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On Symbolic Approaches to Integro-Differential
Equations

François Boulier and François Lemaire and Markus Rosenkranz and Rosane
Ushirobira and Nathalie Verdière

Abstract Recent progress in computer algebra has opened new opportunities for
the parameter estimation problem in nonlinear control theory, by means of integro-
differential input-output equations. This paper recalls the origin of integro-differen-
tial equations. It presents new opportunities in nonlinear control theory. Finally, it
reviews related recent theoretical approaches on integro-differential algebras, illus-
trating what an integro-differential elimination method might be and what benefits
the parameter estimation problem would gain from it.

1 Introduction

Under the impulse of the founding papers of Michel Fliess [21], a school of re-
searchers developed an approach of nonlinear control theory formulated within the
framework of Ritt and Kolchin differential algebra [30,42]. This approach led to var-
ious constructive methods which were implemented on computer algebra software
dedicated for differential algebra [6, 7]. In this context, the present paper is con-
cerned with a parameter estimation method, which is connected to an algorithmic
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structural identifiability test, based on the computation of the so-called input-output
equation of the parametric nonlinear dynamical system under investigation [16,36].
Since numerical integration is often much less sensitive to noisy data than numeri-
cal differentiation, the parameter estimation step of this method provides more reli-
able estimates of parameters, by first transforming the input-output equation into
an integro-differential equation. This idea has been tested on a range of exam-
ples [17, 18, 22, 35, 52, 53]. This important transformation of nonlinear differential
equations to integro-differential ones, which so far has required some human skill,
can now be achieved algorithmically [4, 9].

Integral equations have other advantages as compared to differential ones. First,
they permit to handle non smooth functions, in particular, piecewise constant in-
puts [17, 18, 22]. Second, they may naturally depend on initial conditions: a feature
which may be important for the parameter estimation problem. In both cases, it
may be interesting to bypass differential elimination in order to compute the desired
equation.

These results and this research were at least partially motivated by purely theo-
retical studies of the algebraic properties of integro-differential algebras and their
operator rings [23, 25, 46]. In turn, they raise the fascinating and difficult task of
extending the Ritt-Kolchin theory known as differential algebra to the broader the-
ory integro-differential algebra since integral or integro-differential equations are
not allowed within the framework of differential algebra. One important goal would
be an elimination theory for integro-differential algebra. It would allow the compu-
tation of integro-differential input-output equations using a wider set of operations
than in differential algebra, hence possibly faster computations as well as a greater
variety of formulations for the input-output equations.

This paper is structured as follows. Section 2 recalls the origin of integro-
differential equations. Here, the term “origin” carries two meanings: what are the
first historic examples of integro-differential models? and what kind of modelling
processes lead to such models? This section will prove interesting for readers who
discover integro-differential equations and for algebraists who are not aware of the
needs of modellers. Section 3 sketches the application to parameter estimation for
nonlinear dynamical systems that motivated this new interest for integro-differential
equations. This section will be interesting for applied researchers who are not aware
of some key properties of Ritt and Kolchin differential algebra: properties that need
not generalize to the integro-differential framework. Last, Section 4 reviews some
attempts to design algebraic theories of integro-differential equations and some of
the many issues that need to be addressed. It illustrates also, via two examples, what
an integro-differential elimination method could be and what would be the benefit
to the parameter estimation problem.
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2 Origin of Integro-Differential Models

One of the simplest integro-differential models studied in the literature is the
Volterra-Kostitzin model [31, pages 66-69], which may be used for describing the
evolution of a population, in a closed environment, intoxicated by its own metabolic
products (other applications of the same model are considered in Kostitzin’s book).
It is an integro-differential equation since the unknown function y(t) appears both
differentiated and under some integral sign.

dy

dt
(t) = ε y(t)− k y(t)2 − c y(t)

∫ t

t−T
K(t− τ) y(τ) dτ .

The independent variable t is time. The dependent variable y(t) is the population,
varying with time. The symbols ε, k, c and T denote parameters. The kernel (or
nucleus) K(t, τ) = K(t − τ) is the residual action function. For instance, it could
be very similar to a “survival function” in population dynamics [27, page 3]: a de-
creasing function, starting at K(0) = 1, equal to 0 outside the interval [0, T ]. Then
K(t− τ) would represent the “toxicity factor” of metabolic products which are the
most toxic when produced, at t = τ , become less toxic with the time, and have a
negligible toxic effect at time t = τ + T .

As we shall see later, nontrivial kernels introduce difficulties in the symbolic
treatment of integro-differential equations. It is thus interesting to remark that a
simplified version of the Volterra-Kostitzin model, with a trivial kernel K(t, τ) =
1, was studied by Kostitzin himself (the model is then equivalent to a differential
equation of order two). It was more recently reconsidered in [13] and [38, chapter
4] and fitted against experimental data, in order to validate its pertinence.

2.1 Hereditary Theories

In integral or integro-differential models, integral terms depend on kernels of the
very special form K(t, τ) = K(t− τ). Such kernels permit to express “hereditary”,
“historical” or “plastic” effects, i.e. the idea that the evolution of the current state of
the system being modelled, depends not only on the current state but also on its past.
The original qualifier is “hereditary”. The qualifier “historical” was suggested by
Volterra [56, page 300] to avoid any confusion with biological notions. The qualifier
“plastic” (by opposition to “elastic”) is used in structural mechanics [33, page 59].

2.1.1 Historical Origin

It is interesting to remark that biology is one of the first scientific domains where
hereditary modelling was considered to be promising. In [54, page 295], Volterra
claims to have coined the expression “integro-differential equation”. A few lines
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further, he refers to an article by Picard [39], which contains the following paragraph
(page 194), translated from French:

But heredity plays especially a major role in life sciences and we do not know if we will
ever be able to use the mathematical tool for the intimate study of biological phenomena,
and if we will not always need to restrict ourselves to rough averages and frequency curves.
We should not, however, reduce in advance our mathematical conception of the world, and
we can dream of functional equations more complicated than the former [differential] ones
because they will involve, in addition, integrals taken between a very distant past and the
present time, integrals which will bring their part of heredity.

The study of hereditary models is strongly connected with the theory of function-
als, i.e. functions z that depend on all the values that some other function y(t) may
take over some range a ≤ t ≤ b. This was investigated in detail by Volterra [57],
who sketched hereditary formulations of magnetism, electricity, elasticity, . . . It is
intimately related to the theory of the convolution product, which arises in distri-
bution theory [20], and whose algebraic properties were much studied by Volterra,
as a special case of the “composition” of two functions. See [57] for the theory
and [12, pages 293-294] for more on the history.

2.2 Some Classical Integro-Differential Models

2.2.1 A Predator-Prey Model

The following integro-differential system [56, pages 328-329] models two popu-
lations: one of them feeds on the other. It enhances a classical Volterra model of
population dynamics. Volterra models here the fact that the increase of population
does not depend only on the current amount of food available but also on the food
which was available in the past.

dy1
dt

(t) = y1(t)

(
ε1 − γ1 y2(t)−

∫ t

0

f1(t− τ) y2(τ) dτ
)
,

dy2
dt

(t) = y2(t)

(
−ε2 + γ2 y1(t) +

∫ t

0

f2(t− τ) y1(τ) dτ
)
.

(1)

2.2.2 Elastic Torsion of a Wire

This example is borrowed from [57, chapter V, pages 147-149]. To a first approxi-
mation the connection between the momentm of the torsional couple and the corre-
sponding angle of torsion ω is given, in the case of static equilibrium, by the linear
relation ω = km where k is a constant depending on the characteristics of the
wire. Let m(τ) denote the torsional moment acting on the wire at time τ . In order
to find the angle of torsion ω(t) at time t we must add to the right-hand side of
ω(t) = km(t) a corrective term depending on all the values of m(τ) for τ prior
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to t, and therefore a functional of m(τ). Assume the hereditary effects modelled by
this functional is linear. One then obtains the following relation between ω(t) and
m(t):

ω(t) = km(t) +

∫ t

−∞
f(t, τ)m(τ) dτ . (2)

Solving this Volterra integral equation [57, chapter II, page 43] with respect tom(t),
denoting the reciprocal kernel of 1

k f(t, τ) by ϕ(t, τ) and assuming the hereditary
effects prior to t = 0 are negligible, we get

m(t) =
1

k
ω(t) +

∫ t

0

ϕ(t, τ)ω(τ) dτ . (3)

Let us pass now from the static to the dynamic case and try to study the oscillations
of the wire. For this, suppose that the angular velocity and acceleration are no longer
negligible. The equation of motion of the wire is obtained from (3) by means of
d’Alembert’s principle, by substituting

m(t)− µ d2ω

dt2
(t) (µ constant)

for m(t). We then get an integro-differential equation giving ω(t) in terms of m(t):

m(t)− µ d2ω

dt2
(t) = hω(t) +

∫ t

0

ϕ(t, τ)ω(τ) dτ . (4)

2.2.3 Propagation of a Nervous Impulse

This model is borrowed from [40, chapter XXXV, eq (32), page 426]. See also
[27, chapter 1, page 5]. This nonpolynomial integral model is interesting because it
has a trivial kernel and is equivalent to a polynomial system of integro-differential
equations.

It is currently widely admitted that nervous impulses are propagated as follows
in neurons: differences of ionic concentrations between the inside and the outside
of axons make their membranes polarized. The occurence of an electric current in
the neighborhood of some region of interest opens ionic channels, causing changes
of ionic concentrations, hence an electric current in the region itself. The nervous
influx is obtained by repeating this phenomenon along the whole axon. The details
of the ionic activities, at a fixed position of the axon, are described by the famous
Hodgkin-Huxley nonlinear differential model [29, chapter 5, pages 205-206].

The following model is probably older than the Hodgkin-Huxley model [26]. It
is built on quite similar biological hypotheses and is concerned by the distance u(t)
traveled by an influx along a nerve (an axon, possibly). The parameter I represents
an electric current suddenly established in the neighborhood region at t = 0. The
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parameter h is a concentration threshold above which a nerve excitation is trig-
gered [40, eq (6), page 379]. It is assumed that the ionic concentration and the elec-
tric current satisfy a linear differential equation of first order, depending on two
parameters K and k [40, eq (18), page 423]. The time t1 at which the region of
interest releases an influx is then a function of k, K, h and I . The parameter α is a
constant depending on physical properties of the nerve: radius, specific resistances
of the core of the nerve and its surrounding sheaths [40, eq (10), page 421]. The
integral term of the model comes here from the fact that the distance is an integral
of the speed [40, eq (21), page 424]. Since it is not motivated by any hereditary
consideration, the absence of any nontrivial kernel is not surprising:

h eαu(t)+k t =
hK I

K I − k h
+K I

∫ t

t1

eαu(τ)+k τ dτ . (5)

Let now v(t) be the exponential. The nonpolynomial integral equation (5) can be
encoded by the following polynomial integro-differential system:

dv

dt
(t) =

(
α
du

dt
(t) + k

)
v(t) ,

h v(t) =
hK I

K I − k h
+K I

∫ t

t1

v(τ) dτ .
(6)

Of course, the equation (5) can also easily be transformed to differential form, by
simple differentiations. However, this is no longer true when considering a time-
varying (possibly non-smooth) current I(t).

3 Integro-Differential Equations for Parameter Estimation

In this section, we present the application to parameters estimation for nonlinear dy-
namical systems that motivated our interest for integro-differential algebra. Together
with the application, we introduce key concepts of differential algebra. In the next
section, we will discuss issues raised by their generalization to integro-differential
algebra.

3.1 Statement of the Estimation Problem

The academic two-compartment model depicted in Figure 1 is a close variant of [53,
(1), page 517] endowed with an input u(t). Compartment 1 represents the blood sys-
tem and compartment 2 represents some organ. Both compartments are supposed to
have unit volumes. The function u(t), which has the dimension of a flow, repre-
sents a medical drug, injected in compartment 1. The drug diffuses between the two
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1 2

k12

k21

Ve

u(t)

Fig. 1 A two-compartment model featuring three parameters.

compartments, following linear laws: the proportionality constants are named k12
and k21. The drug exits compartment 1, following a law of Michaelis-Menten type.
Such a law indicates a hidden enzymatic reaction. In general, it depends on two
constants Ve and ke. For the sake of simplicity, it is assumed that ke = 1. The state
variables in this system are x1(t) and x2(t). They represent the concentrations of
drug in each compartment. This information is sufficient to write the two first equa-
tions of the mathematical model (7). The last equation of (7) states that the output,
denoted y(t), is equal to x1(t). This means that only x1(t) is observed: some nu-
merical data are available for x1(t) but not for x2(t). The problem addressed here
then consists in estimating the three parameters k12, k21 and Ve from these data and
the knowledge of u(t).

ẋ1(t) = −k12 x1(t) + k21 x2(t)−
Ve x1(t)

1 + x1(t)
+ u(t) ,

ẋ2(t) = k12 x1(t)− k21 x2(t) , (7)

y(t) = x1(t) .

3.2 The Algebraic Setting

3.2.1 On the Solutions

Ritt and Kolchin differential algebra provides an algebraic framework for poly-
nomial differential systems. Differential systems involving rational fractions, such
as (7), are easily handled. Other kinds of nonlinearities are not directly covered by
the theory but many nonpolynomial systems can be transformed into polynomial
ones, using techniques similar to the one we used for the propagation model of ner-
vous impulses. Differential algebra imposes, however, another restriction, which is
more important to us, since it reduces its applicability to control theory: the solu-
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tions of the systems under study are supposed to belong to integral domains (e.g. an
equation such as u(t) v(t) = 0 would imply that u(t) = 0 or v(t) = 0) and must
be differentiable infinitely many times. The input u(t) of (7) must then be smooth.
One cannot study the case of a piecewise constant function u(t) without leaving the
realm of differential algebra.

3.2.2 Differential Polynomial Ideal

Subtract right-hand sides from left-hand sides of (7). Multiply the first equation by
its denominator and state that this latter is nonzero. One obtains a system of three
differential polynomial equations and one inequation:

p1 = p2 = p3 = 0 , 1 + x1 6= 0 . (8)

The left-hand sides of (8) belong to the differential polynomial ring

R = Q(k12, k21, Ve){y, x1, x2} .

The three symbols y, x1, x2 are differential indeterminates. To this system, one as-
sociates a differential ideal

A = [p1, p2, p3] : (1 + x1)
∞.

Technically, the ideal A is defined as the ideal of R generated by the three differen-
tial polynomials and their derivatives up to any order, saturated by the multiplicative
family generated by 1 + x1. This means that if any differential polynomial of the
form (1 + x1) g belongs to A, then g itself belongs to A. It can be proved that A is
a prime (hence radical) differential ideal.

3.2.3 Theorem of Zeros

As already pointed out, in differential algebra, solutions are sought in differential
rings that are free of zero-divisors. This restriction has some drawbacks for applica-
tions in control theory. Algebraically, it has a big advantage: the differential ideal A
is then the set of all differential polynomials that annihilate over the whole solution
set of (7). In particular, a Theorem of Zeros [42, chapter I, 16] holds in differential
algebra:

Theorem 1. A differential polynomial g annihilates over all the solutions of a sys-
tem of differential polynomial equations f1 = f2 = · · · = fn = 0 if, and only if, a
power of g belongs to the differential ideal generated by f1, f2, . . . , fn.

The formulation above is not completely precise since the algebraic structure S
which is supposed to contain the solutions is not given. Many precise variants could
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be given: S could be some differential field, an algebra of formal power series, a
field of meromorphic functions . . . See [5] for more details on this question.

3.2.4 Elimination Theory

An elimination theory has been available in differential algebra from its very be-
ginning [42, 51]. Some algorithms such as [34, diffgrob], [10, 11, RosenfeldGroeb-
ner], [41, rif], [43, Thomas algorithm] are implemented in computer algebra sys-
tems. In the sequel, we concentrate on RosenfeldGroebner and its most recent im-
plementation in the MAPLE package [6, DifferentialAlgebra]. The first argument of
such an algorithm is a system of differential polynomial equations and inequations.
The second argument is a ranking, i.e. a total ordering on the set

{k12, k21, Ve} ∪ {w(r) | r ≥ 0, w differential indeterminate} .

For an example such as (8), the output of the software is a regular differential chain
— a notion slightly more general than Ritt’s characteristic set [3, Definition 3.1]
— of the differential ideal A w.r.t. the ranking. Regular differential chains are finite
sets of differential polynomials. By choosing a suitable ranking such as

(the derivatives of x1, x2)� (the derivatives of y, u)� (the parameters) ,

one can directly read in the output of the software the differential polynomial of A
which has the lowest rank w.r.t. the ranking. In this example, this differential polyno-
mial is the so-called differential input-output equation of (7). It depends only on y,
u, their derivatives, and the parameters to be estimated.

3.3 The Input-Output Equation of the Problem

A pretty-printed form of the differential input-output equation of (7) is:

−θ1 u(t) + θ2
y(t)

y(t) + 1
+ θ3

d

dt

(
y(t)2

y(t) + 1

)
− θ4

d

dt

(
1

y(t) + 1

)
= u̇(t)− ÿ(t) ,

(9)

where the θi stand for the following blocks of parameters:

θ1 = k21 , θ2 = k21 Ve , θ3 = k12 + k21 , θ4 = k12 + k21 + Ve . (10)
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3.3.1 Structural Identifiability Study

The structural identifiability study is a preliminary study of the input-output equa-
tion. It can be viewed as a theoretical parameter estimation process, where the ob-
served function y(t), the input u(t), and their derivatives up to any order are sup-
posed to be as “generic” as possible and perfectly known.

A huge amount of literature is devoted to this question. See [1, 19, 32, 36, 37, 50,
53] and the references therein.

In our example, the structural identifiability study leads in a straightforward way
to the desired conclusion of the global structural identifiability for this model. The
essential argument is as follows:

1. Evaluating (9) at (at least) four different values of t, it is possible to build an
invertible linear system whose unknowns are the blocks of parameters θi.

2. Knowing the blocks of parameters θi, it is easy to recover the values of the model
parameters k12, k21, Ve, by solving the polynomial system (10).

It is worth noticing that step 1 of this argument eventually relies on the assumption
that (9) is the equation of minimal order and degree constraining y(t), u(t) and
the parameters to be estimated. Ultimately, this argument relies on the Theorem of
Zeros.

Indeed, on some other example, a non-minimal input-output equation could be
artificially obtained by adding a polynomial of the form θm (θ any parameter block,
m belonging to the differential ideal A) to the minimal equation. At step 1, such a
polynomial m would always evaluate to zero, yielding a linear system that would
always be singular. The whole argument would then collapse.

3.3.2 Integro-Differential Form of the Input-Output Equation

A parameter estimation method can be designed by implementing “numerically”
the steps 1 and 2 above, using the available numerical data for the observed func-
tion y(t) and the input u(t). If the data is noisy (but not only then), a straightforward
implementation is however very likely to produce useless results since the second
derivative of y(t) then needs to be estimated numerically. In order to obtain more
accurate results, it is desirable to convert the differential input-output equation (9)
to integral form since numerical integration is less sensitive to noise than numerical
differentiation. There are different ways to do it. Some methods are given in [8].
One possibility consists in applying twice the integration operator on (9). On our
example, the result is the nonlinear Volterra integral equation (11). This formula
still involves a derivative of the output, but evaluated at t = a. Viewing this deriva-
tive as an extra parameter θ5, to be estimated, Equation (11) does not involve any
derivative of the output:
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− θ1
∫ t

a

∫ τ1

a

u(τ2) dτ2 dτ1

+ θ2

∫ t

a

∫ τ1

a

y(τ2)

y(τ2) + 1
dτ2 dτ1

+ θ3

(∫ t

a

y(τ)2

y(τ) + 1
dτ − y(a)2

y(a) + 1
(t− a)

)
− θ4

(∫ t

a

1

y(τ) + 1
dτ − 1

y(a) + 1
(t− a)

)
− ẏ(a) (t− a)

=

∫ t

a

u(τ) dτ − u(a) (t− a)− y(t) + y(a) .

(11)

In general, the resulting formula is an integro-differential equation. The method
outlined here always produces formulas with trivial kernels. It can be completely
automated, thanks to recent progresses in computer algebra [4, 8, 9].

3.3.3 Actual Parameter Estimation

An integro-differential input-output equation such as (11) is used to build an overde-
termined linear system, whose unknowns are the parameter blocks θi. Its solutions,
obtained by linear least squares, may be used as a first guess for nonlinear least
squares such as the Levenberg-Marquardt method or Linear Matrix Inequalities.
See [15, 16, 36, 53].

Recovering the initial model parameters from refined estimates of the parameter
blocks θi is usually a difficult problem for which no satisfactory general solution
is known. An important difficulty is raised by possible algebraic relations between
blocks of parameters. In our example, we have such a relation:

θ1 (θ3 − θ4) + θ2 = 0 . (12)

3.4 Algorithmic Transformation to Integro-Differential Form

Transforming (9) into the integral equation (11) is very easy because the former
equation has the special form ∑

θi
d

dt
Fi ,

where the θi are constant expressions (their derivatives are zero) and the Fi are order
zero fractions. However, the input-output equations returned by differential elimina-
tion algorithms do not have this shape. Instead, they have the form of polynomials
in the derivatives of the differential indeterminates, which implies that the d

dt Fi ex-
pressions are expanded. A first algorithm for converting this raw form into (9) is
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published in [4], with a flaw fixed in [8]. An enhanced version, with a canonical
output, is published in [9].

4 Towards Algebraic Theories

The systematic treatment of integral operators in algebra—usually under the name
of Rota-Baxter operators—has been inaugurated with Glen Baxter’s seminal pa-
per [2]. While originally viewed in a probability context, Rota-Baxter operators
have soon found interest in broader areas of algebra, especially through Gian-Carlo
Rota’s well-known papers [48,49]. For a modern survey on Rota-Baxter algebra we
refer to the monograph [24].

The notion of Rota-Baxter operator was combined with differential algebra struc-
tures in [44,47] for creating an algebraic framework that allows a constructive treat-
ment of boundary problems for linear ordinary differential equations. In particular,
the Green’s operator (resolvent operator), which maps the forcing function to the
solution of the boundary problem, is expressed as a Fredholm integral operator that
belongs to a suitable operator ring.

Let us explain this in some more detail. We start from an integro-differential
algebra (F , ∂,

r
), meaning an algebra over some field K with two K-linear oper-

ators ∂,
r
: F → F that are supposed to capture differentiation and integration in

an algebraic context. Hence the derivation ∂ is required to satisfy the Leibniz axiom
(= product rule for differentiation) while

r
must satisfy the Rota-Baxter axiom (=

integration by parts); moreover we stipulate ∂ ◦
r
= 1F for tying the two notions

together, just as the fundamental theorem of calculus does in the case F = C∞(R);
note that this is a special case of the generalized Leibniz integral rule (14). It turns
out that the other composition is not quite the identity but

r
◦ ∂ = 1F − E,

where E : F → F is a multiplicative linear map that may be thought as the eval-
uation at the initialization point of the integral operator

r
. Indeed, this is what

happens in the most important example F = C∞(R) where ∂f(x) = df/dx
and

r
f(x) =

r x
a
f(ξ) dξ for some initialization point a ∈ R; consequently, here

E : F → R is the evaluation f(x) 7→ f(a). Of course C∞(R) contains many other
integro-differential algebras, for example the polynomials R[x] or the analytic func-
tions Cω(R), and various intermediate algebras like the exponential polynomials
(real or complex linear combinations of xkeλx for any k ∈ N and λ ∈ R).

Each integro-differential algebra (F , ∂,
r
) now gives rise to an operator ring

F [∂,
r
] that contains both differential operators such as a(x) ∂2+ b(x) ∂+ c(x) for

coefficient functions a(x), b(x), c(x) ∈ F and integral operators such as x2ex
r
e−2x,

as well as evaluation operators Ea for various points a ∈ R. Note that the integral
operator x2ex

r
e−2x is here understood as a non-commutative operator composition,

acting as f(x) 7→
r x
a
x2ex−2ξf(ξ). We refer to F [∂,

r
] as the integro-differential

operator ring over F . One can prove that every boundary problem over F has a
Green’s operator G ∈ F [∂,

r
], which can be determined algorithmically if one
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has a fundamental system of solutions for the underlying homogeneous differential
equation [47, Thm. 26].

The treatment of linear partial differential equations is considerably more dif-
ficult. Of course one will replace (F , ∂,

r
) by a structure (F , ∂x, ∂y,

r x
,
r y

),
where F is an algebraic structure describing multivariate (for simplicity here: bi-
variate) functions with two derivations ∂x, ∂y and two Rota-Baxter operators

r x
,
r y .

However, this would not lead us very far since even very simple examples like ux−
uy = f cannot be solved in terms of these basic building blocks. One crucial missing
piece is a structure for substitutions. For treating linear partial differential equations,
it is sufficient to allow only linear substitutions like u(x, y) 7→ u(ax+ by, cx+ dy)
for a, b, c, d ∈ R. The resulting algebraic structure, a so-called Rota-Baxter hierar-
chy, is surprisingly complex and has been described in [45]. In fact, the current setup
omits the derivations ∂x, ∂y for keeping the complications to a minimum (deriva-
tions are comparatively easy to add since their algebraic relations are far less com-
plex than those connected with the Rota-Baxter operators).

Similar to the case of plain integro-differential algebras, every Rota-Baxter hier-
archy comes with a multivariate operator ring that we could provisionally denote
by F [

r x
,
r y

] or by F [∂x, ∂y,
r x
,
r y

] if the derivations are added in. The main inno-
vation from the ordinary case is that substitution operators M∗ =

(
a b
c d

)∗
, acting as

described above for a matrix M ∈ R2×2, are also part of the basic building blocks.
Their interaction with the Rota-Baxter operators is complicated, but normal forms
have been deduced [45, Thm 4.10], for the case of arbitrarily many variables.

Describing the nature of those operator relations would lead us too far afield
for the present paper. It will suffice to mention just one special case of Axiom (7)
of [45, Def. 2.3], namely

r x
M∗

r x
=M∗

r xr y −
r x
M∗

r y
,

where M ∈ R2×2 is the substitution matrix with a = c = 1, b = d = 0, acting
by u(x, y) 7→ u(x, x). Written in the usual notation, this is exactly Dirichlet’s rule
to be mentioned in Section 4.1.3. However, the great advantage of the operator-ring
framework is that there is a normal form (namely the right-hand side). In fact, we
are confident that these normal forms are in fact canonical (meaning every simpli-
fication can only lead to a single normal form), which is equivalent to the algebraic
statement that the chosen identities are a non-commutative Gröbner basis for the
ideal of operator relations. This is work in progress, more than half of the proof is
completed but there the derivations are very long.

Up to now we have spoken about linear differential and integral equations, both
ordinary and partial (of course this includes also the mixed integro-differential
cases). For passing to nonlinear equations, one can pass to the ring of integro-
differential polynomials. In the univariate case, this has been introduced in [46]. Es-
sentially the same structure—but extended to the partial case as well as differential
fractions—was subsequently treated in [4,9]. The basic idea in all case is that nested
integrals like

r
u2u′3

r
u′u′′2

r
u′′(u′′′)5 or

r
u′2

r
u′′

r
uu′′4, or linear combinations of

these, are in canonical form only if the highest derivative of u appears nonlinearly
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in each of the nested integrands. Hence the first example above is canonical, but the
second is not.

While the algebraic investigation of the linear case (univariate and multivariate
integro-differential operator rings) are now gradually maturing to some extent, the
nonlinear case of integro-differential polynomials/fractions is wide open. In the last
two sections we will only address two prominent issues that appear to pose con-
siderable difficulties and, by the same token, a highly interesting arena of algebraic
research.

4.1 Computational Issues

4.1.1 The Generalized Leibniz Integral Rule

Though there does exist applications of integro-differential equations which only
need trivial kernels, this is certainly not the case of equations arising from hereditary
modelling, which have the form:∫ t

a

K(t, τ) f(τ) dτ .

Over such expressions, the formula

d

dt

∫ t

a

= the identity operator (13)

does not hold anymore. Instead, one must apply the general form of Leibniz integral
rule, which gives:

d

dt

∫ t

a

K(t, τ) f(τ) dτ =

∫ t

a

dK

dt
(t, τ) f(τ) dτ +K(t, t) f(t) . (14)

However, this formula raises a computational problem, in the case of singular ker-
nels. Let us quote Volterra [57, chapter II, page 54]:

It is rather curious to note that it was precisely these singular cases that were the first in
order of time to arise; the first integral equation considered goes back to Abel and is as
follows: √

2 g z(t) =

∫ t

0

y(τ)

(t− τ)
1
2

dτ , (15)

and the kernel (t− τ)−
1
2 becomes infinite at τ = t.

Differentiating the above equality causes a division by zero. In particular, we see
that, contrarily to what happens in differential algebra, differentiation of integro-
differential expressions is not always defined.
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4.1.2 Integration by Change of Variable

The change of variable formula is:∫ b

a

F (ϕ(t))
dϕ

dt
(t) dt =

∫ ϕ(b)

ϕ(a)

F (t) dt .

Kostitzin applies it [31, page 68] for studying the Volterra-Kostitzin model in the
case of a trivial kernel. Having proven that

dy

dt
(t) = F (y(t)) ,

he deduces that

t =

∫ y

0

1

F (τ)
dτ .

This identity shows that, in an integro-differential algebra theory in which integra-
tion operators with general bounds would be allowed, the equality test between two
expressions might be a difficult problem.

4.1.3 Dirichlet’s Rule

Volterra attributes this formula to Dirichlet in [55, page 36] and often uses it:∫ t

a

∫ τ

a

F (τ2, τ) dτ2 dτ =

∫ t

a

∫ t

τ2

F (τ2, τ) dτ dτ2 .

In the parameter estimation problem described in Section 3, this formula could have
been used in order to produce another form of the integral equation (11), which
would have involved a non trivial kernel. Indeed:∫ t

a

∫ τ

a

F (τ2) dτ2 dτ =

∫ t

a

(t− τ)F (τ) dτ .

This formula illustrates another difficulty that arises when testing equality between
two integro-differential expressions. Recent progresses on this issue are given in
[45].

4.2 On Generalizations of the Theorem of Zeros

As pointed out in Section 3, the Theorem of Zeros is implicitly used in the struc-
tural identifiability test based on the input-output equation. This section shows that
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it might not generalize in the integro-differential framework. Observe a similar dif-
ficulty occurs in other theories such as difference algebra [14].

Let us define an integro-differential ring R = Q{u} as the smallest ring con-
taining the integro-differential indeterminate u, the rational numbers, stable under
derivation and integration. For simplicity, let us restrict ourselves to the case of a
derivation δ being the left inverse of the integration

∫
, i.e. an abstract form of (13).

Let us denote x =
∫
1.

Given any p ∈ R, let us define the integro-differential ideal generated by p as the
smallest ideal of the ring R, stable under derivation and integration. Let us denote
it [p]. Consider now

p = u−
∫
u , (16)

which is meant to be an abstract form of the left-hand side of the integral equation

u(t)−
∫ t

0

u(τ) dτ = 0 .

This equation admits u(t) = 0 for unique solution. However, we prove below that
um /∈ [p] for any non-negative integer m, i.e. that, in the algebraic framework
sketched above, the Theorem of Zeros does not hold.

Proposition 1. Take p ∈ R. Then, any element q of [p] can be written as q =∑s
i=1 aiMi where ai ∈ Q and each Mi has the form

Mi = mi,0

∫
mi,1

∫
· · ·
∫
mi,k−1

∫
mi,k(δ

bip)

∫
mi,k+1

∫
· · ·
∫
mi,ti ,

(17)
where bi is a non-negative integer, the mi,j are monomials in x, and u and its
derivatives.

Proof. Admitted.

Let us denote by w(Mi) the weight in u of any Mi of the form of (17), with
w(Mi) = 1 +

∑ti
j=0 deg(mi,j , [u, δu, . . .]), where deg(mi,j , [u, δu, . . .]) denotes

the total degree of mi,j in the variables u, δu, . . .

Lemma 1. Take p = u −
∫
u and consider some Mi in the form of (17). Then

replacing u by αu in Mi yields αw(Mi)Mi, for any α ∈ Q. Moreover, replacing u
by ex in Mi yields 0 if bi > 0, or a polynomial in x and ex whose degree in ex is at
most w(Mi)− 1 otherwise.

Proof. Immediate.

Proposition 2. Take p = u−
∫
u. Then um /∈ [p] for any non-negative integer m.

Proof. Assume that um ∈ [p] for some m. Let us prove that this yields a contra-
diction. By Proposition 1, we have um =

∑s
i=1 aiMi where the ai are in Q and
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the Mi have the form of (17). The monomial um is homogeneous of degree m.
By an homogeneity argument and by Lemma 1, all Mi all have the same weights
w(Mi) = m in u.

Substituting u = ex in um yields emx. However, substituting u = ex in any
Mi either yields 0 if bi > 0, or a polynomial in x and ex whose degree in ex is at
most m − 1 by Lemma 1. This yields a contradiction since ex, e2x, . . . , emx are
algebraically independent over Q[x].

4.3 On Derivation-Free Elimination

The most challenging theoretical issue would consist in developing an elimination
theory for integro-differential equations that would permit to bypass differential al-
gebra methods. To our knowledge, such a derivation-free elimination theory has
not been considered yet. To illustrate what it could ideally do, we show that Equa-
tion (11) can be obtained from Equation (7) without performing any differentiation.
Let us slighty rewrite Equation (7) as

f1(t) := −ẏ(t)− k12 y(t) + k21 x2(t)− Ve
y(t)

1 + y(t)
+ u(t) ,

f2(t) := −ẋ2(t) + k12 y(t)− k21 x2(t) .

Since f1(t) and f2(t) are identically zero, we obtain the equation

0 = k21

∫ t

a

∫ τ

a

f1(τ2) + f2(τ2) dτ2 dτ +

∫ t

a

f1(τ) dτ .

Simplifying the previous equation yields

k21

∫ t

a

∫ τ

a

u(τ2) dτ2 dτ − k21 Ve
∫ t

a

∫ τ

a

y(τ2)

1 + y(τ2)
dτ2 dτ

− (k21 + k12)

∫ t

a

y(τ) dτ − Ve
∫ t

a

y(τ)

1 + y(τ)
dτ + k21 (y(a) + x2(a)) (t− a)

= y(t)− y(a)−
∫ t

a

u(τ) dτ .

From f1(a) = 0, one has

k21 x2(a) = ẏ(a) + k12 y(a) + Ve
y(a)

1 + y(a)
− u(a) .

Replace k21 x2(a) by its value in the last equation. Simple computations show that
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k21

(∫ t

a

∫ τ

a

u(τ2) dτ2 dτ + y(a) (t− a)−
∫ t

a

y(τ) dτ

)
− k21 Ve

∫ t

a

∫ τ

a

y(τ2)

1 + y(τ2)
dτ2 dτ − Ve

(∫ t

a

y(τ)

1 + y(τ)
dτ − y(a)

1 + y(a)

)
+ k12

(
y(a) (t− a)−

∫ t

a

y(τ) dτ

)
+ ẏ(a) (t− a)

= y(t)− y(a)−
∫ t

a

u(τ) dτ + u(a) (t− a) .

This last equation is equivalent (up to the sign) to (11), by using the properties
y2/(1 + y) = y − 1 + 1/(1 + y) and 1/(y + 1) = 1− y/(y + 1).

4.4 On Alternative Input-Output Equations

A structural identifiability study, based on the differential input-output equation, was
sketched in Section 3.3.1. Since this equation is computed in the strict framework
of differential algebra, it does not feature any initial value of any non-observed vari-
able. In some cases, however, the initial conditions of some non-observed variables
are known, and their knowledge is necessary to prove the structural identifiability of
the model. A first approach to overcome this difficulty is presented in [17, 18]: the
integration of the input-output equations followed by some further manipulations
yields expressions involving the initial conditions of the non-observed variables,
permitting to prove the structural identifiability. We show in this section that integro-
differential elimination offers another approach since it permits to compute integral
input-output equations featuring naturally these important initial values. The sys-
tem Σ under study is inspired from [28]:

ẋ1(t) = θ1 x2(t) + u(t) , (18)
ẋ2(t) = θ2 x1(t)x2(t) + θ3 x2(t) + u(t) , (19)

together with the assumptions

• x1(0) = x10 is known,
• x2(t) and u(t) are observed on some interval [0, t0],
• x1(t) is not observed on ]0, t0].

The parameters to be estimated are θ1, θ2 and θ3. Differential elimination methods
permit to compute the following differential input-output equation:

ẍ2(t)x2(t)− ẋ22(t) + ẋ2(t)u(t)− x2(t) u̇(t)− θ1 θ2 x32(t)− θ2 u(t)x22(t) .

The structural identifiability study sketched in Section 3.3.1 would conclude to the
non-identifiability of Σ since θ3 does not even appear in this equation. Converting
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this equation to integro-differential form would obviously not change this conclu-
sion. Now, it is interesting to observe that one can obtain an expression depending
on θ3 using an evaluation at t = 0: differentiating (19) and rewriting the term ẋ1(t)
using (18) yields

ẍ2(t) = θ2

(
(θ1 x2(t) + u(t))x2(t) + x1(t) ẋ2(t)

)
+ θ3 ẋ2(t) + u̇(t) , (20)

providing an expression for θ3 as a function of x1(0), x2(0), ẋ2(0), ẍ2(0), θ1 and
θ2, provided that ẋ2(0) 6= 0 (more generally, provided that some derivative of x2(t)
does not vanish at t = 0).

Let us now compute an integral input-output equation, using the integration op-
erator from the beginning. First put Σ in an integral form:

x1(t) = x10 +

∫ t

0

θ1 x2(τ) + u(τ) dτ , (21)

x2(t) = x20 +

∫ t

0

θ2 x1(τ)x2(τ) + θ3 x2(τ) + u(τ) dτ . (22)

Using (21) for replacing x1(t) by its value in (22) yields

x2(t) = x20 +

∫ t

0

θ2

(
x10 +

∫ τ

0

θ1 x2(τ2) + u(τ2) dτ2

)
x2(τ)

+ θ3 x2(τ) + u(τ) dτ .
(23)

Expanding (23) yields

x2(t) = I0(t) + (x10 θ2 + θ3) I1(t) + θ2 I2(t) + θ1 θ2 I3(t) (24)

with

I0(t) = x20 +

∫ t

0

u(τ) dτ , I1(t) =

∫ t

0

x2(τ) dτ ,

I2(t) =

∫ t

0

x2(τ)

∫ τ

0

u(τ2) dτ2 dτ , I3(t) =

∫ t

0

x2(τ)

∫ τ

0

x2(τ2) dτ2 dτ .

Let us now follow the structural identifiability study sketched in Section 3.3.1
on (24). The linear system considered at step 1 is invertible since the three terms
I1(t), I2(t) and I3(t) are linearly independent1. Thus the structural identifiability
study would infer the global structural identifiability of Σ. The input-output equa-
tion obtained by integro-differential elimination is therefore not equivalent to the
one obtained by plain differential elimination.

1 Indeed, if the three terms were linearly dependent, there would exist three constants A,B,C
such that AI1(t) + B I2(t) + C I3(t) = 0 modulo the prime differential ideal A generated by Σ.
Differentiate this equation. Divide it by x2(t). Differentiate again. One gets B u(t)+C x2(t) = 0.
However, B u(t) + C x2(t) is not reduced to zero by Σ, viewed as a regular differential chain (or
a characteristic set) of A. This contradiction proves the linear independence of the three terms.
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préface de Vito Volterra).
32. L. Ljung and S. T. Glad. On global identifiability for arbitrary model parametrisations. Auto-

matica, 30:265–276, 1994.
33. Jacob Lubliner. Plasticity Theory. Dover, 2008.
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