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ABSTRACT
In this paper, we propose two weighted Non-negative Ma-

trix Factorization (NMF) methods using a β-divergence cost
function. This divergence is used as a dissimilarity measure
which can be tuned by the parameter β. The weights allow to
deal with the uncertainty associated to each data sample. Our
first approach consists of generalizing weighted NMF meth-
ods proposed with specific divergences or norms to the β-
divergence. In our second approach, we assume that some
components of the factorization are known and we use them
to inform our NMF algorithm. We thus consider a specific pa-
rameterization which involves these constraints. In particular,
we propose specific multiplicative update rules for the mini-
mization of this parameterization with a weighted divergence.
Lastly, some experiments on simulated mixtures of particulate
matter sources show the relevance of these approaches.

Index Terms— NMF, β-divergence, multiplicative up-
dates, weigthed factorization, equality constraints

1. INTRODUCTION

Non-negative Matrix Factorization (NMF) is often used in
Blind Source Separation (BSS) as soon as positivity of the
data is required. NMF aims to factorize a n ×m data matrix
X into two non-negative matrices G and F such that

X ≈ G · F. (1)

In this paper, we propose two NMF approaches using the
β-divergence, which is a a special case of the αβ-divergence.
Our first method considers different uncertainties associated
to the data points in X and adds Weigths to a state-of-the-
art β-NMF method, hence its name β-WNMF. We then as-
sume to know some components of the matrix F . Such an
assumption is realistic in the framework of the considered ap-
plication, i.e., industrial source apportionment. This extra-
information provides some equality Constraints in the NMF
formulation, hence the name β-CWNMF of this latter. The
relevance of both proposed approaches is shown by several
simulations performed on a synthetic dataset of particulate
matter source apportionment.

The remainder of the paper reads as follows. In Section 2,
we present the concepts of the state-of-the-art β-NMF meth-
ods. Section 3 introduces our proposed methods while their
performance is investigated in Section 4. We conclude and
discuss of future directions of the incoming work in Section 5.

2. β-NMF METHODS

2.1. β-divergence

As distances, divergences are positive. However, they do not
satisfy the symmetry nor the triangle inequality. They can
be used to measure the discrepancy between two vectors or
matrices. The β-divergence for NMF was first introduced by
Basu et al. [9] for β > 0. It was then extended to β ∈ R
by Cichocki et al. in [10]. The β-divergence between two
arbitrary matrices P and Q may be expressed as1

Dβ (P‖Q) =
∑
i,j(log

qij
pij

+ (
qij
pij

)−1 − 1) if β = −1,∑
i,j(pij log

pij
qij
− pij + qij) if β = 0,

− 1
β

∑
i,j(pijq

β
ij − 1

1+β p
1+β
ij − β

1+β q
1+β
ij ) otherwise,

(2)

1We used the definition adopted by Cichocki et al. in [4]. Please note
that another formalism is also used in the literature, e.g., by Févotte and Idier
in [11].

In the BSS framework, G is a n × p mixing matrix while F 
is a p × m source matrix. Historically—apart from pioneer-
ing work [1]—many dissimilarity measures have been used 
to assess the discrepancy between the data matrix X and the 
estimated product G · F : NMF was firstly using a Frobenius 
norm and a Kullback-Leibler divergence [2] but later, gen-
eral parametric divergences, e.g., αβ-divergences [3, 4], were 
investigated. In some problems, extra assumptions may be in-
cluded in the algorithm, e.g., sparseness [5, 6], fixed row and 
column sums [7], or orthogonality constraints [8].
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where pij and qij are elements of the matrices P and Q, re-
spectively. The case β = 0 corresponds to Kullback-Leibler
divergence whereas β = 1 accounts for the Frobenius norm.
Another interesting property is the function convexity within
β ∈ [0; 1] if pij > 0 and qij > 0, for all i and j [4, 11]. In an
NMF context, P and Q are respectively replaced by X and
G · F , i.e., β-NMF consists of estimating matrices G and F
which minimize

min
G,F

Dβ(X‖GF ) such that G > 0, F > 0. (3)

Cichocki et al. [4] showed the influence of the parameter
β on both the robustness to outliers and the efficiency of the
factorization. Indeed, when β increases, robustness to out-
liers is observed whereas if β decreases towards 0, the fac-
torization is more efficient. This implies that the Euclidean
distance (i.e., β = 1) is more robust and less efficient than
the Kullback-Leibler divergence (i.e., β = 0). As a result, the
β parameter should be chosen as a trade-off between these
values.

2.2. Existing NMF methods

Aside from pioneering methods [1], NMF is performed
through an iterative procedure which alternatively minimizes
Eq. (3) for fixed F (respectively G) under positivity of its
components. First results were obtained Lee and Seung [2]
who derived multiplicative update rules for the Frobenius
norm and the Kullback-Leibler divergence. However, the
initialization of the algorithm and the presence of a few out-
liers may drastically affect the performance of the algorithm.
β-NMF reduces the effect of outliers, as shown in [10,11] for
example.

Using the convexity of the β-divergence within the range
β ∈ [0; 1], Févotte and Idier [11] proposed general update
rules based on a Maximization Minimization (MM) strategy.
These rules may be written in matrix form as follows

F = F ◦G
T (X ◦ (GF )β−1)

GT (GF )β
, G = G◦ (X ◦ (GF )β−1)FT

(GF )βFT
,

(4)
where X ◦ Y and X

Y respectively denote the componentwise
product and the elementwise division between two matrices.

3. PROPOSED METHODS

3.1. Incorporating weights into β-NMF

Weights may be used to model (possibly drastically) differ-
ent uncertainties associated to each data sample. Weighted
NMF has been firstly investigated by Guillamet et al. [12]
and Ho [13] for Frobenius norm and Kullback-Leibler diver-
gences, respectively. In this paper, we first extend their re-
spective work to the β-NMF framework, hence providing a

β-Weighted NMF (β-WNMF). It leads to the minimization
of the following β-divergence, for β ∈]0; 1] w.r.t. G · F :

Dβ
W (X‖GF ) ,

1
β

∑
ij wij

[
1

1+βX
1+β + β

1+β [GF ]1+β −X ◦ [GF ]β
]
ij

.

(5)
W is the weight matrix whose each element wij is set to
wij = σ

−(β+1)
ij , where σij is referred to the uncertainty asso-

ciated to xij .
The update rules (the proof is omitted for space consid-

erations) for β-WNMF are straightforward by combining Eq.
(4) and the structure of the proof in [13]. It may be gathered
with the case β = 0 [14] leading to a valid expression in the
range β ∈ [0; 1]:

F = F ◦ G
T (W ◦X ◦ (GF )β−1)

GT (W ◦ (GF )β)
,

G = G ◦ (W ◦X ◦ (GF )β−1)FT

(W ◦ (GF )β)FT
.

(6)

3.2. Proposed constrained β-WNMF

3.2.1. Parameterization of linear equality constraints

In many cases, some known components on the source profile
may be provided by experts. Here, we propose a parameter-
ization that takes into account this knowledge. Let Ω be a
p × m binary matrix which informs the presence or the ab-
sence of constraints on each element of the profile matrix F ,
i.e.,

ωij =

{
1 if Fij has to be set,
0 otherwise. (7)

We denote as Φ the p×m sparse matrix of set values, i.e.

Φ , F ◦Ω. (8)

By construction, ϕij—the (i, j)-th element of Φ—is equal to
zero when ωij = 0. We can easily prove that

Φ ◦Ω = Φ, Φ ◦ (1−Ω) = 0. (9)

Let fi and ϕi be the i-th column of F and Φ, respectively. Let
Mi be the li×p constraint matrix issued from the i-th column
of Ω (i.e., containing li constraints), and δi be the vector of
the constraint values extracted from Φ. The constraints on
F may be expressed for the i-th column vector of the profile
matrix as

Mifi = Miϕi = δi. (10)

For the sake of clarity, let us introduce an example with, say
p = 5 sources and li = 2 constraints. Let us assume that the
constraints—respectively equal to 80 and 30—are set on the
second and the fourth position. The above matrices then read

Mi =

[
0 1 0 0 0
0 0 0 1 0

]
ϕi =

[
0 80 0 30 0

]T
δi =

[
80 30

]T .

(11)



Let Γi be the p×(p−li) matrix such that its columns span
the supplementary space to the rows of Mi, i.e., such that

rank
[
MT
i Γi

]
= p. (12)

Γi satisfies the following normalization relationship{
MiΓi = 0li×(p−li)
ΓTi Γi = I(p−li)×(p−li)

. (13)

The columns of F may be expressed as

fi = ϕi + Γiθi, (14)

where θi is the (p − li) × 1 vector of free parameters. From
Eq. (14), we define ∆fi as

∆fi , fi − ϕi = Γiθi, (15)

and ∆F as the matrix gathering each column ∆fi, i.e.,

∆F , F − Φ. (16)

F can then be expressed with respect to ∆F and Φ as

F = ∆F + Φ, (17)

and by noticing that 1 = Ω+ (1−Ω), we obtain

F = Ω ◦Φ+Ω ◦∆F + (1−Ω) ◦∆F + (1−Ω) ◦Φ. (18)

Let us now simplify this expression. Eqs. (16), (8), and
(9) yield

∆F ◦Ω = 0. (19)

Using the properties (9) and (19) into Eq. (18) lead to

F = Φ+ (1−Ω) ◦∆F. (20)

Please note that this relationship2 is the matrix form of the
expression provided in Eq. (14). Both can be used in the sec-
tions below.

3.2.2. Update rules for β-CWNMF

Here we derive update rules by minimizing the weighted β-
divergence cost function (5) according to the parameterization
(20). In practice, we use a slightly different minimization, i.e.,

min
∆F≥0

Dβ
W (X −GΦ||G ((1−Ω) ◦∆F )) , (21)

so that the right term of the above divergence contains the
unknowns only. Minimizing such a divergence ensures that

X −GΦ ≈ G ((1−Ω) ◦∆F ) . (22)

2Actually, Eqs. (17) and (20) are theoretically equivalent. However, we
consider the latter expression hereafter for algorithmic reasons.

We now focus on a column of the data since the divergence
may be split into independent partial divergences. In the fol-
lowing, we propose to drop the index i for vectors 4fi, ϕi,
θi, and the Γi matrix. Let the superscript k be the current
iteration number and let first introduce U by

U , GΓ. (23)

The weighted β-divergence between two corresponding col-
umn vectors is written as

Dβ
W (x−Gϕ||G∆f) =

∑
i

wid
β((x−Gϕ)i||(G∆f)i) (24)

The proof below is performed by applying the MM theorem.
By using Eqs. (15) and (23), Eq. (24) may be expressed as

Dβ
W (x−Gϕ||G∆f) =

∑
i

wi(x−Gϕ)β+1
i ·hβ

( ∑
j uijθj

(x−Gϕ)i

)
,

(25)
where

hβ(z) = − 1

β

(
zβ − 1

β + 1
− β

β + 1
zβ+1

)
. (26)

The second derivative of hβ reads

d′′(hβ(z))

dz
= βzβ−1 − (β − 1)zβ−2. (27)

hβ(z) turns out to be a convex function for 0 6 β 6 1 and
z ≥ 0. Jensen’s inequality may thus be applied, i.e.,

hβ
(∑

j ui,jθj

(x−Gϕ)i

)
≤
∑
j

uij θ
k
j∑

l uil θ
k
l

hβ

(
θj
∑
l uil θ

k
l

(x−Gϕ)i θkj

)
,

(28)
where k is the current iteration number and θj is the j-th el-
ement of the free parameters vector. An MM algorithm is
derived by minimizing an auxiliary function. The majorant
function is derived from Eq. (28), i.e.,

JβW (θj , θ
k
j ) =∑

i

wi (x−Gϕ)β+1
i

∑
j

uij θ
k
j∑

l uil θ
k
l

hβ

(
θj
∑
l uil θ

k
l

(x−Gϕ)i θkj

)
.

(29)

The differentiation of the auxiliary function JβW (.) leads to
the following expression

∂JβW
∂θj

=

(
θj
θkj

)β
·

(∑
i

wiuij · (
∑
l

uilθ
k
l )β

)

−

(
θj
θkj

)β−1
·

(∑
i

wiuij · (x−Gϕ)i · (
∑
l

uilθ
k
l )β−1

)
.

(30)



The optimum is obtained by cancelling the gradient ∂J
β
W

∂θj
in

Eq. (30), thus providing the following relationship

θj
θkj

=

∑
i wiuij · (x−Gϕ)i · (

∑
l uilθ

k
l )β−1∑

i wiuij · (
∑
l uilθ

k
l )β

, (31)

which can be expressed in a vectorial form as

θ

θk
=
UT

[
(x−Gϕ) ◦ (Uθk)β−1 ◦ w

]
UT [w ◦ (Uθk)β ]

. (32)

From Eq. (15) (the index i is dropped in the proof), it yields
the following update rule:

4fk+1 = 4fk ◦
ΓUT

[
(x−Gϕ) ◦ (G4fk)β−1 ◦ w

]
ΓUT [w ◦ (G4fk)β ]

.

(33)
By replacing U according to Eq. (23), Eq. (33) reads

4fk+1 = 4fk ◦
ΓΓTGT

[
(x−Gϕ) ◦ (G4fk)β−1 ◦ w

]
ΓΓTGT [w ◦ (G4fk)β ]

.

(34)
Defining ω̄ , 1p×1 − ω and as ΓΓT = diag(1p×1 − ω), the
previous equation may be written using the componentwise
product for vectors

4fk+1 = 4fk ◦
ω̄ ◦

(
GT
[
(x−Gϕ) ◦ (G4fk)β−1 ◦ w

])
ω̄ ◦ (GT [w ◦ (G4fk)β ])

.

(35)
This expression may be extended to matrices by noticing that
the column vectors4f , ω, ϕ are respectively part of the gen-
eral matrices4F , Ω, Φ, thus yielding

4F k+1 ←4F k ◦ (1−Ω) ◦MF , (36)

where

MF =
GT .

[
W ◦ (X −GΦ) ◦ [G(F − Φ)]β−1

]
GT . [W ◦ [G(F − Φ)]β ]

. (37)

Finally, Eqs. (36) and (37), and the parameterization (20) are
used together to update the profile matrix F .

The expression (36) is only valid within β ∈ [0; 1] accord-
ing to the convexity property of the β-divergence function.
Extensions of this expression may be investigated by splitting
the divergence into convex and concave parts (these ideas are
particularly developed in [11]). Note also that X − GΦ can
be viewed as the data matrix, but it changes with the update
of G and it is required to be a positive matrix.

3.2.3. Algorithm

The proposed β-CWNMF approach, outlined in Algorithm 1,
is based on successive estimations of F and G, followed by a
normalization stage.

A projection step is firstly applied to ensure the positivity
of (X − GΦ). A normalization step is also performed to the
rows of the profile matrix F to keep the row sums unchanged.
The contribution matrixG is then updated to keep the product
G · F unchanged.

Algorithm 1 Update rules of the β-CWNMF method
Reading Φ and Ω.
Initialization of G and F
Normalize F and G
while the stopping rule is not checked do

Check for the positivity of (X − GΦ) and project it if
necessary
Search for F at constant G according to Eq. (36)
Search for G at constant F according to Eq. (6)
Normalize F and G

end while

Table 1. Used matrix Ω for the β-CWNMF method.
Fe Ca SO

4
Zn Mg Al Cr

1 0 0 0 0 0 1
0 1 0 1 0 0 0
1 0 0 1 0 1 1

4. INDUSTRIAL SOURCE IDENTIFICATION

The proposed NMF algorithms have been tested in the frame-
work of pollutant source separation. In this case, X describes
concentrations of chemical species of all the available sam-
ples, G accounts for a contribution matrix, and F is a profile
matrix. In this paper, synthetic data are generated accord-
ing to industrial source profiles available in the literature [15].
Seven chemical species—listed in Table 1—are under consid-
eration. Three industrial sources coming from steel industry
(blast furnaces source, steel slag source, ores sintering plant)
shown in this order on the top plot of Figure 1 are assumed to
be active.

The data matrix consists of 50 samples and 7 species, with
a known uncertainty measure σij—provided by a chemical
expert—associated to each data point xij . A uniform noise
ranging in [−min{λσij , xij};λσij ] is added while keeping
positivity of the data. Please note that λ is related to an in-
put Signal-to-Noise Ratio (SNR). The actual profile matrix is
given on Figure 1.

Three β-NMF methods are experimented in our tests for
different values of the β parameter, i.e., the β-NMF [11], the
β-WNMF, and the β-CWNMF. An uncertainty measure is
used to compute the weight matrix W , according to wij =

σ
−(β+1)
ij in the last two methods. In the unweighted case,

each element of the matrix W is set to one. An initializa-
tion of the profile matrix is provided by chemical experts, so
that computations are directed toward the true solution. In the
constrained method, we are able to select which components
of the profile matrix are to be set, making it highly flexible.
Here, 8 constraints are taken into account in Table 1, where
the 1s indicate the location of the constraints in the profile
matrix. To assess the quality of the fit, we use the Mixing-
Error Ratio (MER) [16]. We could use instead a (normalized)
divergence measure between X − GΦ and G∆F . While in



Fig. 1. Separation performance for the three tested β-NMF methods; with β = 0.8 and an input SNR=33 dB

some preliminary tests, this divergence enabled us to detect
situations when the separation was not correctly performed
(in these cases, the divergence was high), it was however not
helpful when both G and F were correctly estimated. In that
case, a lower divergence did not necessary mean a better sep-
aration. Moreover, some profiles in F are possibly correlated,
then making the classical signal-to-interference ratio (com-
puted over the estimated profiles fi) non pertinent. As a con-
sequence, we consider the MER which is a kind of SNR es-
timated on the contribution matrix G. We express each esti-
mated column ĝj of the matrix G as

ĝj = gcollj + gorthj , (38)

where gcollj and gorthj are respectively collinear and orthogo-
nal to the true vector gj . The MER (in dB) associated with
this estimated column is then expressed as

MERj = 10 log10

∥∥gcollj

∥∥2/∥∥gorthj

∥∥2. (39)

We then derive a global MER for each estimated matrix G by
adding all the MERj .

Figure 2 provides the global MER versus the value of β,
for the three tested β-NMF methods and with an SNR equal to
33 dB. Interestingly, the weighted NMF methods provide al-
most constant MERs for a wide range of values of β (β ≤ 0.7
in our tests), hence showing the relevance of uncertainties in
the NMF algorithm. Moreover, we notice that our β-CWNMF
outperforms both unconstrained methods for all the β param-
eters in the range [0; 1[. This is consistent with the perfor-
mance shown on Figure 1. This figure shows three industrial

Fig. 2. Performance of the NMF methods with respect to β

source profiles and one contribution estimated by each tested
NMF method (with β = 0.8) in an illustrative example. Here
again, the β-CWMNF seems to better fit the true data than the
other tested methods.

We then set the value of β to β = 0.8 in the following ex-
periments. We generated several observed matrices X , with
an SNR ranging from 20 to 55 dB. We then ran each tested
NMF method and averaged their performance on small in-
tervals of SNRs in Figure 3. The results are consistent with
those presented on Figure 2: both proposed weighted NMF
methods outperform the unweighted one and, especially for
the highest tested input SNRs, the β-CWNMF clearly outper-
forms all the methods.



Fig. 3. Average performance of the tested NMF method, with
respect to the input SNR. Performance criterion: MER

5. CONCLUSION

In this paper, we proposed two NMF methods using β-
divergence and additional information. We first generalized
the concept of weighted NMF—defined with the Kullback-
Leibler divergence or the Frobenius norm in the literature—to
the β-divergence. We then assumed to know some values of
one of the factorized matrices and we introduced some equal-
ity constraints in the NMF formulation. To this end, we pro-
posed a new parameterization which was able to involve this
knowledge as an implicit constrained formulation. It resulted
in multiplicative update rules which depend on two addi-
tional constraint matrices and on the weight matrix. These
algorithms were tested with simulated mixtures of industrial
particulate matter sources, with various signal-to-noise ratio
conditions. These experiments showed the relevance of our
latter approach which outperformed the tested unconstrained
NMF methods. In future work, we will explore some alterna-
tives to multiplicative update rules and, independently, other
kinds of constraints to inform the NMF. We will also validate
the enhancement provided by the above methods on real data.
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