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Abstract

This work is devoted to the factorization of an observation matrix into
additive factors, respectively a contribution matrix G and a profile matrix
F which enable to identify many pollution sources. The search for G and
F is achieved through Non-negative Matrix Factorization techniques which
alternatively look for the best updates on G and F .

These methods are sensitive to noise and initialization, and—as for any
blind source separation method—give results up to a scaling factor and a per-
mutation. A Weighted Non-negative Matrix Factorization extension has also
been proposed in the literature, so that different standard deviations of the
data matrix components are taken into account. However, some estimated
profile components may be inconsistent with practical experience. To pre-
vent this issue, we propose an informed Non-negative Matrix Factorization,
where some components of the profile matrix are set to zero or to a constant
positive value. A special parametrization of the profile matrix is developed
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in order to freeze some profile components and to let free the other ones.
The problem amounts to solve a family of quadratic sub-problems. A

Maximization Minimization strategy leads to some global analytical expres-
sions of both factors.

These techniques are used to estimate source contributions of airborne
particles from both industrial and natural influences. The relevance of the
proposed approach is shown on a real dataset.

Keywords: Non-negative Matrix Factorization, Quadratic Optimization,
Air quality.

1. Introduction

Approximate matrix factorization techniques are of great importance in
several areas, such as pattern recognition, antenna array processing, or envi-
ronmental data processing. Non-negative matrix Factorization (NMF) aims
to factorize a non-negative matrix as the product between two matrices, such
that each entry of the latter matrices is null or positive. It emerged under
the name Positive Matrix Factorization (PMF) with Paatero and Tapper’s
contributions [29, 30]. It then appeared in the field of signal and image pro-
cessing with the work by Lee and Seung [24]. Some of the most well known
approaches have been proposed by Cichocki and Zdunek [7] and Lin [26], and
are based on a projected gradient method. Recently, some weighted versions
of NMF were investigated and took into account specific standard deviations
associated to each data point. Inconsistencies in practical results lead to in-
vestigate additional assumptions such as sparseness constraints [20, 2], fixed
row and column sums constraints [18], or orthogonality constraints [35, 5].

Over the last decade, matrix factorization has been extensively inves-
tigated in the field of atmospheric sciences, and particularly for receptor
models with the aim to re-construct the impacts of emissions from different
pollutant sources, e.g., airborne particles [19]. Such source apportionment
studies enable to identify the main emission sources and their relative con-
tribution at different monitoring sites. However, Viana et al. [33] reported
that, depending on the applied NMF method, these techniques may provide
highly different solutions. Moreover—and to the best of our knowledge—
NMF tools fail in discriminating some natural sources (i.e., crustal matter
from local or regional re-suspension and road dust), as well as sources con-
taining sulfate and nitrate components. Moreover, the separation of mineral
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particles emitted from both industrial dust emissions and natural sources
appears as a difficult task [9]. In this paper, we propose to take into account
some partial a priori knowledge on some source profiles in order to improve
the estimation to the unknown components.

The remainder of the paper is organized as follows. In Section 2, we
present the concepts of some state-of-the-art NMF methods. Section 3 in-
troduces our proposed approach while its performance is investigated in Sec-
tion 4. We conclude and discuss future directions of this work in Section 5.

2. A short review of Non-negative Matrix Factorization

NMF aims to estimate two non-negative matrices whose product approx-
imates the observed one. The non-negativity constraints make the decompo-
sition purely additive whereas other ones like Principal Components Analysis
(PCA) and Independent Components Analysis (ICA) can provide negative
components. Informed NMF is located between NMF methods—which only
assume non-negativity of the matrices—on one hand, and on the other hand,
regression models which assume that one matrix is exactly known. In this pa-
per, we introduce an informed NMF method, since matrices may be partially
known.

2.1. Receptor modelling

This model is very generic since it is often used in signal and image
processing. In environmental field, the factorization model (1) below is best
known as receptor modelling and links the data matrix and the active sources.
The factorization enables to approximate the n ×m data matrix X by the
product of two matrices,

X ≈ G · F, (1)

where

• X is the n × m data matrix, where n is the number of samples and
m is the number of species. In environmetrics, xij—the (i, j)th element
of X—accounts for the concentration, expressed in ng/m3, of the jth

chemical species coming from the ith sample. A row gathers concentra-
tions of all registered species for the current sample.

• G stands for the n× p contribution matrix, where p is the pre specified
number of sources and n is the number of samples. In environmetrics
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and chemometrics, the (i, k)th element of G—denoted gik—is referred
to as the massic contribution from Source k to Sample i, expressed in
µg/m3.

• F is a p ×m matrix of profiles. Its (k, j)th term fkj stands for a mass
ratio (in ng/µg) corresponding to a percentage of the jth species with
respect to the whole mass of the Source k.

The number p of sources is usually chosen such that np + pm � nm. The
a priori choice for the appropriate value of p mostly depends on the nature
of the investigated data [16] and on the expert’s knowledge of the number
of sources. In the absence of such information, p can be estimated in a pre-
processing stage by applying some information theory techniques [11] such
as AIC or BIC or extended versions.

2.2. Non-negative matrix factorization

Non-negative matrix factorization has received a lot of attention since
Lee and Seung [24] published their popular multiplicative algorithm. In fact,
NMF looks for an approximate factorization of the data matrix according to
receptor modelling (1) under the additional non-negativity constraint. The
basic NMF solves

min
G,F≥0

n∑
i=1

m∑
j=1

((xij − (GF )ij))
2 = min

G,F≥0
‖X −G · F‖2f , (2)

where G,F ≥ 0 means that all components of G, F are non-negative and ‖.‖f
stands for the Frobenius norm1. The problem in (2) is convex with respect
to G and F separately, but not for both at the same time. As a conse-
quence, most algorithms are only able to yield local minima. Classical NMF
algorithms thus alternatively search for F (respectively G) when G is fixed
(respectively F ). As an alternative, Kim et al. proposed a general frame-
work [22], called Block Coordinate Descent, which includes several methods
described hereafter. Different iterative approaches to solve (2) were proposed
in the literature:

1Please note that other cost functions are also widely used, e.g., Kullback divergence
[24] or flexible parametric divergences such as generalized alpha-beta divergences [6].
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• Most commonly used ones are the multiplicative updates rules. Lee
and Seung [24] mentioned that this update is a good trade-off between
speed of convergence and ease of implementation. The update of F
(respectively G) is made through a multiplicative update coefficient
which depends on the data matrix X and the contribution matrix G
(respectively the profile matrix F ):

F ← F ◦ (GTX)

(GTGF )
, G← G ◦ (XF T )

(GFF T )
, (3)

where X ◦ Y and X
Y

respectively account for component-wise prod-
uct and element-wise division between two matrices. According to the
update rule (3), the Frobenius norm is not increasing and becomes
constant if a limit point is reached.

A limit point (G,F ) is said to be stationary if it checks the Karush-
Kuhn Tucker (KKT) conditions, i.e.,

F ≥ 0, G ≥ 0,
GT · (G · F −X) ≥ 0, (G · F −X) · F T ≥ 0,
F ◦

(
GT · (G · F −X)

)
= 0, G ◦

(
(G · F −X)) · F T

)
= 0.

Stationarity is only a necessary condition of a local minimum. More-
over, Lin [25] reported that some limit points of (3) which are not
stationary may exist, especially if some components of F and G are
initialized to zero.

• As an alternative, Alternating Non-negative Least Squares (ANLS)
consists of alternatively estimating G (respectively F ) by setting F
(respectively G). The mathematic formulation of the problem at iter-
ation r + 1 may be divided into two sub-problems depending on the
results obtained at iteration r [21]:

F r+1 = arg min
F≥0
‖X −GrF‖2f ,

Gr+1 = arg min
G≥0

∥∥X −GF r+1
∥∥2
f
.

(4)

Each step of (4) may be seen as a set of independent non-negative least
squares problems involving one column or one row of the data matrix.
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Let xi be the ith column of the matrix X and f r+1
j be the jth column

of the matrix F r+1. Searching for F amounts to find separately each
column of F ,

f r+1
j = arg min

fj≥0
‖xi −Grfj‖2f ∀j ∈ {1...m} ∀i ∈ {1...m}.

The resolution of this problem is generally more time consuming at each
iteration than the multiplicative updates but the number of iterations
is expected to be lower. This method may also be considered as a
special case of the Block Coordinate Descent framework in the case
of two blocks [22]. Grippo and Sciandrone [15] state that every limit
point obtained from (4) is a stationary point.

• Lin [26] proposed to develop projected gradient-based techniques for
bound constrained optimization. The iterative update of the matrix is
done through a projected gradient approach on the feasible region:

F r+1 ← P
[
F r − αr ∇F r

(
‖X −GrF‖2f

)]
,

where the projection P enables to map the candidate back into the
bounded region if it lies outside:

∀(i, j) ∈ {1...n}×{1...m}, (P (X))i,j =


Xi,j if mi,j ≤ Xi,j ≤Mi,j,
Mi,j if Xi,j ≥Mi,j,
mi,j if Xi,j ≤ mi,j.

Many articles—such as [3] for example—are devoted to the research of
a step αr which checks a sufficiently fast decreasing for each step. This
stage is also the most time consuming one.

Even if most work—including the above methods and our contribution—
focus on approximated solutions of the factorization of X, please note the
existence of recent investigations on exact factorization. For example, Vavasis
[32] showed the NP-hardness of computing such a factorization. Recently,
Arora et al. proposed a near-separable NMF algorithm which provably runs
in polynomial time under some additional assumptions on the input matrix
X [1]. Near-separability has been furtherly explored in, e.g., [4, 13].
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2.3. Weighting the Non-negative Matrix Factorization

Recently, some authors have proposed an uncertainty weighted version of
NMF, expressed either as a sequence of columns updates [8] or as a whole
update [17]. The function to be minimized derives from the classical NMF
cost function and involves a weight matrix, i.e.,

min
G,F≥0

n∑
i=1

m∑
j=1

(
(xij − (GF )ij)

σij

)2

,

where σij stands for the standard deviation obtained from the measurement
of the ith sample and the jth species, gathered in the uncertainty matrix
Σ = {σij}. A whole weight matrix W may be expressed: W = 1n×m

Σ◦Σ , where
each element of the matrix 1n×m is equal to 1.

Ho [17] derived the Karush-Kuhn Tucker conditions in the weighted case,
which are outlined as

F ≥ 0, G ≥ 0,
GT · (W ◦ (G · F −X)) ≥ 0, (W ◦ (G · F −X)) · F T ≥ 0,
F ◦

(
GT · (W ◦ (G · F −X))

)
= 0, G ◦

(
(W ◦ (G · F −X)) · F T

)
= 0.

Ho also introduced a unified expression of an iterative solution of this crite-
rion using the maximization minimization theorem [17]. The main advantage
lies in the whole iterative update of each iteration, i.e.,

F ← F ◦ GT (W ◦X)

GT (W ◦ (GF ))
, G← G ◦ (W ◦X)F T

(W ◦ (GF ))F T
, (5)

In order to prevent division by 0, a small quantity ε is added to the denom-
inator of the relation (5), i.e.,

F ← F ◦ GT (W ◦X)

GT (W ◦ (GF )) + ε1p×m
, G← G ◦ (W ◦X)F T

(W ◦ (GF ))F T + ε1n×p
.

Using weights is particularly important in the case of physical measurements,
where data are obtained with radically different uncertainties. Note that the
update rules in (5) may be viewed as an extension of the classical multi-
plicative update described in (3) to weighted data. Indeed, by setting W
to the matrix 1n×m, the updates rules in (3) are exactly those in (5). From
this remark, weighted NMF (WNMF) behaves as the classical NMF for con-
vergence aspects. In fact, some non-stationary limit points may exist with
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weighted multiplicative updates, especially in the case when some entries of
F and G are initialized to zero [25].

Other criteria may also be investigated, notably the minimization of
the weighted Kullback-Leibler divergence. For this case, the expression of
weighted multiplicative updates is available in [17]. To conclude, the main
interest for this kind of algorithm lies in the direct update of both matrices
and its ease of implementation.

3. Solving a constrained problem

Practically, the profiles recovery is never completely blind. In some cases,
a priori information on components are available and some values can be set
to zero if some species are absent from a source profile. This kind of knowl-
edge should be included as constraints in our algorithms. Up to now—and
to the best of our knowledge—no state-of-the-art method supports weighted
cost functions with constraints.

3.1. Introduction of equality constraints

In many cases, some known components of the source profile may be
provided by experts. The aim of this section is to find a parametrization
that naturally integrates this knowledge. Constraints may be formulated as
follows. Let Ω be a p×m binary matrix which specifies the presence or the
absence of constraints on each element of the profile matrix F ,

∀(i, j) ∈ {1...p} × {1...m}, Ωij =

{
1 if Fij has to be set,
0 otherwise.

Φ is the p × m matrix of set values. By construction, Φij is equal to zero
when Ωij = 0. It may thus be easily checked that

Φ ◦Ω = Φ . (6)

Using the definition of matrices (Φ,Ω), known components of F may easily be
set to zero or to other positive values according to the following relationship:

F ◦Ω− Φ = 0 . (7)

Let:

• fi be the ith column of the F matrix,
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• ϕi be the ith column of the Φ matrix,

• Mi be the (li × p) constraint matrix made up with the ith column of
the matrix Ω (i.e., containing li constraints),

• δi be the vector of the constraint values extracted from Φ.

Constraints may be expressed for the ith column vector of the profile matrix
as

Mifi = Miϕi = δi, ∀i ∈ {1...m}. (8)

As an example, let us consider a case with, say p = 5 sources and li = 2
constraints for all i. The latter are here assumed to be set on the second
and the fourth position, and to be respectively equal to, say 80 and 30. The
previous matrices then read:

Mi =

[
0 1 0 0 0
0 0 0 1 0

]
,
ϕT
i =

[
0 80 0 30 0

]
,

δTi =
[

80 30
]
,

∀i ∈ {1...m}.

Let Γi be the (p × (p − li)) matrix whose columns span the supplementary

space to the rows of Mi such that rank

[
Mi

ΓT
i

]
= p. Γi checks the following

normalization relation{
MiΓi = 0li×(p−li),
ΓT
i Γi = I(p−li)×(p−li),

∀i ∈ {1...m},

where 0li×(p−li) and I(p−li)×(p−li) are respectively the null matrix and the iden-
tity matrix. By noticing in (8) that (fi − ϕi) has to lie in the space spanned
by the columns of Γi, it turns out that

∆fi , fi − ϕi = Γiθi ∀i ∈ {1...m}, (9)

where θi is the ((p− li)× 1) vector of free parameters. The expression of one
column of the profile matrix may then be deduced

fi = ϕi + Γiθi ∀i ∈ {1...m}. (10)

The expression in (9) reads in matrix form,

∆F = F − Φ, (11)
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where ∆F is the matrix gathering each column ∆fi, i = 1...m. It may be
easily stated by using (6) and (7) that

∆F ◦Ω = 0. (12)

From (11), we can express F with respect to ∆F and Φ as,

F = ∆F + Φ. (13)

By combining the relationship (13) with the fact that 1 = Ω + (1 − Ω), we
obtain

F = Ω ◦ Φ+Ω ◦∆F + (1−Ω) ◦∆F + (1−Ω) ◦ Φ. (14)

Introducing the above properties (6) and (12) into (14) leads to the simplified
expression of the profile matrix

F = Ω ◦ Φ+ (1−Ω) ◦∆F. (15)

Since (1−Ω), Ω, Φ, ∆F are non-negative matrices, the profile matrix verifies
F ≥ Φ, according to Relation (15). This matrix form is also equivalent to its
vectorial expression (10); both may be used in the following sections.

3.2. Constrained problem formulation
The aim of this section is to find new update rules which verify the defined

above constraints. Constraints defined through (7) have to be incorporated
and—similarly to (5)—multiplicative rules are investigated. The whole min-
imization problem may be formulated as

min
G,F

Tr
(
(X −G · F )T ((X −G · F ) ◦W )

)
s. t. G ≥ 0, F ≥ Φ, F = Ω ◦ Φ+ (1−Ω) ◦∆F.

(16)

The proof of the KKT conditions are detailed in Appendix A for the case
Φ = 0. The extension of these conditions should be easily derived when Φ is
different from the null matrix. For the sake of clarity, let us define

Ω , (1−Ω) and F̃ , Ω ◦ 4F + Φ.

The KKT conditions (see Appendix A for details) for the constrained weighted
problem remain unchanged, i.e.,

4F ≥ 0, G ≥ 0,

Ω ◦
(
GT ((GF̃ −X) ◦W )

)
≥ 0, (W ◦ (GF̃ −X))F̃ T ≥ 0,

4F ◦Ω ◦
(
GT ((GF̃ −X) ◦W )

)
= 0, G ◦

(
(W ◦ (GF̃ −X))F̃ T

)
= 0.

(17)
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The profile matrix (respectively the contribution matrix) should be split
into columns (respectively rows). The problem (16) is only solved for the
profile matrix since the same technique may be applied to the contribution
matrix. To solve (16), the criterion may be split into independent parts which
are only related to one column of the profile matrix. The problem may be
formulated as a collection of quadratic optimization sub-problems,

J (fi) = (xi −Gfi)T Dwi
(xi −Gfi)

s. t. Mifi = δi and fi ≥ ϕi, ∀i ∈ {1...m}, (18)

where xi stands for the ith column of the X matrix. Remember that the
matrix Dwi

is defined by Dwi
, diag(wi), where wi accounts for the ith

column of the weight matrix W .
The sub-problem (18) shall be investigated for two different cases.

3.2.1. The case δi = 0

Here, we are interested in the solution of the special case when δi = 0
which leads to ϕi = 0. Substituting ϕi = 0 into (10) yields a simplified
expression, which tells that fi is a linear combination of column vectors from
Γi :

fi = Γiθi ∀i ∈ {1...m}, (19)

where θi ((p − li)× 1 ) stands for the free parameters vector extracted from
fi .

By substituting (19) into (18), it turns out to be a weighted non-negative
least square function, depending on the free parameters vector θi:

K (θi) = (xi − (GΓi)θi)
T Dwi

(xi − (GΓi)θi)

s. t. θi ≥ 0 ∀i ∈ {1 . . .m}.
(20)

It appears to be a WNMF (as detailed in [17]) applied to the search of
the vector θi and to a new contribution matrix GΓi. Ho [17] expressed the
vector at iteration (k+1) as a function of the vector at iteration k by using a
maximization minimization strategy. As a consequence, we can respectively
replace fi and G in his contribution by θi and GΓi. The solution may be
obtained also by splitting the first part of (5) into vectorial form, and we
obtain the following update rule for θi:

θk+1
i ← θki ◦

ΓT
i G

T (Dwi
xi)

ΓT
i G

T (Dwi
GΓiθki )

∀i ∈ {1...m}. (21)
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Referring to (19), the expression of the ith column of the profile matrix may
be deduced and reads

fk+1
i ← fk

i ◦
ΓiΓ

T
i G

T (Dwi
xi)

ΓiΓ
T
i G

T (Dwi
Gfk

i )
∀i ∈ {1...m}.

Given that ΓiΓ
T
i = diag(1p×1 − ωi), with ωi the ith column of the matrix

Ω, it may be noticed that this operator only selects active components among
the profile vector in (5). The previous expression may be summarized into
matrix formulation, i.e.,

F ← F ◦
(

(1p×m −Ω) ◦
[

GT (W ◦X)

GT (W ◦ (GF ))

])
. (22)

In (22), (1p×m −Ω) has to be seen as a constraint mask applied to the com-
ponents of the profile matrix. As a result, (22) is equivalent to WNMF since
an appropriate choice of the initial profile (F 0 ◦Ω = F 0) leads exactly to the
same iterations.

3.2.2. The case δi 6= 0

Back to (10), let us use it in the case when, δi is different from zero. By
replacing it into (18), it appears as a non-negative least square cost function

K (θi) = (xi −Gϕi − (GΓi)θi)
T Dwi

(xi −Gϕi − (GΓi)θi)
s. t. θi ≥ 0 ∀i ∈ {1...m}. (23)

It should be noticed that (20) and (23) are similar, except that xi in (20) has
been replaced by (x−Gϕ)i in (23). From (21), it results in a new expression
of the free parameters vector at iteration (k + 1):

θk+1
i ← θki ◦

ΓT
i G

TDwi
(xi −Gϕi)

ΓT
i G

T (Dwi
GΓiθki )

∀i ∈ {1...m}.

Expression (11) enables to update the ith column of the profile matrix:

fk+1
i − ϕi ←

(
fk
i − ϕi

)
◦ ΓiΓ

T
i G

TDwi
(xi −Gϕi)

ΓiΓ
T
i G

T (Dwi
G(fk

i − ϕi))
∀i ∈ {1...m}.

The previous equation may be written in matrix form, in a similar way as in
(22), by noticing that the matrix ΓiΓ

T
i acts as a component selector operator

equivalent to the constraint mask (1p×m −Ω):
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F − Φ← (F − Φ) ◦
(

(1p×m −Ω) ◦
[
GT (W ◦ (X −GΦ))

GT (W ◦ (G(F − Φ)))

])
. (24)

This equation is the global expression which enables to update iterates of
the profile matrix. It is the generalization of (22) and has to be compared to
Expression (5), which stands for the unconstrained version. It can be seen as
the constrained WNMF applied to (X−GΦ) instead of X (the non-negativity
constraint is required on the equivalent data).

Moreover, it can be easily checked that any limit point called4F? verifies
the complementary slackness condition (last left condition from (17)). How-
ever, this method suffers from the same convergence problems as the NMF
multiplicative updates proposed by Lee and Seung2 [24]. Indeed, Gonzales
and Zhang pointed the existence of numerical examples showing the fail of
this algorithm to reach a stationary point [14]. As our method can be reduced
to the same approach by setting W = 1n×m and by imposing Ω = Φ = 0p×m,
the same comment here applies. Non stationarity may typically occur when
some profile components are initialized to zero.

In the same way, the contribution matrix is updated according to uncon-
strained WNMF:

G← G ◦ (W ◦X)F T

(W ◦ (GF ))F T
. (25)

However, an unconstrained WNMF on the contribution matrix does not en-
sure the non-negativity of (X −GΦ). A projection step of equivalent data is
thus performed before updating the contribution matrix.

3.3. Outline of the algorithm

From the previous results, we derive the algorithm whose steps are de-
tailed in Algorithm 1. The normalization is made after each computation
step by normalizing each row of the profile matrix and by updating the cor-
responding column of the contribution matrix. As the normalization has no
effect on the product G ·F , the value of the trace in (16) remains unchanged
before or after the normalization. However, it makes the constraints unver-
ified within iterations. From a practical point of view, if a limit point is

2Please note the existence of alternative algorithms which fix this issue [12].
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Algorithm 1 Update rules of the CWNMF method.

Reading Φ and Ω.
Initialization of G and F
Normalize F and G
while the stopping rule is not checked do

Check for the non-negativity of (X −GΦ) and project it if necessary
Search for F at constant G according to (24)
Search for G at constant F according to (25)
Normalize F and G

end while

reached (i.e., 4F k+1 = 4F k), constraints are observed to be verified asymp-
totically. Despite the fact that—as for other NMF methods [24, 17]— we can-
not guarantee the stationarity when a limit point is reached, we never faced
convergence issues—i.e., non-stationarity—in the numerous experiments we
conducted on our dataset. It should be noticed that limit points tending to
zero should be checked with great care. Indeed, although the third KKT
condition is always satisfied, the sign of the gradient in the second KKT
condition may be negative.

Lastly, we did not meet any kind of issue with the initialization of the
matrices, as reported in Appendix B. It must be noticed that the equality
constraints limit the number of free parameters to initialize, which probably
tends to make the informed NMF method more robust to initialization than
blind NMF, as shown in our experiments described in Appendix B.

4. Application to industrial source identification

4.1. Introduction

Data relative to airborne particles with size lower than 10 µm collected
at Dunkerque were considered. This site is a medium city located in North-
ern France on the coast of the North Sea (Figure 1). There is an important
industrial activity, especially with the presence of an integrated steelwork
complex. Sampling was performed on the roof of the Research Institute and
the sampling point is directly under the influence of emissions of the indus-
trial sector when the wind blows from direction 260 degres to 320 degres.
In this work, we have selected 92 samples collected under a wider wind sec-
tor (i.e. from 250 degres to 60 degres) to consider other influences such as
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marine, crustal and long-range transport origins. Concentrations of 19 ele-
ments and ions listed in Table 1 have been determined for each sample. In
our previous work [8], we focused our attention on the identification of main
sources contributing to atmospheric particulate background. Four particles
types were evidenced: sea salts, aged sea-salts, secondary inorganic aerosols
and crustal particles. Their respective profiles were in good agreement with
results from literature [10, 31, 36]. We can assume that the composition of
such emissions does not vary with time. In the present work, we aim to
identify the industrial emission sources which additionally influence the level
of atmospheric particulate at our sampling site. The integrated steelwork
complex gathers processes devoted to coke making, iron ores sintering, steel
production and slag treatments. A ferromanganese alloys production plant
concerned by atmospheric emissions is also located next to the above indus-
trial site. The particulate emissions have different chemical compositions
from one process to another and do not always occur simultaneously. For
these reasons, it is not adequate to use a single profile to track the impact
of this industrial site on atmospheric particulate level. In this study, it is
proposed that 5 industrial sources are expected to contribute significantly to
airborne particulate matter at a local scale [23].

Figure 1: Location of the area under study.

4.2. Major source identification

We assume that 4 background sources are completely known whereas 5
industrial sources are partially unknown. The matrices related to the con-
straints—i.e., Ω and Φ— are respectively given in Tables 1 and 2. The first
four rows represent background sources while the others account for indus-
trial sources. When a value is set to 1, it means that the corresponding
species is constrained. For example, copper for the sixth source is set to 0.
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Table 1: Contraint matrix Ω.
Al Ca Cr Cu Fe KMgMnNaNi Pb Sn Ti V Zn Cl− NO−

3 SO2−
4 NH+

4
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1
0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 1 0 1
0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0
0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1

Table 2: Matrix Φ of set profile values.
Al Ca Cr Cu Fe K MgMn Na Ni Pb Sn Ti V Zn Cl− NO−

3 SO2−
4 NH+

4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 421 316 263

367 140 .2 .1 147 136 64 2.5 122 .1 .1 0 15 .3 .3 3 2.4 .5 .5
0 10 0 0 0 9 30 0 253 0 0 0 0 0 0 200 280 217 0
0 12 0 0 0 12 37 0 312 0 0 0 0 0 0 550 0 78 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

To sum up, 55 parameters are free in the profile matrix, they are located
in the 5 last rows corresponding to the 5 industrial sources. No constraint
is applied on the contribution matrix. As a result, it contains 92 × 9 free
parameters. The estimation of these parameters is ordered according to
sources in Figures 2-6. In each figure, the top plot shows the contribution
of one source (corresponding to one column of the contribution matrix) ver-
sus samples, while the middle one gives a rate of the whole mass emitted.
The bottom graph shows the source profile (corresponding to one row of the
profile matrix). The fifth source denoted blast furnace / steel plant sources
is represented on Figure 2 while the steel slag source is given in Figure 3.
Two sintering plant sources are detailed on Figures 4 and 5 while a ferroman-
ganese plant source is reported in Figure 6. By comparing these profiles
with experimental data defined for each source [23], the profile issued from
Figure 2 is referred to as iron rich particles emitted by blast furnaces or steel
plant. These two sources have got very similar chemical identities. These fea-
tures have also been reported for similar processes located on other sites all
over the world [27, 28]. The second profile (see Figure 3) is characterized by
a high proportion of calcium and iron and then various metallic impurities.
Unambiguously, this profile can be attributed to fine particles which gather

17



Figure 2: Blast furnaces source.

Figure 3: Steel slag source.

a set of undesirable elements in steel composition and which are separated
in the form of slags. Such emissions are classified as fugitive emissions.
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Figure 4: Ores sintering plant non point source.

Figure 5: Sintering chimney point source.

The third profile (see Figure 4) highlights species in the following order:
Fe> Ca> Al> Mg> Mn> K> Na. It is ascribed to ores sintering plant source
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Figure 6: Ferromanganese plant source.

and such particles correspond to fugitive emissions depending on all handling
performed on sintered ores. It comes from the heating of raw materials.
However, a lack of potassium and sodium may be noted. The fourth source
profile (Figure 5) is expected to be mainly composed with Cl−, K, and Fe.
It stands for the sintering chimney point source. But it can be noticed that
there is a lack of Fe particles and also NH+

4 is over estimated. Finally, a
Ferromanganese plant source may be recognized on Figure 6, it can be noted
that the expected profile is very well recovered.

A brief summary of significant sources show that 3 sources (blast furnaces
source, steel slags source, sintering chimney point source) present a few peaks
over 3 µg/m3. The steel slag source and the ferromanganese plant source are
minor contributors to particles pollution. Hence, these results enable to
evidence the impact of point source emissions on atmospheric particulate
levels and particularly provide for the first time a relative contribution of
fugitive emissions from this site.

5. Conclusion

We have introduced in this article the use of basic equality constraints
and have derived theoretical expressions of constrained WNMF. We provided
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global multiplicative rules which take into account at the same time linear
equality constraints and weights. The second interest stands in the choice
of the application which aims to find natural and industrial profiles. Partial
knowledge of these profiles enables to focus the search on species which are
completely unknown. As a consequence, according to chemists, our results
allow them to better understand the industrial profiles. This shows the rele-
vance of our proposed approach. Upcoming prospects concern the integration
of inequality constraints in the algorithms.

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful
comments and valuable suggestions to improve the quality of the paper. This
research was financed by the integrated steel and mining company Arcelor-
Mittal.

Appendix A. Expression of the KKT conditions in the constrained
problem

Karush-Kuhn Tucker conditions are carried out without loss of generality
in the case when Φ = 0. It may be easily extended to the general case. For
the sake of concision, let assume that Ω , (1p×m −Ω). The minimization of
the criterion (16) leads to consider a function H(.), defined by

H(4F ) = Tr
(
(X −G(4F ◦Ω))T ((X −G(4F ◦Ω)) ◦W )

)
= H1−2H2+H3,

where 
H1 = Tr

(
XT (X ◦W )

)
,

H2 = Tr
(
(X ◦W )TG(4F ◦Ω)

)
,

H3 = Tr
(
(4F ◦Ω)TGT ((G(4F ◦Ω)) ◦W )

)
.

The property Tr(UT (V ◦W )) = Tr((U ◦W )TV ) enables to write the differ-
ential of H2, H3 as

∂H1 = 0,

∂H2 = Tr
(

(((X ◦W )TG) ◦ΩT
)∂4F

)
,

∂H3 = 2 · Tr
(

(((W ◦G(Ω4F ))T .G) ◦ΩT
)∂4F

)
.
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The differentiation of H2 and H3 then results in{
∂H2

∂F
= Ω ◦ (GT (X ◦W )),

∂H3

∂F
= 2[GT (W ◦ (G(Ω ◦ 4F )))] ◦Ω.

(A.1)

According to (A.1), the differentiation of the function H(.) gives

∂H

∂4F
= 2Ω ◦

(
GT ((G[Ω ◦ 4F ]−X) ◦W )

)
. (A.2)

The Lagrangian function may be expressed as

L(G,F ) =
1

2
H(4F )− Tr(ΓG ◦G)− Tr(ΓF ◦ 4F ◦Ω).

Cancelling the derivatives of this Lagrangian function with respect to 4F
yields the following relation,

∂L

∂4F
= Ω ◦

(
GT ((G[Ω ◦ 4F ]−X) ◦W )

)
− ΓF = 0, (A.3)

leading to an expression of ΓF . Karush-Kuhn Tucker conditions for the
minimization of (16) may be summed up as

4F ≥ 0, G ≥ 0,
∂H
∂4F

≥ 0, ∂H
∂G
≥ 0,

4F ◦ ΓF = 0, G ◦ ΓG = 0.

(A.4)

For the sake of clarity, let us define F̃ , Ω ◦4F . By replacing the relations
(A.2) and (A.3) into (A.4) and by using the same analogy with the matrix
G, the final KKT conditions for the constrained weighted problem are

4F ≥ 0, G ≥ 0,

Ω ◦
(
GT ((GF̃ −X) ◦W )

)
≥ 0, (W ◦ (GF̃ −X))F̃ T ≥ 0,

4F ◦Ω ◦
(
GT ((GF̃ −X) ◦W )

)
= 0, G ◦

(
(W ◦ (GF̃ −X))F̃ T

)
= 0.
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Table B.3: Used matrix Ω for the NMF method.
Fe Ca SO

4
Zn Mg Al Cr

1 0 0 0 0 0 1
0 1 1 1 0 1 0
1 0 0 1 0 0 1

Table B.4: Used matrix Φ for the NMF method.
Fe Ca SO

4
Zn Mg Al Cr

700 0 0 0 0 0 0
0 400 5 0 0 75 0

400 0 0 0 0 0 0

Appendix B. Sensitivity of the algorithm to the initialization

The proposed NMF algorithm has been tested in the framework of pol-
lutant source separation. As explained in Subsection 3.3—and as it is the
case for classical NMF approaches [24, 17]—the robustness of our method
to initialization is not theoretically guaranteed (but was shown not to be
an issue with the considered application). In this appendix, we aim to in-
vestigate this behaviour: we generate synthetic data according to industrial
source profiles available in the literature [28]. Seven chemical species—listed
in Table B.3—are under consideration. Three industrial sources coming from
steel industry (blast furnaces source, steel slag source, ores sintering plant)
shown in this order in Table B.5 are assumed to be active.

The data matrix consists of 50 samples and 7 species, with a known uncer-
tainty measure σij—provided by a chemical expert—associated to each data
point xij. The uncertainty measure allows us to compute the weight matrix
W , according to wij = σ−2ij . A uniform noise ranging in [−min{λσij, xij};λσij]
is added while keeping non-negativity of the data. Please note that λ is re-
lated to an input Signal-to-Noise Ratio (SNR). In the experiments below, the
input SNR is equal to 30 dB. The actual profile matrix is given in Table B.5.

In our method, we can select which components of the profile matrix are
to be set, making it highly flexible. In the tests reported in this appendix, 9
constraints are taken into account and are shown in Table B.3, where the 1s
indicate the location of the constraints in the profile matrix. The matrix Φ is
provided in Table B.4. Note that 70 percent of the first source profile is set,
so that it only subsists 30 percent of it to be distributed over the remaining
species. To assess the quality of the fit, we apply different performance
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Table B.5: Real profile matrix F .
Fe Ca SO

4
Zn Mg Al Cr

700 100 80 60 40 20 0
300 400 5 0 200 75 20
400 200 80 0 120 200 0

measures—similar to SNRs—on the contribution and the profile matrices.

• When applied to the columns of G, the chosen measure is named
Mixing-Error Ratio (MER) [34]. We express each estimated column
ĝj of the matrix G as

ĝj = gcollj + gorthj ,

where gcollj and gorthj are respectively collinear and orthogonal to the true
vector gj. The MER (in dB) associated with this estimated column is
then expressed as

MERj = 10 log10

∥∥gcollj

∥∥2/∥∥gorthj

∥∥2.
This definition provides one MER for each source—respectively denoted
as S1, S2, and S3—so that p MERs are obtained.

• When applied to the lines of F—or equivalently to the columns of F T—
we measure a Signal-to-Interference Ratio (SIR) which is classically
met in blind source separation [34]. The SIR is computed for each
estimated source. From a practical point of view, we apply the above
MER algorithm on the columns of F T as an SIR measure.

The sensitivity of the algorithm is studied by choosing different initial-
izations of the profile matrix Finit. We exclusively use initial profile matrices
which satisfy the constraints defined in Tables B.3 and B.4. For each initial-
ization, we run the algorithm during 20 thousand iterations.

We performed numerous tests in this configuration and all the obtained
enhancement provided by our NMF approach was consistent. For the sake of
readibility, we only gather 12 significant initial profile matrices in Table B.6.
This table provides three performance indices:

1. the first three columns show the SIR obtained for each source when
each line of F is set to its initialization. We see that the performance
is pretty low, as it ranges from 1.15 to 24.07 dB. While the SIR can be
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Table B.6: Performance of the NMF approach for different initializations. Performance
criteria: SIR (in dB) and MER (in dB).

trial SIR (on Finit) MER (on G) SIR (on F )
number S1 S2 S3 S1 S2 S3 S1 S2 S3

1 24.07 18.56 16.50 29.89 30.06 32.44 54.61 78.18 54.81
2 17.31 18.56 16.50 29.89 30.05 32.44 54.78 81.66 54.61
3 13.96 18.56 16.50 29.89 30.06 32.44 54.64 80.19 54.78
4 24.07 3.87 16.50 29.89 30.06 32.44 54.61 78.18 54.81
5 24.07 6.11 16.50 29.89 30.06 32.44 54.61 78.18 54.81
6 24.07 18.56 3.19 29.89 30.06 32.44 54.61 78.18 54.81
7 24.07 18.56 1.15 29.89 30.06 32.44 54.61 78.18 54.81
8 17.31 18.56 1.15 29.89 30.06 32.44 54.61 78.18 54.81
9 13.96 18.56 1.15 29.89 30.06 32.44 54.61 78.18 54.81

10 13.96 6.11 1.15 29.89 30.06 32.44 54.61 78.18 54.81
11 13.96 3.87 1.15 29.89 30.06 32.44 54.61 78.18 54.81
12 10.47 3.87 1.15 29.89 30.06 32.44 54.61 78.18 54.81

really low for Source 2 and Source 3, we could not reach an SIR lower
than 10 dB with Source 1 because the mass to be distributed over the
free parameters is quite low, as discussed above.

2. The last three columns show the SIRs obtained after running the al-
gorithm. We notice that, whatever the initialization, the SIR for
each source keeps almost constant and is high, i.e., between 54.61 and
81.66 dB. This shows that the algorithm converges to the same station-
ary point.

3. Such a result is seen again in the three middle columns. They show the
MERs obtained after applying the NMF algorithm. Here again—and
as for the SIR—the measure obtained for each source remains almost
constant over the trials. It can be noticed that SIRs—estimated over
the profile matrix—are greater than MERs which estimated over the
contribution matrix. It may be due to the fact that the constraints are
applied on the profile matrix only.

Other experiments have been conducted with less constraints. We no-
ticed that relaxing some of the above constraints made the algorithm more
sensitive to the initialization. This was expected as less constraints means
more parameters to estimate.

To conclude, these experiments show the relevance of our informed NMF
method. It not only provides a good performance using the additional knowl-
edge on the profile matrix F , but it is also less sensitive to the initialization
than its blind counterpart.
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tions, Phd thesis, Université Catholique de Louvain (2008).

[18] N.-D. Ho, P. Vandooren, Non-negative matrix factorization with fixed
row and column sums, Linear Algebra and its Applications 429 (5-6)
(2008) 1020–1025.

[19] P. K. Hopke, K. Ito, T. Mar, W. F. Christensen, D. J. Eatough, R. C.
Henry, E. Kim, F. Laden, R. Lall, T. V. Larson, H. Liu, L. Neas, J. Pinto,
M. Stölzel, H. Suh, P. Paatero, G. D. Thurston, PM source apportion-
ment and health effects: Intercomparison of source apportionment re-
sults, Journal of Exposure Science and Environmental Epidemiology
16 (3) (2006) 275–286.

[20] P. O. Hoyer, Non-negative matrix factorization with sparseness con-
straint, Journal of Machine Learning Research 5 (2004) 1457–1469.

27



[21] H. Kim, H. Park, Nonnegative matrix factorization based on alternating
nonnegativity constrained least squares and active set method, SIAM
Journal on Matrix Analysis and Applications 30 (2) (2008) 713–730.

[22] J. Kim, Y. He, H. Park, Algorithms for nonnegative matrix and tensor
factorizations: a unified view based on block coordinate descent frame-
work, Journal of Global Optimization (2013) 1–35.

[23] H. Laversin, D. Courcot, F. Ledoux, Tracing the atmospheric particulate
emissions from an iron and steel works, Chemical Engineering Transac-
tions 10 (2006) 179–184.

[24] D. D. Lee, H. S. Seung, Learning the parts of objects by non-negative
matrix factorization, Nature 401 (6755) (1999) 788–791.

[25] C. J. Lin, On the convergence of multiplicative update algorithms for
non-negative matrix factorization, IEEE Transactions on Neural Net-
works 18 (6) (2007) 1589–1596.

[26] C. J. Lin, Projected gradients methods for non-negative matrix factor-
ization, Neural Computation 19 (10) (2007) 2756–2779.

[27] S. D. Machemer, Characterization of airborne and bulk particulate from
iron and steel manufacturing facilities, Environ. Sci. Techn. 38 (2) (2004)
381–389.

[28] K. Oravisjarvi, K. Timonen, T. Wiikinkoski, A. Ruuskanen, K. Heina-
nen, J. Ruuskanen, Source contributions to PM2.5 particles in the urban
air of a town situated close to a steel works, Atmospheric Environment
37 (2) (2003) 1013–1022.

[29] P. Paatero, Least squares formulation of robust non negative factor anal-
ysis, Chemometrics 12 (5) (1997) 788–791.

[30] P. Paatero, U. Tapper, Positive matrix factorization: a non negative
factor model with optimal utilization of error estimates of data values,
Environmetrics 5 (2) (1994) 111–126.

[31] M. J. Ten-Harkel, The effects of particle-size distribution and chloride
depletion of sea-salt aerosols on estimating atmospheric deposition at a
coastal site, Atmospheric Environment 31 (3) (1997) 417–427.

28



[32] S. Vavasis, On the complexity of nonnegative matrix factorization, SIAM
J. on Optimization 20 (3) (2009) 1364–1377.

[33] M. Viana, T. A. J. Kuhlbusch, X. Querol, A. Alastuey, The effects of
particle-size distribution and chloride depletion of sea-salt aerosols on
estimating atmospheric deposition at a coastal site, Journal of Aerosol
Science 39 (10) (2008) 827–849.

[34] E. Vincent, S. Araki, P. Bofill, The 2008 signal separation evaluation
campaign: A community-based approach to large-scale evaluation, in:
Proc. of ICA, 2009, pp. 734–741.

[35] J. Yoo, S. Choi, Non-negative matrix factorization with orthogonality
constraints, Journal of computing science and engineering 4 (2) (June
2010) 97–109.

[36] Y. Zhao, Y. Gao, Acidic species and chloride depletion in coarse aerosol
particles in the US east coast, Science of the total Environment 407 (1)
(2008) 541–547.

29


