . In this paper, we thus generalize [10℄ in order to apply it to the 
onsidered

BMSC problem.

Using the same formalism as in [10℄, we de�ne ΩF
and ΩG

, the binary matri-


es whi
h inform the presen
e/absen
e of 
onstraints in F and G, respe
tively.

We then de�ne ΦF
and ΦG

, the sparse matri
es of set entries in F and G, re-

spe
tively. It should be noti
ed that

ΦF = ΩF ◦ F and ΦG = ΩG ◦G. (7)

De�ning Ω
F

, 1 − ΩF
(respe
tively Ω

G
, 1 − ΩG

) and ∆F (respe
tively

∆G)�the matrix of free parameters in F (respe
tively in G)�we extend [10℄

4

A
tually, if no 
alibrated sensor is available, it is still possible to perform a relative


alibration, thus providing some 
onsisten
y in the sensor responses [1, 4, 11℄.

5

An alternative might 
onsist of su

essively (i) updating F or G with usual update

rules and (ii) repla
ing the known entries by their a
tual values at ea
h iteration.

However, this strategy yielded a low performan
e in some preliminary tests.



and derive

F = ΩF ◦ ΦF +Ω
F
◦∆F and G = ΩG ◦ ΦG +Ω

G
◦∆G. (8)

Solving Eq. (5) is then performed using an alternating te
hnique, where we

su

essively aim to estimate F and G using the parameterization in Eq. (8), i.e.,

min
∆F≥0

‖W ◦(X−G·ΦF−G·∆F )‖2f and min
∆G≥0

‖W ◦(X−ΦG·F−∆G·F )‖2f . (9)

Using the same strategy as in [10℄�the proof is omitted for spa
e 
onsidera-

tions but it is based on a Majoration-Minimization optimization�we derive the

update rules whi
h read, respe
tively:

F ← ΦF +∆F ◦Ω
F
◦

[

GT (W ◦ (X −G · ΦF )+)

GT (W ◦ (G ·∆F ))

]

, (10)

and G← ΦG +∆G ◦Ω
G
◦

[

(W ◦ (X − ΦG · F )+)FT

(W ◦ (∆G · F ))FT

]

. (11)

The supers
ript

+
here denotes the fun
tion de�ned as (z)+ , max{ǫ, z}, where

ǫ is a small user-de�ned threshold. It should be noti
ed that, 
ontrary to [10℄,

we here 
onsider a matrix fa
torization problem with missing entries. Let us

remind that 
alibration 
an only be done if the sensor network is dense enough,

as assumed in Se
tion 2.

Lastly, in order to apply informed NMF to the 
onsidered problem, we must

initialize G and F , whi
h is known to be tri
ky. Classi
al strategies 
onsist of a

random initialization while some authors propose an initialization provided by

experts [10℄, the output of another fa
torization method [3℄, or a physi
al model

[13℄. In this paper, we take advantage of the fa
t thatX is low rank and that some

entries of X are equal some of G a

ording to Eq. (6). Our proposed strategy

to initialize NMF then 
onsists of applying a matrix 
ompletion te
hnique [2℄

to X . The 
ompleted matrix is denoted X̃ hereafter. By 
onstru
tion, the last


olumn of X̃ is an estimation of the �rst 
olumn of G. Estimating F 
an then

be obtained from X̃ and G using nonnegative least-squares. In this paper, we

study the enhan
ement provided by our proposed informed NMF with respe
t

to the matrix-
ompletion-based 
alibration, that we use for initializing NMF.

4 Experimental Validation

In this se
tion, we aim to investigate the enhan
ement provided by our proposed

informed NMFmethod for BMSC. For that purpose, we simulate a 
rowdsensing-

like parti
ulate matter sensing during a time interval [t, t+∆t), whi
h satis�es

the assumptions in Se
tion 2. The s
ene is a 10× 10 dis
retized area (the length

of y is thus equal to n = 100) whi
h is observed by m = 26 sensors, i.e., m− 1
un
alibrated and mobile dust sensors [17℄ 
onne
ted to mobile devi
es and one


alibrated, high quality, and mobile sensor

6

.

6

A
tually, we get k �xed, 
alibrated, and a

urate sensors whose obtained values are

modeled as those of the m-th sensor in the BMSC problem.



The observed 
on
entrations in y range between 0 and 0.5 mg/m

3
, for whi
h

the sensor response is assumed to be a�ne [17℄. For ea
h un
alibrated sen-

sor, ea
h observed data point represents a nonnegative voltage linked to the


orresponding ground truth point in y a

ording to Eq. (1). In parti
ular, fol-

lowing the datasheet in [17℄, the gain and o�set 
oe�
ients αj and βj are ran-

domly set a

ording to a Gaussian distribution 
entered around 5 V/(mg/m

3
)

and 0.9 V, respe
tively, and then proje
ted onto their respe
tive interval of ad-

missible values�provided by the manufa
turer [17℄�i.e., 3.5 < αj < 6.5 and

0 < βj < 1.5, ∀j = 1, . . . ,m− 1. We then get a 26× 100 theoreti
al observation
matrix for whi
h we randomly keep k+l samples inX only, where k (respe
tively,

l) is the number of 
alibrated (respe
tively, un
alibrated) sensor samples�with

k ≪ l�hen
e providing the irregular spatial sampling over the s
ene. Lastly,

Gaussian noise realizations may be added to the observed un
alibrated sensor

data and the weight 
oe�
ients ρj de�ned in Eq. (4) are set to

ρj = 1, ∀j = 1, . . . ,m− 1, and ρm = l. (12)

In this se
tion, we aim to explore the in�uen
e of the number of rendezvous

between 
alibrated and un
alibrated sensors, the number of missing entries in

X and the in�uen
e of the input SNR to the BMSC performan
e. For ea
h test


ondition�i.e., one number of rendezvous, one proportion of missing entries, or

one input SNR�25 simulations are performed. In ea
h run, we randomly set the

positions of the samples in X in the three experiments and we generate di�erent

noise realizations in the last one. The number k of 
alibrated sensor values in

the m-th 
olumn of X is set to k = 4 in all the tests. Ex
ept when we make

these values vary, the proportion of un
alibrated sensors to have rendezvous with


alibrated ones, and the proportion of missing entries in X are set to 30% and

90%, respe
tively.
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Fig. 2. Performan
e of the BMSC method vs (left) the proportion of missing values,

(
enter) the proportion of rendezvous between 
alibrated and un
alibrated sensors, and

(right) the input SNR.

Figure 2 shows the Root-Mean Square Error (RMSE) a
hieved by our pro-

posed method in the above test 
on�gurations. The RMSEs are 
omputed over



the �rst line

7

of F , for the un
alibrated sensors only. Dark gray (respe
tively,

light gray) areas show the RMSE envelope while the solid lines (respe
tively,

dashed lines) represent the median RMSE obtained after 106 NMF iterations

(respe
tively, at initialization). On the left plot, we �rst investigate the e�e
t

of the proportion of missing entries�ranging from 20 to 95%�on BMSC in a

noiseless 
on�guration. Our proposed method is robust to the number of missing

entries (with 
onsistent RMSEs below 10−10
until 90% of missing values) and

outperforms the matrix-
ompletion-based initialization (with a median RMSE

around 3). When 5% of the data in X are available, the dense network assump-

tion is not satis�ed anymore and the performan
e drasti
ally de
reases.

The 
entral plot shows the in�uen
e of the number of un
alibrated sensors to

have rendezvous with 
alibrated ones. The a
hieved performan
e is quite similar

to the previous one, ex
ept that the upper side of the dark gray envelope is mu
h

higher than the median RMSE when the rendezvous proportion is equal to 10%.

Please note even when the 
alibration error is high, rows of F are 
orre
tly

estimated, up to a s
ale 
oe�
ient whi
h 
annot be handled anymore.

The right plot shows the in�uen
e of the input SNR on the BMSC perfor-

man
e. In addition to the noiseless 
ase, we make vary the SNR from 11 to 70 dB.

The 
alibration a

ura
y de
reases with the input SNR and is quite similar to

the one obtained with matrix 
ompletion for the lowest tested input SNRs.

5 Con
lusion and Dis
ussion

In this paper, we revisited blind mobile sensor 
alibration as a matrix fa
tor-

ization problem. Assuming any of the matri
es in the fa
torization to be non-

negative, we generalized our previous informed NMF [10℄ for the 
onsidered

appli
ation. The approa
h was shown to be robust to the number of missing

entries and to the number of rendezvous between 
alibrated and un
alibrated

sensors. However, some assumptions�e.g., the dense sensor network over the


onsidered zone, or the fa
t that X is well-
onditioned�might seem restri
tive.

It should be noti
ed that the approa
h proposed in this paper 
an be extended

to the 
ase of multiple s
enes, by sta
king all the observed�and su�
iently

di�erent�matri
es in one unique well-
onditioned matrix, so that we multiply

the number of both the known sensors and the rendezvous. In that 
ase, it is

more likely that the 
alibration assumptions will be satis�ed.

In future work, we aim to explore several dire
tions. As mentioned above,

joint-fa
torization will be investigated. Moreover, the NMF method proposed in

this paper is an extension of the Lee and Seung multipli
ative update algorithm,

whi
h is known to be slow to 
onverge when the size of the data matrix is

large. Extending re
ent and fast NMF methods to our informed framework will

be 
onsidered. We will also explore the 
alibration enhan
ement provided by

some spatial information about the s
ene S and the e�e
ts of the s
ene spatial

dis
retization on the 
alibration performan
e.

7

RMSEs 
omputed over the se
ond line of F�not shown for spa
e 
onsideration�are

similar to those plotted in Fig. 2.
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