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ABSTRACT

In our recent work, we introduced a constrained weighted
Non-negative Matrix Factorization (NMF) method using a β-
divergence cost function. We assumed that some components
of the factorization were known and were used to inform our
NMF algorithm. In this paper, we are provided some inter-
vals of possible values for some factorization components.
We thus introduce an extended version of our previous work
combining an improved divergence expression and some ma-
trix normalizations while using the known / bounded informa-
tion. Some experiments on simulated mixtures of particulate
matter sources show the relevance of these approaches.

Index Terms— Blind source separation; Non-negative
matrix factorization; Beta divergence; Normalization;

1. INTRODUCTION

Source apportionment consists of estimating which particu-
late matter sources are present in the ambiant air, with their
relative concentrations. A source is fully characterized by a
profile which gathers them chemical species proportions (ex-
pressed in ng/ng) that constitute it. Usually, several, say n,
data samples are collected from a chemical sampler. Each of
them can be written as a mixture of p profiles, with different
concentrations (expressed in ng/m3). Mathematically, if we
respectively denote by X , G, and F the non-negative n ×m
data matrix, n× p contribution matrix, and p×m profile ma-
trix, the collected data read

X ≈ G · F. (1)

on the Frobenius norm and the Kullback Leibler (KL) diver-
gence [3]. Then, some elegant parametric divergences were
considered and gave rise to flexible and robust algorithms,
e.g., α-NMF [4], β-NMF [5], and αβ-NMF [6]. Moreover,
additional assumptions such as sparseness [7], fixed row and
column sums [8] or orthogonality constraints [9] were investi-
gated. However, the authors in [10] showed that, for the con-
sidered application, the state-of-the-art methods did not pro-
vide a consistent performance. As a consequence, we inves-
tigated in our recent work [11–13] the enhancement provided
by informed NMF which takes into consideration the known
values of some terms of F [11, 12] or G [13] in order to im-
prove the separation. In [11], we introduced a specific param-
eterization for NMF methods using a Frobenius norm while
we extended this approach to a Constrained Weighted NMF
method using a β-divergence (β-CWNMF) in [12]. These
approaches should be considered as a flexible NMF counter-
part of [14] in between BSS—where no information on F is
provided—and regression, where F is fully known. In [13],
we used a pollution dispersion model using wind directions
to derive the (possibly) sparse structure of G.

In this paper, we extend our previous work [12] by (i) in-
vestigating and discussing several β-divergence expressions,
(ii) exploring different data normalization procedures (as pro-
files are chemical species proportions, the rows of F are nor-
malized), and (iii) adding maximum and minimum bounds
to some of the unknown values of F . The relevance of the
proposed approaches is shown on simulations of particulate
matter source apportionment.

2. UNCONSTRAINED β-NMF METHODS

Aside from pioneering work [2], NMF is classically per-
formed through an iterative procedure which alternatively
minimizes—for a fixed F (respectively G)—a discrepancy
between X and G · F . Multiplicative update rules for the
Frobenius norm and the KL divergence were firstly proposed
in [3]. However, the algorithm is sensitive to the presence of
outliers but using the β-divergence reduces this effect [5].

The β-divergence between two arbitrary non-negative ma-
trices P and Q is convex [5, 6] if β ∈ [0, 1], and may be ex-

G and F are usually unknown and estimating them from X 
is a Blind Source Separation (BSS) problem [1], that Non-
negative Matrix Factorization (NMF) [1, Ch. 13] can solve.

The general idea behind NMF is to minimize a dissimi-
larity measure between X and the estimated product G · F . 
Historically—apart from pioneering work [2]—many dissim-
ilarity measures have been explored. First ones were based
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pressed [6] on ]0, 1] w.r.t. the terms pij and qij of P and Q:

Dβ (P‖Q) = − 1

β

∑
i,j

(pijq
β
ij −

1

1 + β
p1+βij − β

1 + β
q1+βij ).

(2)
In an NMF context, P and Q are respectively replaced by X
and G · F , i.e., the β-NMF estimates G and F according to

min
G≥0,F≥0

Dβ(X‖GF ), (3)

where the matrix operator ≥ means that each entry fij or gij
is positive. The work in [6] showed the influence of the pa-
rameter β within the interval [0, 1]—the higher (respectively
the lower) the value of β, the more robust (respectively the
more efficient) the β-NMF method—and concluded that the
β parameter should be set as a trade-off in the interval [0, 1].

Using a Majorization-Minimization (MM) strategy, some
general update rules for β-NMF were proposed in [5]. Ex-
tending the work in [15, 16] from one hand and in [5] from
the other hand, we introduced in [12] a Weighted β-NMF (β-
WNMF) defined for β ∈ [0; 1] and using

F = F ◦ NF (G), G = G ◦ NG(F ), (4)

NF (G) , [GT (W ◦X◦(GF )β−1)]/[GT (W ◦(GF )β)], (5)

NG(F ) , [(W ◦X◦(GF )β−1)FT ]/[(W ◦(GF )β)FT ], (6)

where X ◦ Y and X
Y respectively denote the componentwise

product and division between two matrices. W is a weight
matrix used to model the uncertainties σij associated to the
data samples xij , and whose each element wij is set to wij ,
σ
−(β+1)
ij . This approach is equivalent to β-NMF [5] if W =

1nm, i.e., if for any i and j, wij = 1.

3. PARAMETERIZATION OF CONSTRAINTS

In this paper, we assume the values of some components of
the profile matrix F to be provided or bounded by experts.
We thus propose a parameterization which takes into account
this knowledge. It extends our previous parameterization [12]
which only considered equality constraints.

Let ΩE and ΩI be two p ×m binary matrices which in-
form the presence / absence of equality and inequality con-
straints on each element fij of the matrix F , respectively, i.e.,

ωEij =

{
1 if fij is known,
0 otherwise, ωIij =

{
1 if fij is bounded,
0 otherwise.

(7)
We then define the p×m binary matricesΩ

E
andΩ

I
asΩ

E
,

1pm −ΩE and Ω
I
, 1pm −ΩI . By construction, we obtain

ΩE ◦ΩI = 0, ΩI ≤ ΩE . (8)

We denote as ΦE the p×m sparse matrix of set values, i.e.,

ΦE , F ◦ΩE . (9)

Please note that ϕEij—the (i, j)-th element of ΦE—is equal to
zero when ωEij = 0. We can easily prove that

ΦE ◦ΩE = ΦE , ΦE ◦ΩE = 0. (10)

Similarly, we define ΦI+ and ΦI− the p×m sparse matrices
of upper and lower bounds1, respectively, i.e.,

ΦI− ≤ F ◦ΩI ≤ ΦI+. (11)

Let fi and ϕEi be the i-th column of F and ΦE , respectively.
A column fi may be expressed as

fi = ϕEi + Γiθi, (12)

where θi and Γi are respectively the (p − li) × 1 vector of
free parameters and the p× (p− li) orthonormal basis of free
parameters [12]. From Eq. (12), we define ∆fi as

∆fi , fi − ϕEi = Γiθi, (13)

and ∆F as the matrix gathering each column ∆fi, i.e.,

∆F , F − ΦE . (14)

Following the stages in [12]—which combines Eqs. (14), (9),
and (10)—we obtain the matrix form of Eq. (12):

F = ΩE ◦ ΦE +Ω
E ◦∆F. (15)

The proposed informed NMF methods consist of estimating
the matrices G and F satisfying Eq. (3) under the above con-
straints, i.e.,

min
G≥0,F≥0

Dβ
W (X||G · F ) s.t.

 F ◦ΩE = ΦE ,

ΦI− ≤ F ◦ΩI ≤ ΦI+,
F · 1mm = 1pm.

(16)
The last condition forces each row of F to be normalized2,
i.e.,

∑m
j=1 fij = 1, ∀i = 1 . . . p. Using the parameterization

(15), Eq. (16) can be expressed as

min
G≥0,∆F≥0

Dβ
W

(
X||G · (ΩE ◦ ΦE) +G · (ΩE ◦∆F )

)
s.t.
{
ΦI− ≤ ∆F ◦ΩI ≤ ΦI+,
∆F · 1mm = 1pm − ΦE · 1mm.

(17)

The last condition is derived from the last one in Eq. (16)
combined with the definition (14).

1Equality constraints could be considered as inequalities, with the same
upper and lower bounds. However, in some preliminary tests, we found our
proposed approaches to outperform those using bound constraints only.

2Please note that the normalization met in remote sensing is not similar,
as the sum of each row of F is only approximately known in that case.



In [12], we used a different minimization. We recall it
hereafter while adding in this paper the bound constraints:

min
G≥0,∆F≥0

Dβ
W

(
X −GΦE ||G · (ΩE ◦∆F )

)
s.t.
{
ΦI− ≤ ∆F ◦ΩI ≤ ΦI+,
∆F · 1mm = 1pm − ΦE · 1mm.

(18)

We show in Section 4 how the update rules derived from
Eq. (17) extends those obtained from Eq. (18).

Instead of looking for the solution of Eq. (17) directly,
we propose to sequentially consider each additionnal infor-
mation, i.e., we first estimate ∆F and F that we then normal-
ize and project in the set of admissible solutions (or that we
project and then normalize, respectively).

4. NEW β-CWNMF UPDATE RULES

As explained above, we first aim to find an estimate of F
which satisfies the equality constraints. In [12], we consid-
ered the minimization problem (18)—using non-negativity
constraints only—and derived the following update rules:

4F k+1 ←4F k ◦ΩE ◦MFk , (19)

where

MFk =
GT ·

[
W ◦ (X −GΦE) ◦ [G(F k − ΦE)]β−1

]
GT ·

[
W ◦ [G(F k − ΦE)]β

] .

(20)
In this paper, we introduce alternative update rules that we
derive from Eq. (17). We first focus on a column of the data
since the divergence may be split into independent partial di-
vergences. We drop hereafter the index i for the vectors4fi,
ϕEi , θi, and the matrix Γi. Let k be the current iteration index
and let us define

U , GΓ. (21)

The weighted β-divergence between two corresponding col-
umn vectors reads

Dβ
W (x||GϕE+G∆f) =

∑
i

wiD
β
(
xi||(GϕE)i + (G∆f)i

)
,

(22)
and may be rewritten using Eq. (2) as

Dβ
W (x||GϕE +G∆f) =∑

i

wix
β+1
i hβ

(
(GϕE)i +

∑
j uijθj

xi

)
,

(23)

where

hβ(z) = − 1

β

(
zβ − 1

β + 1
− β

β + 1
zβ+1

)
. (24)

Noticing that hβ(z) is convex for z ≥ 0 and 0 ≤ β ≤ 1 [12],
and that hβ(1) = 0, Jensen’s inequality may be applied twice:

hβ
(

(GϕE)i+
∑
j uijθj

xi

)
≤ (x−GϕE)i

xi
hβ
( ∑

j uijθj

(x−GϕE)i

)
(25)

and

hβ
( ∑

j uijθj

(x−GϕE)i

)
≤
∑
j

uijθ
k
j∑

l uilθ
k
l

hβ
(
θj
∑
l uilθ

k
l

(x−GϕE)iθkj

)
,

(26)
where the superscript k is the current iteration number and θj
is the j-th element of the free parameters vector.

An MM algorithm is derived by minimizing a majorant
function derived from Eqs. (25) and (26), i.e.,

JβW (θj , θ
k
j ) =∑

i

wi x
β
i (x−Gϕ

E)i
∑
j

uij θ
k
j∑

l uil θ
k
l

hβ

(
θj
∑
l uil θ

k
l

(x−GϕE)i θkj

)
.

(27)

Cancelling its gradient ∂J
β
W

∂θj
leads to its optimum, i.e.,

θ

θk
=
UT

[
w ◦ xβ ◦ [(x−GϕE)+]1−β ◦ (Uθk)β−1

]
UT [w ◦ xβ ◦ [(x−GϕE)+]−β ◦ (Uθk)β ]

. (28)

The superscript + here denotes the function defined as

(z)+ , max{ε, z}, (29)

where ε is a user-defined threshold chosen to avoid the divi-
sion by zero in Eq. (28). By combining the definition (13)
with the above relationship, by replacing U according to
Eq. (21), and by noticing that ΓΓT = diag(ω), we derive the
following update rule: 4fk+1 ←4fk ◦Nfk where

Nfk ,
ωE◦(GT [w◦xβ◦[(x−GϕE)+]1−β◦(Uθk)β−1])
ωE◦(GT [w◦xβ◦[(x−GϕE)+]−β◦(Uθk)β ]) .

(30)
Similarly to [12], it yields to the update rule by combining
Eq. (14) and the matrix form of Eq. (30), i.e.,

F k+1 ← ΦE +∆F k ◦ΩE ◦NFk , (31)

where3

NFk =
GT
[
W◦Xβ◦(X−GΦE)1−β◦{G[(Fk−ΦE)◦Ω

E
]}β−1

]
GT
[
W◦Xβ◦(X−GΦE)−β◦{G[(Fk−ΦE)◦Ω

E
]}β
] .

(32)
It should be noticed that NFk can be written under the same
form as MFk in Eq. (20) by defining

W ′ ,W ◦Xβ ◦ (X −GΦE)−β . (33)

This means that our newly proposed update rule extends the
previous one by iteratively updating the weights.

3It should be noticed that the operator (29) is also applied in practice to the
terms of NFk . However, we dropped it in Eq. (32) for the sake of readability.



5. NORMALIZATION PROCEDURES

In the considered application, the rows of the profile matrix
are summed to 1. As a consequence, in our previous work
[11, 12], we used to normalize the matrices G and F in each
iteration, after estimating them. In this paper, we investigate
an alternative normalization procedure. They are introduced
in the framework of the above approach, but may be extended
to our previous ones [11, 12] as well.

Here we express the first normalization, used in our pre-
vious papers, as a special matrix product. Eq. (31) stands for
the update rules for the unnormalized version of F , denoted
F̃ hereafter. The normalization is obtained by dividing by
each line of F̃ k+1 by its sum, which provides the following
normalized update rule:

F k+1 ← ΦE +∆F k ◦ΩE ◦NFk
[ΦE +∆F k ◦ΩE ◦NFk ] · 1mm

. (34)

We then derive Gk+1 as

Gk+1 ← Gk ◦NGk(F̃ k+1) ◦
[
1nm · (ΦE +∆F k ◦ΩE ◦NFk)T

]
,

(35)
where NGk(F̃ k+1) is set according to Eq. (6). The right term
in Eq. (35) is chosen so that Gk+1F k+1 = G̃k+1F̃ k+1 while
ensuring the decrease of the divergence (17) at each iteration.
Although the constraints are lost within iterations, we noticed
in preliminary tests that they were recovered asymptotically.

As an alternative, here we propose to keep the constraints
on F and to normalize the free parameters only (second nor-
malization). Using the above notations, the normalization
then reads

F k+1 ← ΦE+
∆F k ◦ΩE ◦NFk

(∆F k ◦ΩE ◦NFk) · 1mm
◦(1pm−ΦE ·1mm).

(36)
This normalization keeps the constraints verified within the
iterations but may prevent from moving along the steepest de-
scent direction. Once this matrix is normalized, we estimate
Gk+1 using the rule in Eq. (4).

6. EXTENDED NMF WITH BOUND CONSTRAINTS

We now introduce our proposed Bound Constrained Weighted
β-NMF (β-BCWNMF). It is well known that classical NMF
approaches—i.e., [3] and its extensions—do not necessarily
converge to a global optimum. In the considered application,
we are provided some intervals of possible values for some
entries of F . This might prevent the NMF methods to move
along wrong directions.

Using the properties in Eq. (8), Eq. (31) may be split into
free and bounded terms, i.e.,

F k+1 ← ΦE+∆F k◦ΩE ◦ΩI ◦NFk+∆F k◦Ω
E ◦ΩI ◦NFk .

(37)

We propose to project the bounded terms—which would be
outside their interval—to the closest bound. This might be
considered as an extension of both the work in [17]—which
is based on projected gradients—and Eq. (31). After this pro-
jection, the update rule for an unormalized estimate F̃ of F
reads

F̃ k+1 ← ΦE +∆F k ◦ΩE ◦ΩI ◦NFk

+PΩI

(
∆F k ◦ΩE ◦NFk

)
,

(38)

where PΩI (.) is the projection operator defined as

PΩI (U) ,


ΩI ◦ ΦI− if ΩI ◦ U ≤ ΦI−,
ΩI ◦ ΦI+ if ΩI ◦ U ≥ ΦI+,
ΩI ◦ U otherwise.

(39)

We lastly normalize the above profile matrix F̃ k+1, using one
of both normalization procedures discussed in Section 5. We
thus derive two possible update rules, i.e.,

F k+1 ← F̃ k+1

F̃ k+1 · 1mm
(40)

and

F k+1 ← ΦE +
F̃ k+1 − ΦE

(F̃ k+1 − ΦE) · 1mm
◦ (1pm − ΦE · 1mm).

(41)
As an alternative, we can also apply the projection operator
PΩI on the normalized matrices obtained in Eqs. (34) and
(36). The resulting update rules respectively read

F k+1 ← ΦE +∆F k ◦ΩE ◦ΩI ◦NFk
[ΦE +∆F k ◦ΩE ◦NFk ] · 1mm

+PΩI

(
∆F k ◦ΩE ◦NFk

[ΦE +∆F k ◦ΩE ◦NFk ] · 1mm

) (42)

and

F k+1 ← ΦE +
∆F k ◦ΩE ◦ΩI ◦NFk

(∆F k ◦ΩE ◦NFk) · 1mm
◦ (1pm − ΦE · 1mm)

+PΩI

(
∆F k ◦ΩE ◦NFk

(∆F k ◦ΩE ◦NFk) · 1mm
◦ (1pm − ΦE · 1mm)

)
.

(43)
Let us re-emphasize that these projections are only a guaran-
tee for the NMF not to be far from a “realistic” solution. We
thus expect the inequality constraints to be useless after a fi-
nite number of iterations. Our previous β-CWNMF [12] can
be extended as well using the same approach.

7. EXPERIMENTAL VALIDATION

In this section, we investigate the enhancement provided
by our methods and compare it to the one provided by the



Fig. 1. NMF performance vs β. Perf. criterion: MER (in dB).

β-NMF [5], the β-WNMF [12], and the projected gradient-
based NMF [17]. We use a similar configuration as in [12],
i.e., the data matrix consists of 50 samples and 7 species, with
a known uncertainty measure σij—provided by a chemical
expert—associated to each data point xij . A uniform additive
noise [12] is added and lets us vary the input Signal-to-Noise
Ratio (SNR) in the experiments. We vary β from 0.1 to 1
with a step of 0.1 and for each value of β, we run 227 tests
with various input SNRs ranging between 17 dB and 85 dB.
We also run Lin’s approach on the same data. 3 equality and
3 bound constraints are considered in informed NMF and are
shown with their values in Table 1, where the crosses mean
that no constraint is applied (bound constraints should be
seen as crosses for the β-CWNMF variants). All the algo-
rithms are stopped after 5e4 iterations and their performance
is evaluated [12] using the Mixing-Error Ratio (MER) [18].

Table 1. Positions and values of the constraints used in the
informed NMF methods. X means no constraint.

Fe Ca SO
4

Zn Mg Al Cr

Source 1 X X X 40/80 X X 0
Source 2 280/320 X 5 X X X 20
Source 3 X 180/220 X X X X X

Firstly, we only compare the performance of the β meth-
ods which do not use the bound constraints. Figure 1 shows
their average MERs (computed over the input SNRs) with re-
spect to the value of β. Most informed NMF methods always
outperform both blind approaches. In particular, the methods
using the divergence (17) provide MERs around 80 dB on a
wide range of β values while the approaches using the pre-
vious parameterization [12] provide MERs lower than 73 dB.
We also notice that the second normalization does not seem
to be sensitive to the value of β while the methods using the
first one provide a limited BSS enhancement for low and high
values of β. This is particularly visible with our previous β-
CWNMF [12] which slightly outperforms the blind β-NMF
methods when 0.4 ≤ β ≤ 0.7 only. These tests emphasize
the relevance of both the new parameterization and the sec-

ond normalization we introduced in this paper.
Figure 2 shows the mean MERs (averaged over small

groups of input SNRs [12] and over the value of β for β
methods) and the associated standard deviations, obtained
with both β-CWNMF—providing the best performance in
Figure 1—and with the five bound constrained methods (the
mean MERs provided by [17] are plotted in dash line on the
same plots as our proposed methods). All the plots provide
the same shape: the MER grows with the input SNR. How-
ever, the mean values and the spreads may differ. Let us
first focus on the β-CWNMF approaches. Again, the second
normalization makes the NMF less sensitive to the choice
of β than the first one. Indeed, the mean MERs and their
spreads are respectively slightly higher and much lower than
with the first one. These approaches are outperformed by
the β-BCWNMF methods, except for the lowest input SNRs.
The latter may be explained as follows: the estimates of F
are close to the theoretical values and all the effects of the
noise in X are reported in the estimation of G, from which
we estimate the MERs. Adding information on G helps im-
proving the MERs in this case, as shown in [13]. Except
for the highest SNRs—where the approach using Eq. (40)
slightly outperforms the others—the β-BCWNMF methods
almost provide the same performance. This might be due to
the fact that the projections help the NMF to keep close to
a relevant solution, which might limit the effects due to the
normalizations noticed above. Moreover, we found in some
preliminary tests that the final estimates of F did not get any
value of ΦI− or ΦI+, which means that no projection was
applied during at least the last iteration. This implies that
the update rules (40) and (42) from one hand, and (41) and
(43) from the other hand, are equal to Eq. (34) and Eq. (36),
respectively, thus providing the same performance. Finally,
all the β-BCWNMF variants outperform Lin’s approach [17],
thus showing the relevance of our approaches.

8. CONCLUSION

In this paper, we extended our previous informed β-NMF
[12]—assuming some values of one of the factorized matri-
ces to be known—to alternative update rules and normaliza-
tions, while adding some bound constraints. The relevance of
these extensions were shown on simulated mixtures of indus-
trial particulate matter sources, with various input SNR con-
ditions. In future work, we will investigate other constraints
to inform the NMF, and alternatives to multiplicative updates.
As in [11], we will also validate the enhancement provided by
our methods on real data.
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