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MULTIVARIATE EXTENSIONS OF EXPECTILES RISK MEASURES

VÉRONIQUE MAUME-DESCHAMPS, DIDIER RULLIÈRE, AND KHALIL SAID

Abstract. This paper is devoted to the introduction and study of a new family of multivariate
elicitable risk measures. We call the obtained vector-valued measures multivariate expectiles. We
present the different approaches used to construct our measures. We discuss the coherence prop-
erties of these multivariate expectiles. Furthermore, we propose a stochastic approximation tool of
these risk measures.

Introduction

The risk measure theory has a rich literature in continuous updating. The mathematical con-
struction of different indicators and methods used in risk management has to be in accordance
with the professional practices. In this spirit, the notion of coherence is particularly important in
the literature of actuarial science. The coherence of univariate risk measures was introduced in the
famous paper [2], a generalization to set-valued risk measures was presented in [23]. The different
axioms chosen to characterize the measures coherence are justified by the economic importance
of the properties they present in practice. From that, the coherence is not limited only to these
axioms, but concerns all desirable properties from practitioners’ point of view.

Gneiting (2011) [20] has raised an important issue concerning the statistical coherence of the
usual risk measures. Elicitability, according to him, is a natural property that must be satisfied by
a measure to ensure the possibility of implementing backtesting procedures, which are necessary
from a practical point of view. This work has implicitly challenged the notion of coherence, espe-
cially for measures that are not elicitable even if they are coherent. Several studies were presented
recently on the subject. Some analyze this property in the context of risk measures, others are
dedicated to finding a characterization of the measures that are both coherent and elicitable. The
expectiles have therefore appeared in the literature as the only law invariant risk measures that
meet this need, they are elicitable by construction and coherent for a threshold level range.

The concept of elicitability was studied in [36]. It is also examined in a purely mathematical
framework in [34]. The elicitability of risk measures is analyzed by Bellini and Bignozzi (2015) [3],
and in [35]. Expectiles, as risk measures, were the subject of the works presented in [16], [5], and [4].

The statistical importance of the elicitability property invites us to reconsider the mathemat-
ical construction of some risk measures. Indeed, risk management should be naturally based on
a minimization of certain risk quantity or a score, defined according to user needs. From this
point of view, it seems useful to integrate this vision since the choice of risk measures, and also to
take it in account by insurers in decision making related to internal risk management, like capital
allocation. In this paper, we present a construction of a new family of vector-valued risk measures.
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It is firstly characterized by its elicitability, and then justified by its economic interpretations. The
constructed measures are vectors of the same size as the risks. The literature presents a limited
number of such measures, we cite as examples, the multidimensional VaR and CVaR introduced in
[13], and studied in [10], [11] and [14]. In practice, such measures can be used in risk allocation and
for the measurement of systemic risk. There is also noteworthy contributions on risk measures for
risk vectors including axiomatic characterization, studying coherence properties and also including
concrete classes of examples in particular versions of multivariate VaR and CVaR, see [7], [32],
[33] or [15]. In these works, the proposed multivariate risk measures remain real valued since they
assign to each random vector of Rd a real value. In our context, the multivariate extensions are Rd

valued, which means our risk measures give a risk level for each marginal, function of the overall
risk represented by the random vector. The measures in this case, can be seen as a risk allocation.
The aim of our construction is first to obtain measures that can be interpreted as a vector of sol-
vency thresholds. We also want them to verify some coherence properties, especially elicitability,
so we proposed a multivariate extension of expectile risk measures that are both elicitable and
coherent in dimension 1.

The proposed measures, in this paper, are in general minimizers of strictly convex functions.
Therefore, it is possible to use stochastic approximation algorithms to determine the minimum
which is the desired measure. We shall use a version of Robbins-Monro’s algorithm (1951) )[31]
based on its multidimensional form proposed in [6]. This method allows approximating our mea-
sures in the general case, with quite satisfactory convergence except for the asymptotic levels where
the number of observations is limited. We finish this work by a first introductory result on the
asymptotic multivariate expectile.

This paper is organized as follows. In a first section, we present the concept of multivariate
elicitability that will constitute the basis of our multivariate extensions of expectiles. Section 2 is
a presentation of some constructions of multivariate expectiles. We introduce a generalization of
expectiles in higher dimension using norms. We examine in details two expectiles families, euclidean
expectiles and matrix expectiles. We analyze the economic interpretation of the obtained measures,
and we discuss what could be the best construction. We then focus on matrix expectiles. We study
the different coherence properties that are satisfied by these measures in Section 3. In Section
4, using the Robbins-Monro’s stochastic optimization algorithm, we present an approximation
method of multivariate expectile in the general case. We give some numerical illustrations of this
method. The last section is an introduction to the study of the asymptotic behavior of multivariate
expectiles.

1. Elicitable risk measures

Since the publication of Gneiting’s work, the elicitability notion, coming originally from the deci-
sion theory, occupies more importance in the new literature and research studies on the coherence
properties of risk measures. In this section, we present a definition of elicitability. We analyze its
importance as a property in a context of risk measures and we examine its possible extension in a
multivariate case. The aim of this section is to present a general framework that will be the basis
of a construction of a vector valued risk measures in the next section.

A statistic T is elicitable if it can be written, for any random variable X, as a minimizer of a
scoring function denoted S

T (X) = arg min
x

EP[S(x,X)], X ∼ P.
2



The statistical utility of this property can be summarized in two important advantages:
• The ability to compare different statistical methods using the scoring function, and thus give
meaning to the backtesting procedures, which are very important in finance and insurance.
• The ability to produce forecasts and estimations by mean regression in the case of elicitable
measures.

For more details on the statistical importance of the elicitability property, we invite the reader to
consult papers [20] and [16].

1.1. Elicitability of risk measures. Elicitability is a desirable property of risk measures. The
usual measures are not all elicitable. Variance and TVaR are not elicitable, proofs are presented
in [25] for the Variance and in [20] for TVaR. The mean is elicitable because it can be written as

E[X] =
∫
xdF (x) = arg min

t
{E[(X − t)2]}.

Quantiles are also elicitable for any threshold level α ∈ [0, 1]. They can be written as a minimizer
of the scoring functions Sα(x, y) = α(y − x)+ + (1− α)(x− y)+ called Pinball functions

qα(X) = min{x : FX(x) ≥ α} = arg min
x∈R

{E[α(X − x)+ + (1− α)(x−X)+]}.

The natural question that arises is about the presence of any risk measures which are both coherent
and elicitable. Expectiles are the only coherent as well as elicitable risk measure according to Bellini
and Bignozzi (2015) [3].
The expectiles were introduced in the context of statistical regression models by Newey and Powell
(1987) [24].

Definition 1.1 (Expectiles (Newey and Powell, 1987)). For a random variable X with finite order
2 moment, the expectile of level α is defined as
(1.1) eα(X) = arg min

x∈R
E[α(X − x)2

+ + (1− α)(x−X)2
+],

where (x)+ = max(x, 0).

These measures are elicitable by construction. For α = 1/2 expectile coincides with the mean.
This risk measure is coherent for α > 1/2. For α < 1/2, the expectile is super-additive and there-
fore not coherent.

The uniqueness of the minimum is guaranteed by the strict convexity of the scoring function.
One can also define the expectiles using the optimality condition of the first order, as the unique
solution of the equation
(1.2) αE[(X − x)+] = (1− α)E[(x−X)+].
The above equation can also be written as

1− α
α

= E[(X − x)+]
E[(x−X)+] .

This makes the economic interpretation of expectile as measure clearer. The expectiles can be seen
as threshold that provides a Profits/Loss ratio of value 1−α

α
.

The properties of expectile risk measures have been studied in several recent papers. We recall
some of them. The proofs are presented in [16] and in [4].

• The expectile eα(X) is a strictly increasing function of α ∈ [0, 1];
3



• If the distribution of the random variable X is symmetrical with respect to a point x0 then,
eα(X) + e1−α(X)

2 = x0;

• The expectile eα(X) is a law invariant and positively homogeneous risk measure for all
0 < α < 1. It satisfies the invariance by translation;
• The expectiles satisfy

eα(−X) = −e1−α(X),
for all α ∈ [0, 1];
• The expectile eα(X) is stochastically strictly monotone function of X, which means if
X ≤ Y, a.s and P(X < Y ) > 0, then

eα(X) < eα(Y );
• The expectiles are sub-additive and then coherent for α ∈ [1/2, 1[, they are super additive
for α < 1/2;
• The expectiles are additive measures by linear dependence

corr(X, Y ) = 1 ⇒ eα(X + Y ) = eα(X) + eα(Y ),
but they are not comonotonically additive.

The asymptotic behavior of Expectiles is studied in [4]. The second order of this behavior is
analyzed in [27]. Bellini et al. (2014) [5] have introduced the generalized quantiles risk measures,
which include Expectiles, defined as a minimizer of an asymmetric error
(1.3) xα(X) = arg min

x∈R
{αE[Φ+((X − x)+)] + (1− α)E[Φ−((X − x)−)]},

where Φ+ and Φ− are a convex scoring functions. Expectiles corresponds to the case x → x2 for
both functions. Recently, Daouia et al. (2016) [12] proposed an estimation of the VaR and ES risk
measures using Expectiles.

1.2. Multivariate elicitability. In order to overcome the lack of elicitability of some usual risk
measures, several works have used multivariate versions of elicitability. Lambert (2008) [25] in-
troduced the concept of indirect elicitability which allows to consider variance as an elicitable
measure via the elicitability of the couple (E[X],E[X2]). The same kind of solution has been
proposed in [17] for the elicitability of the couple (VaR, TVaR) to allow validation of TVaR’s
Backtesting procedures.

The multivariate context of risk management and the multidimensional nature of statistics, make
the multivariate generalization of the elicitability property in higher dimension, a natural step of
a significant utility in risk modelling. The idea is to build multidimensional measures

T : P → Rd,

that can be written in the form
arg inf

u∈U
E[S(X,u)],

where X is a random vector in Rd and u a vector of size du which can be different from d and
U ⊂ Rdu .

Several authors have published important contributions on this subject. The elicitability of vec-
tor statistics was studied, using multivariate scoring functions, in [30]. Lambert et al. (2008) [25]
introduced the notion of k-elicitability, replacing the elicitability property by a linear combination
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of elicitable functional.

Multivariate elicitability also has great importance in the study of learning machines, we cite
as examples Frongillo and Kash (2015) [19] who study the elicitation of vector-valued measures
using the concept of the separability of scoring functions. According to this work, a vector-valued
statistics is elicitable, if it is the case for each component Ti : P → R, and in this case, the vector
is elicitable using the sum function of the univariate scoring functions Si. Separability of scoring
functions remains a strong assumption, as example, Osband (1985) shows that there is no separa-
ble scoring function that elicits a bivariate quantile.

In this paper, we use multivariate elicitability in a more general context. Our aim is the charac-
terization of elicitability in the case of multidimensional risk measures of the same size as the risk
vector. This vision is traduced by Definition 1.2.
Definition 1.2 (Elicitable vectorial measures). A vector-valued risk measure T : P → Rk is
elicitable if there exists a scoring function s : Rd × Rk −→ R, such that

T (X) ∈ arg inf
x∈U⊂Rk

E[s(X,x)],

for all random vector X.
In a recent paper, Fissler and Ziegel (2015) [17] studied this definition in the general case. When

the scoring function is strictly convex Definition 1.2 becomes simpler due to the uniqueness of the
minimum. In this paper, we will focus on this case.

We must distinguish between the multivariate elicitability as presented in Definition 1.2 and that
of the k-elicitability introduced by Lambert et al. (2008). For example, the variance is considered
as 2-elicitable since Var(X) = E[X2] − E[X]2 and the measures E[X2],E[X] are elicitable, which
does not necessarily imply the multivariate elicitability of the vector (E[X2],E[X]).

In the context of capital allocation, the allocation may be considered as a vector-valued risk
measure with k = d. In [28], an axiomatic characterization of multivariate coherence of capital
allocation methods is given. It deals with, in particular, the allocation by minimizing multivariate
risk indicators, which can be seen as scoring functions. The allocation as measure is therefore
elicitable in the sense of Definition 1.2.

2. Multivariate extensions of expectiles

Following the univariate approach, we present in this section some multivariate constructions of
Expectile risk measures.

Let ‖ . ‖ be a norm on Rd. We denote by (X)+ the vector (X)+ = ((X1)+, . . . , (Xd)+)T and by
(X)− the vector (X)− = ((X1)−, . . . , (Xd)−)T . We define the following scoring function

sα(X,x) = α ‖ (X− x)+ ‖2 +(1− α) ‖ (x−X)+ ‖2,

for all x ∈ Rd.

We call multivariate expectile any minimizer
x∗ ∈ arg min

x∈Rd
E[sα(X,x)].
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We consider the function φ : Rd × Rd −→ R defined by

φ(t,x) = α ‖ (t− x)+ ‖2 +(1− α) ‖ (x− t)+ ‖2 .

It is easy to verify that the function φ(t,x) is strictly convex in x, therefore, E[φ(X,x)] =
E[sα(X,x)] is also strictly convex in x. In this case, the uniqueness of the minimum is guar-
anteed, and the multivariate expectile of the vector X with a confidence level α is defined by

(2.1) eα(X) = arg min
x∈Rd

E[α ‖ (X− x)+ ‖2 +(1− α) ‖ (x−X)+ ‖2].

The obtained vector-valued risk measure is elicitable by construction. The choice of a common
threshold α for all the components of X seems natural in insurance contexts, since the accepted
risk level must be the same between all off them.

In order to illustrate the construction, we present two possible examples of multivariate expectiles
families.

2.1. Euclidean Expectiles (Lp-expectiles). The Lp norms on Rd, ‖ . ‖p, 1 ≤ p ≤ ∞ are
potential candidates to construct multivariate expectiles. Definition 2.1 in this case becomes

eα(X) = arg min
x∈Rd

E[α ‖ (X− x)+ ‖2
p +(1− α) ‖ (x−X)+ ‖2

p].

For a norm ‖ . ‖p with p < +∞,

eα(X) = arg min
x∈Rd

E[α
(

d∑
i=1

(Xi − xi)p+
)2/p

+ (1− α)
(

d∑
i=1

(xi −Xi)p+
)2/p

].

Figure 1 is an illustration of the contour lines of the scoring function in the bivariate case

ψ(z) = α ‖ (z)+ ‖2
p +(1− α) ‖ (z)− ‖2

p,

for different level of α (α = 0.05, 0.5, 0.95) and different euclidean norms (L1, L2 and L10).

Figure 1. Lp-expectile: Contour lines of the scoring function
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When p = 2, the expectile is not taking into account the dependence. Indeed, the L2−expectile
is composed by the marginal univariate expectiles.

eα(X) = arg min
x∈Rd

E
[
α

(
d∑
i=1

(Xi − xi)2
+

)
+ (1− α)

(
d∑
i=1

(xi −Xi)2
+

)]

= arg min
x∈Rd

E
[
d∑
i=1

(
α(Xi − xi)2

+ + (1− α)(xi −Xi)2
+

)]
= (eα(X1), . . . , eα(Xd))T .

Overall, for p ≥ 1, we can determine the optimal solution with the first order necessary conditions
for optimality. We have for all k ∈ {1, . . . , d}

∇k(E[sα(X,x)]) =− 2αE
[
‖ (X− x)+ ‖p
‖ (X− x)+ ‖p−1

p

(Xk − xk)p−1
+ 11{Xk>xk}

]

+ 2(1− α)E
[
‖ (x−X)+ ‖p
‖ (x−X)+ ‖p−1

p

(xk −Xk)p−1
+ 11{Xk<xk}

]
.

The first order necessary conditions for optimality can be written

αE
[
‖ (X− x)+ ‖p
‖ (X− x)+ ‖p−1

p

∂(X− x)+

∂x
(X− x)p−1

+

]
= (1−α)E

[
‖ (x−X)+ ‖p
‖ (x−X)+ ‖p−1

p

∂(x−X)+

∂x
(x−X)p−1

+

]
.

The Lp-expectile is the unique solution of the equation system
(2.2)

αE
[
‖ (X− x)+ ‖p
‖ (X− x)+ ‖p−1

p

(Xk − xk)p−1
+ 11{Xk>xk}

]
= (1−α)E

[
‖ (x−X)+ ‖p
‖ (x−X)+ ‖p−1

p

(xk −Xk)p−1
+ 11{Xk<xk}

]
,

for all k ∈ {1, . . . , d}.
For 2 < p < +∞, the equations system (2.2) can be written as follows

αE
[

(Xk − xk)p−1
+

‖ (X− x)+ ‖p−2
p

]
= (1− α)E

[
(Xk − xk)p−1

−

‖ (X− x)− ‖p−2
p

]
∀k ∈ {1, . . . , d},

the dependence is taken into account by using the norm. In order to enlighten the economic
interpretation, we write the previous system in the following form

E[(Xk − xk)+
(

(Xk−xk)+
‖(X−x)+‖p

)p−2
]

E[(Xk − xk)−
(

(Xk−xk)−
‖(X−x)−‖p

)p−2
]

= 1− α
α

∀k ∈ {1, . . . , d}.

The multivariate expectile can be considered as a vector of thresholds that makes a ratio relative
gains / relative losses identical between all random variables Xk. The multivariate expectile can
be considered as a vector of thresholds that makes a ratio relative gains / relative losses identical
between all random variables Xk. The adjective “relative” reflects the presence of a weight power
of each Xk

(
(Xk−xk)+
‖(X−x)+‖p

)p−2
(
(

(Xk−xk)−
‖(X−x)−‖p

)p−2
) in the total aggregated by the norm. This interpreta-

tion is more intuitive in the case p = 3.

The case p = 1 is quite interesting, a new equivalent definition can be given to the L1-expectile
using the first order condition of optimality (2.2). The L1−expectile is the unique solution in Rd

of the following system

αE[‖ (X− x)+ ‖1 11{Xk>xk}] = (1− α)E[‖ (X− x)− ‖1 11{Xk<xk}], ∀k ∈ {1, . . . , d}.
7



or equivalently

(2.3) E[‖ (X− x)+ ‖1 11{Xk>xk}]
E[‖ (X− x)− ‖1 11{Xk<xk}]

= 1− α
α

,∀k ∈ {1, . . . , d},

which can be interpreted as a ratio of an activity participation in the positive scenarios and its
participation in the negative ones. The multivariate expectile represents in this case, the vector
of marginal levels that make this ratio constant for all the activities, and thereby, balance the risk
level between the portfolio’s components. In insurance, and considering the random variables as
risks, the interest will be to minimize the ratio β = (1−α)/α, which means to increase the level α.
From this point of view, the multivariate expectile may be a capital allocation tool. It can also
be seen as vector of thresholds that balances the systemic risk of all the components of the risk
vector.
On another side, the expectile vector can also be used as evaluation tool for some optimal rein-
surance cases. In fact, in the Stop-Loss reinsurance, the reinsurer pays the part of a risk Xi that
exceeds a certain amount ui. For d Stop-Loss contracts, the multivariate expectile represent the
vector of the amounts that makes constant, for all the contracts, the ratio of the participation of in
the reinsurer expected loss and its participation of the insurer insureds expected loss. It can also
give an idea about the impact of a new contract on the others, and help to propose an amount ui
for the new contract.

Equation (2.3) can be written using bivariate expected values

(2.4) α
d∑
i=1

E[(Xi − xi)+11{Xk>xk}] = (1− α)
d∑
i=1

E[(Xi − xi)−11{Xk<xk}],∀k ∈ {1, . . . , d}.

The system (2.4) can also be written using the bivariate Stop-Loss transform functions, introduced
and studied for actuarial application in [21]. Remark that the L1-expectile takes into account only
the bivariate dependence.

2.2. Matrix Expectiles (Σ-expectiles). It is also possible to construct multivariate expectiles
using matrices. The idea is to choose a real symmetric matrix Σ to define a multivariate scoring
function.
Several usual matrices can be used to construct multivariate expectiles, as examples

• Mahalanobis expectiles: If Σ is the inverse matrix of the matrix of covariances, which is
equivalent to the use of Mahalanobis distance, we can call the obtained vector Mahalanobis
expectile. This constructions is more adapted to the random vectors of elliptic marginal
distributions.
• Correlated expectiles: This construction is based on the use of a correlation matrix. We
can also use any other bivariate dependence measure as coefficients of the construction
matrix.

Definition 2.1 (Multivariate matrix expectiles). Let X = (X1, . . . , Xd)T ∈ Rd be a random vector
such that E[|XiXj|] < +∞ for all (i, j) ∈ {1, . . . , d}2, and Σ = (πij)1≤i,j≤d a real square matrix of
order d, symmetric and positive semi-definite that verifies

(1) For all i ∈ {1, . . . , d}, πii = πi > 0;
(2) For all i, j ∈ {1, . . . , d}, πii ≥ πij.

We call a Σ−expectile of X, all vector verifying

eΣ
α(X) ∈ arg min

x∈Rd
E[α(X− x)T+Σ(X− x)+ + (1− α)(X− x)T−Σ(X− x)−],

8



if the solution is unique, the multivariate expectile of the vector X is

(2.5) eΣ
α(X) = arg min

x∈Rd
E[α(X− x)T+Σ(X− x)+ + (1− α)(X− x)T−Σ(X− x)−].

This construction gives a more general framework that encompass several examples, especially
the correlated expectiles, Mahalanobis expectile, and the L1 euclidean expectile if Σij = 1,∀i, j.

Under the coefficients positivity assumption of the construction matrix, the multivariate expec-
tile is finally, the unique solution of the following system of equations

(2.6) α
d∑
i=1

πkiE[(Xi − xi)+11{Xk>xk}] = (1− α)
d∑
i=1

πkiE[(xi −Xi)+11{xk>Xk}], ∀k ∈ {1, . . . , d},

equivalent to

(2.7) α =
∑d
i=1 πkiE[(xi −Xi)+11{xk>Xk}]∑d

i=1 πki
(
E[(Xi − xi)+11{Xk>xk}] + E[(xi −Xi)+11{xk>Xk}]

) , ∀k ∈ {1, . . . , d},
or ∑d

i=1 πkiE[(Xi − xi)+11{Xk>xk}]∑d
i=1 πkiE[(xi −Xi)+11{xk>Xk}]

= 1− α
α

, ∀k ∈ {1, . . . , d}.

In order to illustrate this construction, Figure 2 shows the impact of the multivariate approach
compared with univariate expectile and the quantile and of the same threshold. It exemplifies
also the impact of the correlation measure choice on the behavior of the obtained multivariate
expectile. For an FGM bivariate model, we analyze the difference between a construction using
a static matrix, illustrated by the L1-expectile, and using a dynamic dependence matrix. In this
example, three matrix-expectiles are considered: Pearson’s, Spearman’s and Kendall’s expectiles,
with πii = 1 and respectively πij = θij

4 πij = θij
3 or πij = 2θij

9 ,∀i 6= j ∈ {1, 2}, where θij are the
parameters of the FGM model.
The impact is more important for the least risky branch.

Figure 2. Impact of construction’s choice in FGM bivariate model with dependence
parameter θ = 1 (left X1 ∼ E(0.05), right X2 ∼ E(0.25)).
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The curves order follows the order of the dependence measures. The more dependence, the
further away from the univariate case the curve is.

The impact of matrix Σ choice is visible in the expectiles behavior in the presence of dependence.
Figure 3 shows that the impact of dependence is not the same between the different constructions.
The L1 expectile seems to be an increasing function of the dependence level. At the opposite, the
other expectiles are decreasing when the dependence weight increases.

Figure 3. Impact of dependence in FGM bivariate model for α = 0.95 (left X1 ∼
E(0.05), right X2 ∼ E(0.25)).

Other constructions are possible. We can define a geometric expectiles following the same ideas
as for geometric quantiles. The Chaudhuri’s approach (1996) [9] and the Abdous and Theodor-
escu’s one (1992) [1] are easily adjustable for this purpose.

The choice of the construction may differ according to the practical goal. For example, the use of
the correlation matrix reflects a choice of dependence modeling between risks. A matrix composed
of tail dependence coefficients emphasizes the consideration of tail dependence. That is why we
believe that the question of construction choice should be left open to the users, and it must take
into account their applications needs. However, the simplest one remains the matrix expectiles.
In fact, using positive semi-definite matrix with positive coefficients, the strict convexity of the
scoring function is guaranteed, and the first order condition of optimality is easy to get as a system
of equations linking transformed Stop-Loss functions. For these reasons, the rest of our study is
focused on this expectiles family as defined in Definition 2.1.

3. Properties of multivariate expectiles

In this section we give some elementary properties of the multivariate expectiles. We then
discuss the sub-additivity and monotonicity properties.

3.1. Elementary properties. Several desirable properties are satisfied by multivariate expectiles.
In this subsection we present some of these properties.

10



Proposition 3.1. For any order 2 random vector X = (X1, . . . , Xd)T in Rd

(1) Positive homogeneity : for any non negative real constant a,

eα(aX) = aeα(X).

(2) Invariance by translation : for any vector a = (a1, . . . , ad)T in Rd,

eα(X + a) = eα(X) + a.

(3) Law invariance : for any order 2 random vector Y = (Y1, . . . , Yd)T on Rd such that
(Xi, Xj) L= (Yi, Yj) for all (i, j) ∈ {1, . . . , d}2, then

∀α ∈ [0, 1], eα(X) = eα(Y ).

(4) Pseudo-invariance by linear transformations : We denote by eΣ
α the multivariate expectile

obtained using the matrix Σ.
For any vectors a = (a1, . . . , ad)T ∈ Rd and b = (b1, . . . , bd)T ∈ (R+∗)d,

eΣ
α(VX + a) = V eV ΣV

α (X) + a,

where V is the diagonal square matrix associated to b, V = Diag(bT ).

Proof. The proofs of the first 3 items are straightforward using (2.7).
For (4), using (2), it is sufficient to prove that

eΣ
α(VX) = V eV ΣV

α (X).

We have

eΣ
α(VX) = arg min

x∈Rd
E[α(VX− x)T+Σ(VX− x)+ + (1− α)(VX− x)T−Σ(VX− x)−]

= arg min
x∈Rd

E[α(X− V −1x)T+V TΣV (X− V −1x)+ + (1− α)(X− V −1x)T−V TΣV (X− V −1x)−]

= V eV TΣV
α (X) = V eV ΣV

α (X),

because V is symmetric. �

Proposition 3.2 (Symmetry with respect to α). For any order 2 random vector X = (X1, . . . , Xd)T
in Rd, and any α ∈ [0, 1],

eα(−X) = −e1−α(X).

Proof. We denote by x∗ = e1−α(X) the multivariate expectile with threshold (1−α) associated to
the random vector X and x = eα(−X) the multivariate expectile threshold α associated to −X.
Using the optimality condition (2.6), x is the unique solution of the following equation system

α
d∑
i=1

πkiE[(−Xi − xi)+11{−Xk>xk}] = (1− α)
d∑
i=1

πkiE[(xi +Xi)+11{xk>−Xk}], ∀k ∈ {1, . . . , d},

rewritten as

α
d∑
i=1

πkiE[(−xi −Xi)+11{Xk<−xk}] = (1− α)
d∑
i=1

πkiE[(Xi − (−xi))+11{−xk<Xk}], ∀k ∈ {1, . . . , d}.

From that we deduce −x is the unique solution of the optimality condition corresponding e1−α(X),
so −x = x∗. �
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Proposition 3.3 (Impact of independence). For a random vector X = (X1, . . . , Xd)T , such that
∃i ∈ {1, . . . , d} with πij = 0,∀j ∈ {1, . . . , d}\{i}

eiα(X) = eα(Xi),

where eiα(X) is the ith coordinate of eα(X), and eα(Xi) is the univariate expectile associated to the
random variable Xi.

Proof. Since πij = 0 ∀j 6= i, the ith equation of the optimality system (2.7) is
αE[(Xi − eiα(X))+] = (1− α)E[(Xi − eiα(X))−],

which is the optimality condition that define the univariate expectile of Xi. �

Proposition 3.4 (The support stability). For any order 2 random vector X = (X1, . . . , Xd)T in
Rd

eiα(X) ∈ [xiI , xiF ].
where eiα(X) is the ith coordinate of eα(X), xiI = essInf(Xi) and xiF = essSup(Xi).

Proof. In the case of infinite marginal support, the result is trivial. Let us assume the existence of
k ∈ {1, . . . , d} such that xkF < +∞ and ekα(X) > xkF . The multivariate expectile is defined as

eα(X) = arg min
x∈Rd

E[α(X− x)T+Σ(X− x)+ + (1− α)(X− x)T−Σ(X− x)−],

and the minimum in this case is
min
x∈Rd

E[sα(X,x)] = min
x∈Rd

E[α(X− x)T+Σ(X− x)+ + (1− α)(X− x)T−Σ(X− x)−]

= (1− α)
πkE[(ekα(X)−Xk)2

+] +
∑

1≤i≤d,i 6=k
πikE[(eiα(X)−Xi)+(ekα(X)−Xk)+]


+ (1− α)

∑
1≤i≤d,i6=k
1≤j≤d,j 6=k

πijE[(eiα(X)−Xi)+(ejα(X)−Xj)+]

+ α
∑

1≤i≤d,i 6=k
1≤j≤d,j 6=k

πijE[(Xi − eiα(X))+(Xj − ejα(X))+],

because E[(Xk − ekα(X))+(Xi − eiα(X))+] = 0 for all i ∈ {1, . . . , d}.
The function x −→ (1 − α)

(
πkE[(x−Xk)2

+] +∑
1≤i≤d,i 6=k πikE[(eiα(X)−Xi)+(x−Xk)+]

)
is non

decreasing in x, considering ekα(X) > x∗ > xiF , for i ∈ {1, . . . , d}\{k}
E[(Xk − x∗)2

+] = E[(Xk − x∗)+(Xi − eiα(X))+] = 0,
we have for x∗ = (e1

α(X), . . . , ek−1
α (X), x∗, ek+1

α (X), . . . , edα(X))

E[sα(X,x∗)] = (1− α)
πkE[(x∗ −Xk)2

+] +
∑

1≤i≤d,i 6=k
πikE[(eiα(X)−Xi)+(x∗ −Xk)+]


+ (1− α)

∑
1≤i≤d,i 6=k
1≤j≤d,j 6=k

πijE[(eiα(X)−Xi)+(ejα(X)−Xj)+]

+ α
∑

1≤i≤d,i 6=k
1≤j≤d,j 6=k

πijE[(Xi − eiα(X))+(Xj − ejα(X))+]

< E[sα(X, eα(X))] = min
x∈Rd

E[sα(X,x)],
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which is absurd. We deduce that
ekα(X) ≤ xkF , ∀k ∈ {1, . . . , d},

and using the symmetry by α property, we get
ekα(X) ≥ xkI , ∀k ∈ {1, . . . , d}.

�

Proposition 3.5 (Strong intern monotonicity). We consider the case of multivariate expectile
constructed using a symmetric positive-definite matrix Σ = (πij)1≤i≤j≤d of a positive coefficients.
For any order 2 random vector X = (X1, . . . , Xd)T in Rd, if there exists a couple (i, j) ∈ {1, . . . , d}2

such that Xi ≤ Xj, a.s, πi ≤ πj, πik ≤ πjk for all k ∈ {1, . . . , d}\{i, j}, and the couples (Xi, Xk)
and (Xj, Xk) have the same copula for all k ∈ {1, . . . , d}\{i, j}, then

eiα(X) ≤ ejα(X),
for all α ∈ [0, 1].

Proof. Let (X1, . . . , Xd)T be a random vector in Rd. We suppose the existence of i and j such that
Xi ≤ Xj, a.s. We denote by lαXi,Xj for all (i, j) ∈ {1, . . . , d}2 the functions

lαXi,Xj(xi, xj) = αE[(Xi − xi)+11{Xj>xj}]− (1− α)E[(Xi − xi)−11{Xj<xj}],

for all (xi, xj) ∈ R2, and by lαXi the function lαXi(xi) = lαXi,Xi(xi, xi).
The multivariate expectile is the unique solution of System (2.6) that can be written using the
functions lα

(3.1)
d∑
i=1

πkil
α
Xi,Xk

(xi, xk) = 0 ∀k ∈ {1, . . . , d}.

The functions lαXi are non increasing for all i ∈ {1, . . . , d}, and lαXi,Xj(xi, xj) are non increasing in
xi for all (i, j) ∈ {1, . . . , d}2. On another side, for all (i, j) ∈ {1, . . . , d}2

lαXi,Xj(xi, xj) = E[(α(Xi − xi)+ + (1− α)(Xi − xi)−) 11{Xj≥xj}]− (1− α)E[(Xi − xi)−],
functions lαXi,Xj are then non increasing in xj too.
We deduce that if Xi ≤ Xj, a.s, then for all Xk that has the same bivariate copula with both Xi

and Xj, we have
lαXk,Xi(xk, x) ≤ lαXk,Xj(xk, x), ∀(xk, x).

Now, we suppose that xj = ejα(X) < eiα(X) = xi.
We have

lαXk,Xi(xk, xi) ≤ lαXk,Xi(xk, xj) ≤ lαXk,Xj(xk, xj),∀k ∈ {1, . . . , d} \ {i, j}.
The coefficients of Σ verify

0 ≤ πik ≤ πjk,∀k ∈ {1, . . . , d},
so, from the system of optimality (3.1), we can deduce that

(3.2)
d∑

k=1,k 6=i,k 6=j
πikl

α
Xk,Xi

(xk, xi) ≤
d∑

k=1,k 6=i,k 6=j
πjkl

α
Xk,Xj

(xk, xj).

Since xi > xj, the almost sure dominance Xi ≤ Xj, a.s implies
11{Xi≥xi,Xj≤xj} = 0.

We deduce from that
E[(Xi − xi)+] = E[(Xi − xi)+11{Xj>xj}] and E[(Xj − xj)−] = E[(Xj − xj)−11{Xi<xi}],
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hence, we obtain
lαXi(xi) < lαXi,Xj(xi, xj) and lαXj ,Xi(xj, xi) < lαXj(xj),

which gives us
(3.3) πijl

α
Xi

(xi) + πijl
α
Xj ,Xi

(xj, xi) < πjjl
α
Xj

(xj) + πijl
α
Xi,Xj

(xi, xj).
We have

lαXi(x) ≤ lαXj(x), ∀x,
because the function t −→ α(t− x)+ − (1− α)(x− t)+ is non decreasing in t. Therefore
(3.4) (πi − πij)lαXi(xi) ≤ (πj − πij)lαXj(xj),
because 0 ≤ πi − πij ≤ πj − πij.
Finally, form (3.4) and (3.3)
(3.5) πil

α
Xi

(xi) + πijl
α
Xj ,Xi

(xj, xi) < πjl
α
Xj

(xj) + πijl
α
Xi,Xj

(xi, xj),
which is contradictory with (3.2) and the system of optimality (3.1). �

Lemma 3.6 (Impact of dependence). Let X = (X1, . . . , Xd)T be an order 2 For any order 2
random vector.

(1) If there exists (i, j) ∈ {1, . . . , d}2 such that (Xi, Xk) L= (Xj, Xk), πi = πj, πik = πjk for all
k ∈ {1, . . . , d}, then

eiα(X) = ejα(X),
for all α.

(2) If the vectors (Xi, Xj) i 6= j have the same distribution, and there exists a positive constant
π such that πij = π for all i 6= j ∈ {1, . . . , d}, πi = πj for all i, j ∈ {1, . . . , d}, then
(a)

eα(X) = x∗11Rd ,

where x∗ is the solution of the following equation

α(E[(X−x)+]+(d−1) π
π1

E[(X2−x2)+11{X1>x1}]) = (1−α)(E[(X−x)−]+(d−1) π
π1

E[(X2−x2)−11{X1<x1}]).

(b) If the vector X is comonotonic then
eα(X) = eα(X)11Rd ,

where eα(X) is the univariate expectile of the random variable X.
(c) If the bivariate common copula is denoted C then

C 4 C ′ ⇒ eCα (X) ≤ eC′α (X),
for all α ≥ 1/2, where eCα (X) is the multivariate expectile associated to C.

Recall that for all bivariate copulas C and C ′

C 4 C ′ ⇔ C(u, v) ≤ C ′(u, v)∀(u, v) ∈ [0, 1]2.
Proof. For (1) we just apply the law invariance property for the random vectors X = (X1, . . . , Xd)T
and Y = (X1, . . . , Xi−1, Xj, Xi+1, . . . , Xj−1, Xi, Xj+1 . . . , Xd)T .
For (2− a), using (1)

eiα(X) = ejα(X) = x∗, ∀i, j ∈ {1, . . . , d}.
The multivariate expectile is the unique solution of Equation System (2.6), which can be written
as

d∑
i=1

πkil
α
Xi,Xk

(xi, xk) = 0 ∀k ∈ {1, . . . , d},
14



where,
lαXi,Xj(xi, xj) = αE[(Xi − xi)+11{Xj>xj}]− (1− α)E[(Xi − xi)−11{Xj<xj}],

for all (xi, xj) ∈ R2. These function are depending only of the bivariate distributions of (Xi, Xj),
so, in our case

lαXi,Xj(x
∗, x∗) = lαX1,X2(x∗, x∗), ∀i 6= j ∈ {1, . . . , d}.

We denote by lαXi the function l
α
Xi

(xi) = lαXi,Xi(xi, xi). It depends only on the marginal distribution
of Xi, and in our case

lαXi(x
∗) = lαX(x∗) ∀i ∈ {1, . . . , d}.

With the previous notations, and using the optimality system, x∗ is the unique solution of the
following equation

π1l
α
X(x∗) + (d− 1)πlαX1,X2(x∗, x∗) = 0.

(2− b) is a direct application of (2− a). In fact, for the comonotonic case

lαX1,X2(x∗, x∗) = lαX(x∗),

x∗ is then the unique solution of the equation lαX(x∗) = 0, which is exactly the univariate expectile
definition.
For (2− c), with lαC(x) = lαX1,X2(x, x), we have

lαC(x) = αE[(X2 − x)+11{X1>x}]− (1− α)E[(X2 − x)−11{X1<x}],

then for α ≥ 1/2

lαC(x) = (α− 1/2)
(
E[(X2 − x)+11{X1>x}] + E[(X2 − x)−11{X1<x}]

)
+ 1/2

(
E[(X2 − x)+11{X1>x}]− E[(X2 − x)−11{X1<x}]

)
= (α− 1/2)

(
E[(X2 − x)+11{X1>x}] + E[(X2 − x)−11{X1<x}]

)
+ 1/2

(
E[(X2 − x)11{X1>x}]− E[(X2 − x)−]

)
,

we deduce that for all bivariate copulas C and C ′ if C 4 C ′ then

(3.6) lαC(x) ≤ lαC′(x),

for all x.
We consider two bivariate copulas C and C ′ such that C 4 C ′, we denote by eCα (X) the multivariate
expectile associated to C, and we suppose that eC′α (X) < eCα (X). lαC is non increasing in x, so,
using (3.6) we get

(3.7) lαC(eCα (X)) ≤ lαC′(eCα (X)) ≤ lαC′(eC
′

α (X)).

On the other hand, lαX is strictly decreasing for continuous distributions, then

lαX(eCα (X)) < lαX(eC′α (X)),

and consequently

(3.8) lαC′(eC
′

α (X)) < lαC(eCα (X)).

The inequalities (3.7) and (3.8) are contradictory, so eCα (X) ≤ eC′α (X). �
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Proposition 3.7 (Derivatives with respect to α). Let X = (X1, . . . , Xd)T be a random vector of
a continuous distribution in Rd. We consider a multivariate expectile constructed using a positive
semi-definite matrix, then the vector X∂α = (∂e1

α(X)
∂α

, . . . , ∂edα(X)
∂α

)T composed of the derivatives by α
satisfies the following system of equations

Bk
∂xk
∂α

+
d∑
i=1

γki
∂xi
∂α

= Ak, ∀k ∈ {1, . . . , d},

where

Ak =
d∑
i=1

πkiE[(Xi − xi)+11{Xk>xk}] +
d∑
i=1

πkiE[(xi −Xi)+11{Xk<xk}] ≥ 0,

and

Bk = fXk(xk)
d∑

i=1,i 6=k
πki (αE[(Xi − xi)+ | Xk = xk] + (1− α)E[(xi −Xi)+ | Xk = xk]) ,

for all k ∈ {1, . . . , d}, and

γki = απkiP(Xi > xi, Xk > xk) + (1− α)πkiP(Xi < xi, Xk < xk), ∀(i, k) ∈ {1, . . . , d}2.

Proof. We denote xi = eiα(X). From the system of optimality (2.7)

α
d∑
i=1

πkiE[(Xi − xi)+11{Xk>xk}] = (1− α)
d∑
i=1

πkiE[(xi −Xi)+11{Xk<xk}], ∀k ∈ {1, . . . , d}.

Thus ∀ k = 1, . . . , d

Ak = ∂xk
∂α

d∑
i=1

πki

(
(1− α) ∂

∂xk
E[(xi −Xi)+11{Xk<xk}]− α

∂

∂xk
E[(Xi − xi)+11{Xk>xk}]

)

+
d∑

i=1,i 6=k
πki

∂xi
∂α

(
(1− α) ∂

∂xi
E[(xi −Xi)+11{Xk<xk}]− α

∂

∂xi
E[(Xi − xi)+11{Xk>xk}]

)
,(3.9)

where Ak = ∑d
i=1 πkiE[(Xi − xi)+11{Xk>xk}] +∑d

i=1 πkiE[(xi −Xi)+11{Xk<xk}].
Moreover, ∀i 6= k = 1, . . . , d

∂

∂xk
E[(Xi − xi)+11{Xk>xk}] =

∫ +∞

xi
−fXk(xk)P(Xi > t | Xk = xk)dt

= −fXk(xk)E[(Xi − xi)+ | Xk = xk],
and

∂

∂xk
E[(xi −Xi)+11{Xk<xk}] = fXk(xk)E[(xi −Xi)+ | Xk = xk],

∂

∂xi
E[(Xi − xi)+11{Xk>xk}] = P(Xi > xi, Xk > xk), ∀(i, k) ∈ {1, . . . , d}2,

∂

∂xi
E[(xi −Xi)+11{Xk<xk}] = P(Xi < xi, Xk < xk), ∀(i, k) ∈ {1, . . . , d}2.

From (3.9), we deduce that X∂α = (∂x1
∂α
, . . . , ∂xd

∂α
)T satisfies the announced equation system.

�

In this subsection, we have shown that multivariate expectiles satisfy a set of desirable properties
of multivariate risk measures that confirms their potential utility.
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3.2. Discussion on coherence properties. If invariance by translation and positive homogene-
ity properties have natural extensions in higher dimension, the properties of sub-additivity and
monotonicity can be defined in different ways (see e.g. [8] for some constructions when the risk
measure takes values in an abstract cone). In fact, the sub-additivity property is generalizable
using different concepts. Using an internal regulation point of view, with an allocation concept,
consider a vector valued risk measure ρ as sub-additive if for all random vector X = (X1, . . . , Xd)T
in Rd, and all subset S of D = {1, . . . , d} of cardinal |S|

∑
i∈S

ρi(X) ≤ ρ1

(∑
i∈S

Xi, Xj∈D\S

)T ,
where ρi, i = 1 . . . , d denote the components of the vector ρ(X) and

(∑
i∈S Xi, Xj∈D\S

)T
is the

Rd−|S|+1 random vector, composed of the random variables ∑i∈S Xi, Xj∈D\S. This definition
expresses that the measure takes into account the diversification gain inside the vector X. Another
point of view is to consider ρ as sub-additive, if for all random vectors X and Y on Rd

ρ(X + Y ) 4v ρ(X) + ρ(Y )
where 4v denotes an order on vectors, for example the componentwise order:

ρi(X + Y ) ≤ ρi(X) + ρi(Y ),∀i ∈ {1, . . . , d}.
The convexity property can be defined with the same approach, and as the multivariate expectiles
are positively homogeneous, it is equivalent to the sub-additivity.

The monotonicity property can also be generalized using different definitions derived from several
multivariate stochastic orders, like the supermodular one.
For all random vectors X and Y on Rd

X 4SOV Y ⇒ ρ(X) 4v ρ(Y )
where 4SOV is a multidimensional stochastic order and 4v denotes an order on vectors.
One aim of multivariate risk measures is to quantify the systemic risk. In this perspective, the
internal monotonicity property may be a sufficient requirement.

As already mentioned in this article, the elicitability property can be a basis of the definition
of coherence. We could say that a multivariate risk measure taking values in Rk is coherent if it
satisfies:

(1) ρ is elicitable;
(2) For all Rd risk vector X and a vector a ∈ Rd, ρ(X + a) = ρ(X) + a;
(3) For all Rd risk vector X and a real α ∈ R+, ρ(α.X) = α.ρ(X);
(4) There exists s : Rd × Rk −→ R a strictly F -consistent scoring function for ρ, where the

class F of probability distributions is the domain of ρ, such that for all X, Y Rd risk vectors
X 6cx Y ⇒ EF [s(X, ρ(X))] ≤ EF [s(Y, ρ(Y))],∀F ∈ F ;

(5) There exists s : Rd × Rk −→ R a strictly F -consistent scoring function for ρ, such that,
EF [s(X + Y, ρ(X + Y))] ≤ EF [s(X, ρ(X))] + EF [s(Y, ρ(Y))],

for all X, Y risk vectors in Rd and for all F ∈ F .
In the case of the proposed multivariate expectiles, only (4) is not proved in this paper, and (5)
can replace the sub-additivity property. In the univariate case, it is well known that the expectile
is consistent with convex stochastic order, a proof is to be found in [22].
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4. Stochastic estimation

In general, the multivariate expectiles cannot be calculated directly, but their estimation is
possible using noisy observations. In this section, we present a stochastic approximation method
which is adapted to the multivariate expectiles. We mainly use some usual stochastic optimization
and root finding algorithms.

The multivariate expectile obtained using a positive semi-definite matrix Σ = (πij)1≤i≤j≤d, is
the unique solution of system of equations (2.6)

α
d∑
i=1

πkiE[(Xi − xi)+11{Xk>xk}] = (1− α)
d∑
i=1

πkiE[(xi −Xi)+11{xk>Xk}], ∀k ∈ {1, . . . , d},

which has also the form
φ(x) = E[Φ(x,X)] = 0,

where Φ(.,X) is a function of Rd on Rd, with

Φk(x,X) =
d∑
i=1

πki
(
α(Xi − xi)+11{Xk>xk} − (1− α)(xi −Xi)+11{xk>Xk}

)
, k ∈ {1, . . . , d}.

The stochastic approximation methods are iterative algorithms of the following form
xn+1 = xn + γnΦ(xn,Xn+1),

where (γn) is a deterministic sequence of steps which satisfies some further specified conditions,
and (Xn) is a sequence of independent and identically distributed random vectors, obtained from
the same distribution of a generic random variable X.

4.1. Robbins-Monro’s algorithm. To obtain the multivariate expectile, we use the Robbins-
Monro’s algorithm. We denote by x the desired expectile. The idea of the algorithm is to define
a sequence (xn)

xn+1 = xn + γnZn+1,

where x0 ∈ Rd is the starting point, and Zn+1 is an observed random variable which satisfies
φ(xn) = E[Zn+1 | Fn] with Fn the σ−algebra of information present in the time n

Fn = σ(x0,Z1,x1, . . . ,xn−1,Zn).
Here, we use the version of the Robbins-Monro’s theorem as presented in [18] (Theorem 1.3.1).

Theorem 4.1 (Robbins-Monro). Under the following assumptions:
(1) φ is a continuous function;
(2) For all x 6= x∗,

(x− x∗)Tφ(x) < 0;
(3) For al n ≥ 0,

E[Zn+1 | Fn] = φ(xn), a.s.;
(4) There exists K > 0 such that

E[‖ Zn+1 ‖2| Fn] ≤ K
(
1+ ‖ xn − x∗ ‖2

)
a.s.;

(5) The sequence (γn) is decreasing to 0 and satisfies
+∞∑
n=0

γn = +∞ et
+∞∑
n=0

γ2
n < +∞,
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the sequence (xn) defined by
xn+1 = xn + γnZn+1,

converges almost surely to x∗, solution of φ(x∗) = 0.

The first two assumptions deal with the regularity of φ, they guarantee the uniqueness of the
solution. Assumptions 3 and 4 are related to the observations sequence, they respectively guarantee
its close distance to the exact value and its variance control. The last assumption on the sequence
of steps is required to achieve convergence. Other modified versions of the algorithm are proposed
in the literature when these assumptions are not satisfied.

4.2. Application for multivariate expectiles. For a random vector X of continuous marginal
distributions, the function φ defined by φ(x) = E[Φ(x,X)] is clearly continuous.
On the other hand, the multivariate expectile x∗ is the minimum of a strict convex function on Rd

of gradient −2φ(x), it satisfies then for all x ∈ Rd \ {x∗}

< −2φ(x) + 2φ(x∗),x− x∗ > = < −2φ(x),x− x∗ > > 0,

we deduce from that, for all x 6= x∗,

(x− x∗)Tφ(x) < 0.

The assumptions of Robbins-Monro’s Theorem 4.1 on φ thus satisfied.
Consider the sequence of independent and identically distributed random vectors (Xn) L= X.

We define the sequence of observations (Zn) for each iteration n ≥ 1 by

Z(k)
n =

d∑
i=1

πki

(
α(X(i)

n − x(i)
n−1)+11{X(k)

n >x(k)
n−1}
− (1− α)(x(i)

n−1 −X(i)
n )+11{X(k)

n <x(k)
n−1}

)

for all k ∈ {1, . . . , d}, where x(i) denote the ith coordinate of x. This previous sequence satisfies
for all k ∈ {1, . . . , d} and all n ≥ 0

E[Z(k)
n+1 | Fn] = φk(xn), a.s.,

hence
∀n ≥ 0, E[Zn+1 | Fn] = φ(xn), a.s..

Using the triangle inequality of the absolute value as norm, and then the Hölder’s inequality
(p = q = 2), by setting K = 2 max (α, 1− α)2

(∑d
k=1

∑d
i=1 |πik|2

)
max (‖ X− x∗ ‖2, 1) we obtain

E[‖ Zn+1 ‖2| Fn] ≤ K
(
1+ ‖ xn − x∗ ‖2

)
a.s..

Robbins-Monro’s Theorem 4.1 assumptions on the observations sequence are satisfied. The theo-
rem is then relevant for any sequence of steps (γn), decreasing to 0, chosen such that

+∞∑
n=0

γn = +∞ et
+∞∑
n=0

γ2
n < +∞.

A natural choice of the sequence of steps is γn = 1/n or 1/nκ with 1/2 < κ < 1. More generally, the
choice of this sequence can be made by adjusting the constants κ, a, b such that γn = a/(b + n)κ.
Using some numerical illustrations, we will discuss the impact of this choice on the speed of
algorithm’s convergence.
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4.3. Numerical illustrations. We consider a simple bivariate exponential model. X1 ∼ exp(β1)
and X2 ∼ exp(β2). Firstly, we examine under the independence assumption the L1-expectile case
(πij = 1, ∀(i, j) ∈ {1, 2}2). The optimality system is explicit and composed of the two following
equations

(2α−1) 1
βi
e−βixi−(1−α)

(
xi −

1
βi

)
= (1−α)

(
xj −

1
βj

(1− e−βjxj)
)

(1−e−βixi)−α 1
βj
e−βjxje−βixi ,

for (i, j) ∈ {(1, 2), (2, 1)}. The exact solution can be determined using numerical optimization
methods. For our illustration, we use the Newton-Raphson’s multidimensional algorithm.
Figure 4 presents the result obtained for β1 = 0.05 (red) and β2 = 0.25 (blue). The exact value of
the bivariate expectile (20.02, 3.22) is represented by the straight dotted lines of the same colors,
respectively. In order to ensure the robustness of the result, we use an average of 100 outputs of
the algorithm.

Figure 4. Convergence of the algorithm: L1−expectile, Exponential independent
model (red β1 = 0.05, blue β2 = 0.25).

The graphical analysis of the error’s normality is shown in Figure 5. The impact of the sequence
of steps on the speed of convergence is illustrated in Figure 6. The convergence is not very sensitive
to the starting point choice.

The Robbins-Monro’s algorithm convergence is studied in [26]. Two CLT are presented, one for
the choice of 1/n as sequence of steps and the other in case of sequences of the form γn = γ/nκ,
where κ is a constant and 1/2 < κ < 1.

20



Figure 5. The algorithm’s error, L1−expectile, Exponential independent model.

Figure 6. Impact of the choice of the sequence of steps on the convergence.

We consider now a bivariate Pareto independent model. The two random variables are of Pareto
distribution, Xi ∼ Pa(a, bi), i ∈ {1, 2}, such that a > 1 and bi > 0 for all i ∈ {1, 2}. The system
of optimality of L1−expectile is explicit. The expectile (x1, x2)T is the unique solution of the
following system

lαXi(xi) = −lαXj ,Xi(xj, xi), (i, j) ∈ {(1, 2), (2, 1)},
where,

lαXi(xi) = (2α− 1) bi
a− 1

(
bi

bi + xi

)a−1

− (1− α)
(
xi −

bi
a− 1

)
,
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and

lαXj ,Xi(xj, xi) = bj
a− 1

((
bi

bi + xi

)a
− (1− α)

)(
bj

bj + xj

)a−1

−(1−α)
(

1−
(

bi
bi + xi

)a)(
xj −

bj
a− 1

)
.

The Newton-Raphson’s method is used to get the exact solution.
Figure 7 is an illustration of the difference in convergence between two different levels α = 0.7 and
α = 0.99 of the expectile.

Figure 7. Convergence of the algorithm, L1−expectile, Pareto independent model
(a = 2, red b1 = 10, blue b2 = 20).

Convergence is not very satisfactory for values of α close to 1. The algorithm is not efficient
to estimate the asymptotic expectile. A study of the asymptotic behavior of the expectile seems
necessary, particularly in cases where there is no analytical solution. The next section is devoted
to the asymptotic expectiles.

For the dependence case, we consider a random vector X = (X1, X2)T of exponential marginals
Xi ∼ E(βi), i = 1, 2 and bivariate FGM copula, as dependence structure, of parameter θ ∈ [−1, 1].
The expression of FGM bivariate copula is

CFGM
θ (u, v) = uv[1 + θ(1− u)(1− v)], ∀(u, v) ∈ [0, 1]2.

The FGM copula is presented in details in [29] (Example 3.12., section 3.2.5). We recall that it
is only a weak dependence structure that cannot take into account extreme dependencies. The
bivariate distribution function is given by

FX1,X2(x1, x2) = CFGM
θ (FX1(x1), FX2(x2))

= FX1(x1)FX2(x2)[1 + θF̄X1(x1)F̄X2(x2)]
= (1− e−β1x1)(1− e−β2x2) + θ(1− e−β1x1)(1− e−β2x2)e−β1x1e−β2x2 .
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The L1-expectile is the unique solution of the following optimality system

(2α− 1) 1
βj
e−βjxj − (1− α)

(
xj −

1
βj

)
= (1− α)(1− e−βjxj)(1− θe−βjxj)

(
xi −

1
βi

(1− e−βixi)
)

+ (1− α)θ2(1− e−βjxj)e−βjxj
(

2xi −
1
βi

(1− e−2βixi)
)

− α 1
βi
e−βixie−βjxj

(
1 + θ(1− e−βixi

2 )(1− e−βjxj)
)
,

for (i, j) ∈ {(1, 2), (2, 1)}.
Figure 8 presents the result obtained for β1 = 0.05 (red) and β2 = 0.25 (blue), in cases of positive
and negative dependence.

Figure 8. Convergence of the algorithm: L1−expectile α = 0.85, FGM model (left
θ = −1, right θ = 1, red β1 = 0.05, blue β2 = 0.25).

5. Asymptotic behavior

Let (X1, . . . , Xd)T be a random vector in Rd. The support of each random variable Xi is denoted
[xiI , xiF ], where xiI ∈ R ∪ {−∞} and xiF ∈ R ∪ {+∞}. We denote by XF the vector (x1

F , . . . , x
d
F )T ,

and by XI the vector (x1
I , . . . , x

d
I)T .

We recall the definition of functions lαXi,Xj for all (i, j) ∈ {1, . . . , d}2 as follows

(5.1) lαXi,Xj(xi, xj) = αE[(Xi − xi)+11{Xj>xj}]− (1− α)E[(Xi − xi)−11{Xj<xj}],

for all (xi, xj) ∈ R2. We also denote by lαXi the function lαXi(xi) = lαXi,Xi(xi, xi).
The System of optimality 2.6 can be written using these function as

(5.2)
d∑
i=1

πkil
α
Xi,Xk

(xi, xk) = 0 ∀k ∈ {1, . . . , d}.

We focus now on the asymptotic behavior of multivariate expectiles.
The construction matrix Σ is supposed constituted of positive coefficients (πij ≥ 0, ∀(i, j) ∈
{1, . . . , d}2).
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Proposition 5.1 (Asymptotic Expectiles). For any order 2 random vector X = (X1, . . . , Xd)T in
Rd, where E[|Xi|] < +∞ for all i ∈ {1, . . . , d},

lim
α−→1

eα(X) = XF, and lim
α−→0

eα(X) = XI.

If in addition, all supports are infinite, then for all k ∈ {1, . . . , d}
lim

xk−→+∞
α(x1, . . . , xd) = 1, and lim

xk−→−∞
α(x1, . . . , xd) = 0,

where

(5.3) α(x1, . . . , xd) =
∑d
i=1 πkiE[(xi −Xi)+11{xk>Xk}]∑d

i=1 πki
(
E[(Xi − xi)+11{Xk>xk}] + E[(xi −Xi)+11{xk>Xk}]

) .
Proof. It is sufficient to prove that

lim
α−→1

eα(X) = XF,

and we deduce the limit for α −→ 0 using the property of symmetry by α eα(−X) = −e1−α(X).
For simplicity, we make the proof for πij = 1∀(i, j) ∈ {1, . . . , d}2. The generalization is straight-
forward.
Taking if necessary a convergent subsequence, we consider that the limit lim

α−→1
eα(X) exists.

We define consider
J∞ := {i ∈ {1, . . . , d}| lim

α−→1
eiα(X) = xiF}.

Its complementary set is denoted J̄∞
J̄∞ := {i ∈ {1, . . . , d}|i /∈ J∞} = {i ∈ {1, . . . , d}| lim

α−→1
eiα(X) < xiF}.

We suppose firstly J∞ = ∅. Then, ∀ i, j ∈ J̄∞ = {1, . . . , d},
lim
α−→1

lαXi(xi) > 0

and
lim
α−→1

lαXi,Xj(xi, xj) > 0.
That is absurd, because it is contradictory with the system of optimality (5.2). From that, we
deduce J∞ 6= ∅.
There exists at least one k ∈ {1, . . . , d} such that lim

α−→1
ekα(X) = xkF . We have

lim
α−→1

lαXi,Xk(e
i
α(X), ekα(X)) = 0, ∀i ∈ J̄∞,

and
lim
α−→1

∑
i∈J∞

lαXi,Xk(e
i
α(X), ekα(X)) = − lim

α−→1

∑
i∈J∞

(
(1− α)E[(Xi − eiα(X))−11{Xk<ekα(X)}]

)
= 0,

by (5.2).
We deduce for i = k

lim
α−→1

lαXi(e
i
α(X)) = − lim

α−→1

(
(1− α)E[(Xk − eiα(X))−]

)
= 0, ∀i ∈ J∞.

(5.2)then leads to

(5.4) lim
α−→1

lαXk(e
k
α(X)) = − lim

α−→1

(
(1− α)E[(Xk − ekα(X))−]

)
= 0, ∀k ∈ J∞.

If we assume that J̄∞ 6= ∅, there exists ` ∈ {1, . . . , d} such that lim
α−→1

e`α(X) < x`F . In this case,

lim
α−→1

lαXi,X`(e
i
α(X), e`α(X)) = E[(Xi − lim

α−→1
eiα(X))+11{X`> lim

α−→1
e`α(X)}] ∈ R+\{+∞}, ∀i ∈ J̄∞,
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and using (5.4)

lim
α−→1

lαXi,X`(e
i
α(X), e`α(X)) = − lim

α−→1

(
(1− α)E[(Xi − eiα(X))−11{X`< lim

α−→1
e`α(X)}]

)
= 0, ∀i ∈ J∞,

because
E[(Xi − eiα(X))−11{X`< lim

α−→1
e`α(X)}] ≤ E[(Xi − eiα(X))−, ]

and
lim
α−→1

(
(1− α)E[(Xi − eiα(X))−]

)
= 0,

for all i ∈ J∞.
Finally, using the `th equation of optimality system (5.2), we conclude that

E[(Xi − lim
α−→1

eiα(X))+11{X`> lim
α−→1

e`α(X)}] = 0, ∀i ∈ J̄∞,

and in particularly that
E[(X` − lim

α−→1
e`α(X))+] = 0,

that is contradictory with the assumption lim
α−→1

e`α(X) < x`F . We deduce therefore that J̄∞ = ∅.
The second part of Proposition 5.1 is straightforward in the case of infinite supports. �

The multivariate expectile tends to the vector of the marginal endpoints when α → 1. The
asymptotic behavior models the situation of extreme risk, hence the practical importance of its
study, especially in insurance.

Conclusion

In this paper, we have presented different approaches to construct some multivariate risk mea-
sures. The starting point of these methods was the elicitability property. In a second time, we
have chosen a specific construction using matrices to study its coherence properties. Multivariate
expectiles are obtained using positive semi-definite matrices with positive coefficients, they take
into account the dependence structure and the marginal distributions. We also proposed a stochas-
tic approximation method for this family of measures, based on the Robbins-Monro’s algorithm.
For asymptotic expectile levels α, the approximation does not provide relevant information on the
behavior of expectile vector. A natural perspective of this work is to develop a theoretical analysis
and an estimation procedure of asymptotic expectiles.
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