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Classification and regression using an outer

approximation projection-gradient method
Michel Barlaud, Fellow, IEEE, Wafa Belhajali, Patrick L. Combettes Fellow, IEEE, and Lionel Fillatre

Abstract— This paper deals with sparse feature selection and
grouping for classification and regression. The classification or
regression problems under consideration consists in minimizing
a convex empirical risk function subject to an ℓ

1 constraint, a
pairwise ℓ

∞ constraint, or a pairwise ℓ
1 constraint. Existing

work, such as the Lasso formulation, has focused mainly on
Lagrangian penalty approximations, which often require ad
hoc or computationally expensive procedures to determine the
penalization parameter. We depart from this approach and
address the constrained problem directly via a splitting method.
The structure of the method is that of the classical gradient-
projection algorithm, which alternates a gradient step on the
objective and a projection step onto the lower level set modeling
the constraint. The novelty of our approach is that the projection
step is implemented via an outer approximation scheme in which
the constraint set is approximated by a sequence of simple convex
sets consisting of the intersection of two half-spaces. Convergence
of the iterates generated by the algorithm is established for a
general smooth convex minimization problem with inequality
constraints. Experiments on both synthetic and biological data
show that our method outperforms penalty methods.

I. INTRODUCTION

In many classification and regression problems, the ob-

jective is to select a sparse vector of relevant features. For

example in biological applications, DNA microarray and new

RNA-seq devices provide high dimensional gene expression

(typically 20,000 genes). The challenge is to select the smallest

number of genes (the so-called biomarkers) which are neces-

sary to achieve accurate biological classification and prediction.

A popular approach to recover sparse feature vectors (under

a condition of mutual incoherence) is to solve a convex opti-

mization problem involving a data fidelity term Φ and the ℓ1

norm [6], [17], [19], [35]. Recent Lasso penalty regularization

methods take into account correlated data using either the

pairwise ℓ1 penalty [24], [27], [36] or the pairwise ℓ∞ penalty

[5] (see also [20] for further developments). The sparsity or

grouping constrained classification problem can be cast as the

minimization of a smooth convex loss Φ subject a constraint

ϕ(w) 6 η, where ϕ is the ℓ1 norm or a pairwise ℓ∞ constraint

function. The resulting optimization problem is to

minimize
ϕ(w)6η

Φ(w). (1)

Most of the existing work has focused on Lagrangian penalty

methods, which aim at solving the unconstrained problem of
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minimizing Φ+λϕ, where ϕ now acts as the penalty function.

Although, under proper qualification conditions, there is a

formal equivalence between constrained and unconstrained

Lagrangian formulations [3, Chapter 19], the exact Lagrange

multiplier λ can seldom be computed easily, which leaves the

properties of the resulting solutions loosely defined. The main

contribution of the present paper is to propose an efficient

splitting algorithm to solve the constrained formulation (1)

directly. As discussed in [11], the bound η defining the

constraint can often be determined from prior information on

the type of problem at hand. Our splitting algorithm proceeds

by alternating a gradient step on the smooth classification

risk function Φ and a projection onto the lower level set{
w ∈ R

d
∣∣ ϕ(w) 6 η

}
. The main focus is when ϕ models

the ℓ1, pairwise ℓ1 constraint, or pairwise ℓ∞ constraint. The

projection onto the lower level set is implemented via an outer

projection procedure which consists of successive projections

onto the intersection of two simple half-spaces. The remainder

of the paper is organized as follows. Section II introduces the

constrained optimization model. Section III presents our new

splitting algorithm, which applies to any constrained smooth

convex optimization problem. In particular we also discuss

the application to regression problems. Section IV presents

experiments on both synthetic and real classical biological and

genomics data base.

II. PROBLEM MODELING

In this section we discuss our model. In section II-A we

describe the loss function. Sections II-B and II-C describe the

sparsity constraint model and the grouping sparsity constraint

model, respectively. Finally the optimization problem is set up

in Section II-D.

A. Risk minimization

We assume that m samples (xi)16i6m in R
d are available.

Typically m < d, where d is the dimension of the feature

vector. Each sample xi is annotated with a label yi taking its

value in {−1,+1}. The classification risk associated with a

linear classifier parameterized by a vector w ∈ R
d is given by

Φ: Rd → R : w 7→ 1

m

m∑

i=1

φ
(
yi〈xi | w〉

)
. (2)

We restrict our investigation to convex losses φ which satisfy

the following assumption.

Assumption 1 Let f : R → [0, 1] be an increasing Lipschitz-

continuous function which is antisymmetric with respect to the
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point (0, f(0)) = (0, 1/2), integrable, and differentiable at 0
with f ′(0) = max f ′. The loss φ : R → R is defined by

(∀t ∈ R) φ(t) = −t+

∫ t

−∞

f(s)ds. (3)

Examples of functions which satisfy Assumption 1 include

that induced by the function f : t 7→ 1/(1 + exp(−t)), which

leads to the logistic loss φ : t 7→ ln(1 + exp(−t)), for which

φ′′(0) = 1/4.

Another example is the Matsusita loss [29]

φ : t 7→ 1

2

(
− t+

√
1 + t2

)
, (4)

which is induced by f : t 7→
(
t/
√
1 + t2 + 1

)
/2.

The first advantage of this class of losses is that it allows us

to compute the posterior probability without computing Platt

approximation [4], [31]. The function f relates a prediction

〈xi | w〉 of a sample xi to the posterior probability for the

class +1 via

P̂
[
Yi = +1 | xi

]
= f(〈xi | w〉). (5)

This property will be used in Section IV to compute the

posterior probability without any approximation. This prob-

ability is necessary to compute the area under the ROC

curve (AUC). The second advantage is that the loss φ in

Assumption 1 is convex, everywhere differentiable with a

Lipschitz-continuous derivative, and it is twice differentiable

at 0 with φ′′(0) = maxφ′′. In turn, the function Φ of (2) is

convex and differentiable, and its gradient

∇Φ: w 7→ 1

m

m∑

i=1

f
(
〈xi | w〉

)
xi (6)

has Lipschitz constant

β =
f ′(0)

∑m
i=1 ‖xi‖2
m

=
φ′′(0)

∑m
i=1 ‖xi‖2
m

. (7)

Applications to classification often involve normalized features.

In this case, (7) reduces to β = f ′(0) = φ′′(0).

B. Sparsity model

In many applications, collecting a sufficient amount of

features to perform prediction is a costly process. The chal-

lenge is therefore to select the smallest number of features

(genes or biomarkers) necessary for an efficient classification

and prediction. The problem can be cast as a constrained

optimization problem, namely,

minimize
w∈R

d

‖w‖06δ

Φ(w), (8)

where ‖w‖0 is the number of nonzero entries of w. Since

‖·‖0 is not convex, (8) is usually intractable and an alternative

approach is to use the norm ‖ ·‖1 as a surrogate, which yields

the Lasso formulation [35]

minimize
w∈R

d

‖w‖16η

Φ(w). (9)

It has been shown in the context of compressed sensing that

under a so-called restricted isometry property, minimizing with

the ‖ · ‖1 norm is tantamount to minimizing with the ‖ · ‖0
penalty in a sense made precise in [6].

C. Grouping sparsity model

Let us consider the graph S of connected features (i, j).
The basic idea is to introduce constraints on the coefficients

for features ωi and ωj connected by an edge in the graph.

In this paper we consider two approaches: directed acyclic

graph and undirected graph. Fused Lasso [36] encourages the

coefficients ωi and ωj of features i and j connected by an

edge in the graph to be similar. We define the problem of

minimizing under the directed acyclic graph constraint as

minimize
w∈R

d
∑

(i,j)∈S
|ωi−ωj|6η

Φ(w), (10)

for some suitable parameters η > 0. In the second, undirected

graph, approach [5] one constrains the coefficients of features

ωi and ωj connected by an edge using a pairwise ℓ∞ constraint.

The problem is to

minimize
w∈R

d
∑

(i,j)∈S
max(|ωi|,|ωj|)6η

Φ(w). (11)

To approach the constrained problems (9) and (10), state of the

art methods employ a penalized variant [18], [19], [21], [35].

In these Lagrangian approaches the objective is to minimize

Φ+λϕ, where λ > 0 aims at controlling sparsity and grouping,

and where the constraints are defined by one of the following

(see (9), (10), and (11))




ϕ1 = ‖ · ‖1
ϕ2 : w 7→∑

(i,j)∈S
max(|ωi|, |ωj|)

ϕ3 : w 7→∑
(i,j)∈S

|ωi − ωj |.
(12)

The main drawback of current penalty formulations resides

in the cost associated with the reliable computation of the

Lagrange multiplier λ using homotopy algorithms [18], [21],

[22], [28]. The worst complexity case is O(3d) [28], which is

usually intractable on real data. Although experiments using

homotopy algorithms suggest that the actual complexity is

O(d) [28], the underlying path algorithm remains computa-

tionally expensive for high-dimensional data sets such as the

genomic data set. To circumvent this computational issue, we

propose a new general algorithm to solve either the sparse (9)

or the grouping (10) constrained convex optimization problems

directly.

D. Optimization model

Our classification minimization problem is formally cast as

follows.

Problem 1 Suppose that φ satisfies Assumption 1 and let

ϕ : Rd → R be convex. Set

Φ: Rd → R : w 7→ 1

m

m∑

i=1

φ
(
yi〈xi | w〉

)
(13)
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and

C =

{
w ∈ R

d
∣∣∣ ϕ(w) 6 η

}
, (14)

and let β be the Lipschitz constant of ∇Φ, as defined in (7).

The problem is to

minimize
w∈C

Φ(w). (15)

In Section IV, we shall focus on the three instances of

the function ϕ defined in (12). We assume throughout that

there exists some ρ ∈ R such that
{
x ∈ C

∣∣ Φ(x) 6 ρ
}

is

nonempty and bounded, which guarantees that (13) has at least

one solution. In particular, this is true if Φ or ϕ is coercive.

III. SPLITTING ALGORITHM

In this section, we propose an algorithm for solving con-

strained classification problem (15). This algorithm fits in

the general category of forward-backward splitting methods,

which have been popular since their introduction in data

processing problem in [14]; see also [12], [13], [30], [33], [34].

These methods offer flexible implementations with guaranteed

convergence of the sequence of iterates they generate, a key

property to ensure the reliability of our variational classifica-

tion scheme.

A. General framework

As noted in Section II, Φ is a differentiable convex function

and its gradient has Lipschitz constant β, where β is given by

(7). Likewise, since ϕ is convex and continuous, C is a closed

convex set as a lower level set of ϕ. The principle of a splitting

method is to use the constituents of the problems, here Φ and

C, separately. In the problem at hand, it is natural to use the

projection-gradient method to solve (15). This method, which

is an instance of the proximal forward-backward algorithm

[14], alternates a gradient step on the objective Φ and a

projection step onto the constraint set C. It is applicable in

the following setting, which captures Problem 1.

Problem 2 Let Φ: Rd → R be a differentiable convex

function such that ∇Φ is Lipschitz-continuous with constant

β ∈ ]0,+∞[, let ϕ : Rd → R be a convex function, let η ∈ R,

and set C =
{
w ∈ R

d
∣∣ ϕ(w) 6 η

}
. The problem is to

minimize
w∈C

Φ(w). (16)

Let PC denote the projection operator onto the closed

convex set C. Given w0 ∈ R
d, a sequence (γn)n∈N of strictly

positive parameters, and a sequence (an)n∈N in R
d modeling

computational errors in the implementation of the projection

operator PC , the projection-gradient algorithm for solving

Problem 2 assumes the form

for n = 0, 1, . . .⌊
vn = wn − γn∇Φ(wn)
wn+1 = PC(vn) + an.

(17)

We derive at once from [14, Theorem 3.4(i)] the following

convergence result, which guarantees the convergence of the

iterates.

C=
{
p ∈ R

d
∣∣ϕ(p) 6 η

}

{
p ∈ R

d
∣∣ ϕ(p) 6 ϕ(pk)

}

pk

p0•

••
pk+1 • pk+1/2

sk
H(pk, pk+1/2)

H(p0, pk)

Fig. 1: A generic iteration for computing the projection of p0
onto C.

Theorem 1 Suppose that Problem 2 has at least one solution,

let w0 ∈ R
d, let (γn)n∈N be a sequence in ]0,+∞[, and let

(an)n∈N be a sequence in R
d such that

∑

n∈N

‖an‖ < +∞, inf
n∈N

γn > 0, and sup
n∈N

γn <
2

β
. (18)

Then the sequence (wn)n∈N generated by (17) converges to a

solution to Problem 2.

Theorem 1 states that the whole sequence of iterates con-

verges to a solution. Using classical results on the asymp-

totic behavior of the projection-gradient method [25, Theo-

rem 5.1(2)], we can complement this result with the following

upper bound on the rate of convergence of the objective value.

Proposition 1 In Theorem 1 suppose that (∀n ∈ N) an =
0. Then there exists ϑ > 0 such that, for n large enough,

Φ(wn)− inf Φ(C) 6 ϑ/n.

The implementation of (17) is straightforward except for the

computation of PC(vn). Indeed, C is defined in (14) as the

lower level set of a convex function, and no explicit formula

exists for computing the projection onto such a set in general

[3, Section 29.5]. Fortunately, Theorem 1 asserts that PC(vn)
need not be computed exactly. Next, we provide an efficient

algorithm to compute an approximate projection onto C.

B. Projection onto a lower level set

Let p0 ∈ R
d, let ϕ : Rd → R be a convex function, and let

η ∈ R be such that

C =
{
p ∈ R

d
∣∣ ϕ(p) 6 η

}
6= ∅. (19)

The objective is to compute iteratively the projection PC(p0)
of p0 onto C. The principle of the algorithm is to replace this

(usually intractable) projection by a sequence of projections

onto simple outer approximations to C consisting of the

intersection of two affine half-spaces [10].
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We first recall that s ∈ R
d is called a subgradient of ϕ at

p ∈ R
d if [3, Chapter 16]

(∀y ∈ R
d) 〈y − p | s〉+ ϕ(p) 6 ϕ(y). (20)

The set of all subgradients of ϕ at p is denoted by ∂ϕ(p). If ϕ
is differentiable at p, this set reduces to a single vector, namely

the gradient ∇ϕ(p). The projection PC(p0) of p0 onto C is

characterized by
{
PC(p0) ∈ C

(∀p ∈ C) 〈p− PC(p0) | p0 − PC(p0)〉 6 0.
(21)

Given x and y in R
d, define a closed affine half-space H(x, y)

by

H(x, y) =
{
p ∈ R

d
∣∣ 〈p− y | x− y〉 6 0

}
. (22)

Note that H(x, x) = R
d and, if x 6= y, H(x, y) is the

closed affine half-space onto which the projection of x is y.

According to (21), C ⊂ H(p0, PC(p0)).
The principle of the algorithm at iteration k is as follows

(see Fig. 1). The current iterate is pk, and C is contained in

the half-space H(p0, pk) onto which pk is the projection of p0
(see (22)). If ϕ(pk) > η, any subgradient sk ∈ ∂ϕ(pk) is in the

normal cone to the lower level set
{
p ∈ R

d
∣∣ ϕ(p) 6 ϕ(pk)

}

at pk, and the associated subgradient projection of pk onto C
is [3], [7], [9]

pk+1/2 =




pk +

η − ϕ(pk)

‖sk‖2
sk if ϕ(pk) > η

pk if ϕ(pk) 6 η.
(23)

As noted in [9], it follows from (20) that the closed half-

space H(pk, pk+1/2) serves as an outer approximation to C
at iteration k, i.e., C ⊂ H(pk, pk+1/2). Altogether, since we

have also seen that C ⊂ H(p0, pk),

C ⊂ Ck, where Ck = H(p0, pk) ∩H(pk, pk+1/2). (24)

Finally, the update pk+1 is the projection of p0 onto the outer

approximation Ck to C. As the following lemma from [23]

(see also [3, Corollary 29.25]) shows, this computation is

straightforward.

Lemma 1 Let x, y, and z be points in R
d such that

H(x, y) ∩H(y, z) 6= ∅. (25)

Moreover, set a = x − y, b = y − z, χ = 〈a | b〉, µ = ‖a‖2,

ν = ‖b‖2, and ρ = µν − χ2. Then the projection of x onto

H(x, y) ∩H(y, z) is

Q(x, y, z) =





z if ρ = 0 and χ>0

x−
(
1 +

χ

ν

)
b if ρ>0 and χν > ρ

y +
ν

ρ

(
χa− µb

)
if ρ>0 and χν<ρ.

(26)

Note that, if ϕ(pk) 6 η, then pk ∈ C and the algorithm

terminates with pk = PC(p0). Indeed, since C ⊂ H(p0, pk)
[10, Section 5.2] and pk is the projection of p0 onto H(p0, pk),
we have ‖p0 − pk‖ 6 ‖p0 − PC(p0)‖. Hence pk ∈ C ⇔
pk = PC(p0), i.e., ϕ(pk) 6 η ⇔ pk = PC(p0).

To sum up, the projection of p0 onto the set C of (19) will

be performed by executing the following routine.

for k = 0, 1, . . .

if ϕ(pk) 6 η
⌊terminate.

ζk = η − ϕ(pk)
sk ∈ ∂ϕ(pk)
pk+1/2 = pk + ζksk/‖sk‖2
pk+1 = Q(p0, pk, pk+1/2).

(27)

The next result from [10, Section 6.5] guarantees the conver-

gence of the sequence (pk)k∈N generated by (27) to the desired

point.

Proposition 2 Let p0 ∈ R
d, let ϕ : Rd → R be a convex func-

tion, and let η ∈ R be such that C =
{
p ∈ R

d
∣∣ ϕ(p) 6 η

}
6=

∅. Then either (27) terminates in a finite number of iterations

at PC(p0) or it generates an infinite sequence (pk)k∈N such

that pk → PC(p0).

To obtain an implementable version of the conceptual

algorithm (17), consider its nth iteration and the computation

of the approximate projection wn+1 of vn onto C using (27).

We first initialize (27) with p0 = vn, and then execute only

Kn iterations of it. In doing so, we approximate the exact

projection onto C by the projection pKn
onto CKn−1. The

resulting error is an = PC(p0)−pKn
. According to Theorem 1,

this error must be controlled so as to yield overall a summable

process. First, since PC is nonexpansive [3, Proposition 4.16],

we have

‖PC(p0)− PC(pKn
)‖ 6 ‖p0 − pKn

‖ → 0. (28)

Now suppose that ϕ(pKn
) > η (otherwise we are done). By

convexity, ϕ is Lipschitz-continuous relative to compact sets

[3, Corollary 8.41]. Therefore there exists ζ > 0 such that 0 <
ϕ(pKn

)−η = ϕ(pKn
)−ϕ(PC(p0)) 6 ζ‖pKn

−PC(p0)‖ → 0.

In addition, assuming that int(C) 6= ∅, using standard error

bounds on convex inequalities [26], there exists a constant

ξ > 0 such that

‖pKn
− PC(pKn

)‖ 6 ξ
(
ϕ(pKn

)− η
)
→ 0. (29)

Thus,

‖an‖ = ‖PC(p0)− pKn
‖

6 ‖PC(p0)− PC(pKn
)‖+ ‖PC(pKn

)− pKn
‖

6 ‖p0 − pKn
‖+ ξ

(
ϕ(pKn

)− η
)
. (30)

Thus, is suffices to take Kn large enough so that, for instance,

we have ‖p0 − pKn
‖ 6 ξ1/n

1+ǫ and ϕ(pKn
)− η 6 ξ2/n

1+ǫ

for some ξ1 > 0, ξ2 > 0, and ǫ > 0. This will guarantee that∑
n∈N

‖an‖ < +∞ and therefore, by Theorem 1, the conver-

gence of the sequence (wn)n∈N generated by the following
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Fig. 2: Convergence of the projection loop (7 iterations).

algorithm to a solution to Problem 2.

for n = 0, 1, . . .

vn = wn − γn∇Φ(wn)
p0 = vn
for k = 0, 1, . . . ,Kn − 1

ζk = η − ϕ(pk)
if ζk > 0
⌊terminate.

sk ∈ ∂ϕ(pk)
pk+1/2 = pk + ζksk/‖sk‖2
pk+1 = Q(p0, pk, pk+1/2)

wn+1 = pKn
.

(31)

Let us observe that, from a practical standpoint, we have found

the above error analysis not to be required in our experiments

since an almost exact projection is actually obtainable with

a few iterations of (27). For instance, numerical simulations

(see Fig. 2) on the synthetic data set described in Section IV-

A show that (27) yields in about Kn ≈ 7 iterations a point

very close to the exact projection of p0 onto C. Note that the

number of iterations of (27) does not depend on the dimension

d.

Remark 1 (multiple constraints) We have presented above

the case of a single constraint, since it is the setting em-

ployed in subsequent sections. However, the results of [10,

Section 6.5] enable us to extend this approach to problems

with p constraints, see Appendix A.

C. Application to Problem 1

It follows from (6), (26), and (27), that (31) for the classi-

fication problem can be written explicitly as follows, where ε
is an arbitrarily small number in ]0, 1[ and where β is given

by (7).

for n = 0, 1, . . .

γn ∈ [ε, (2− ε)/β]

vn = wn − γn
m

m∑

i=1

yiφ
′
(
yi〈xi | wn〉

)
xi

p0 = vn
for k = 0, 1, . . . ,Kn − 1

ζk = η − ϕ(pk)
if ζk > 0
⌊terminate.

sk ∈ ∂ϕ(pk)
pk+1/2 = pk + ζksk/‖sk‖2
χk =

〈
p0 − pk | pk − pk+1/2

〉

µk = ‖p0 − pk‖2
νk = ‖pk − pk+1/2‖2
ρk = µkνk − χ2

k

if ρk = 0 and χk > 0⌊
pk+1 = pk+1/2

if ρk > 0 and χkνk > ρk⌊
pk+1 = p0 +

(
1 +

χk

νk

)(
pk+1/2 − pk

)

if ρk > 0 and χkνk < ρk⌊
pk+1=pk+

νk
ρk

(
χk

(
p0−pk

)
+µk

(
pk+1/2−pk

))

wn+1 = pKn
.

(32)

A subgradient of ϕ1 at (ξi)16i6d ∈ R
d is s = (sign(ξi))16i6d,

where

sign: ξ 7→





1 if ξ > 0

0 if ξ = 0

−1 if ξ < 0.

(33)

The ith component of a subgradient of ϕ2 at (ξi)16i6d ∈ R
d

is given by

∑

(i,j)∈S

{
sign(ξi) if |ξi| > |ξj |
0 otherwise.

(34)

The ith component of a subgradient of ϕ3 at (ξi)16i6d ∈ R
d

is given by

∑

(i,j)∈S

{
sign(ξi − ξj) if ξi 6= ξj

0 otherwise.
(35)

D. Application to regression

A common approach in regression is to learn w ∈ R
d by

employing the quadratic loss

Ψ: Rd → R : w 7→ 1

2m

m∑

i=1

∣∣〈xi | w〉 − yi
∣∣2 (36)

instead of the function Φ of (13) in Problem 2. Since Ψ is

convex and has a Lipschitz-continuous gradient with constant

β = σ2
1 , where σ1 is the largest singular value of the matrix

[x1| · · · |xm], it suffices to change the definition of vn in (32)

by

vn = wn − γn
m

m∑

i=1

(〈xi | wn〉 − yi
)
xi. (37)
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IV. EXPERIMENTAL EVALUATION

We illustrate the performance of the proposed constrained

splitting method on both synthetic and real data sets.

A. Synthetic data set

We first simulate a simple regulatory network in genomic

described in [27]. A genomic network is composed of regu-

lators (transcription factors, cytokines, kinase, growth factors,

etc.) and the genes they regulate. Our notation is as follows:

• m: number of samples.

• Nreg: number of regulators.

• Ng: number of genes per regulator.

• d = Nreg(Ng + 1).

The entry ξi,j of the matrix X = [x1| · · · |xm]⊤, composed of

m rows and d columns, is as follows.

(i) The rth regulator of the ith sample is

ξi,regr
= ξi,Ng(r−1)+r = ξi,r(Ng+1)−Ng

∼ N (0, 1).

This defines ξi,j for j of the form r(Ng + 1)−Ng.

(ii) The genes associated with ξi,regr
have a joint bivariate

normal distribution with a correlation of ρ = 0.7

ξi,r(Ng+1)−Ng+k ∼ N
(
̺ ξi,regr

, 1− ̺2
)
.

This defines ξi,j 6= r(Ng + 1)−Ng.

The regression response Y is given by Y = Xw + ε, where

ε ∼ N (0, σ2) with σ = 2.

Example 1 In this example, we consider that 9 genes reg-

ulated by the same regulators are activated and 1 gene is

inhibited. The true regressor is defined as

w =

(
5,

5√
10

, . . .

︸ ︷︷ ︸
9

,
−5√
10

, . . .

︸ ︷︷ ︸
1

,−5,
−5√
10

, . . .

︸ ︷︷ ︸
9

,
5√
10

, . . .

︸ ︷︷ ︸
1

, 3,

3√
10

, . . .

︸ ︷︷ ︸
9

,
−3√
10

, . . .

︸ ︷︷ ︸
1

,−3,
−3√
10

, . . .

︸ ︷︷ ︸
9

,
3√
10

, . . .

︸ ︷︷ ︸
1

, 0, . . ., 0

)
.

Example 2 We consider that 8 genes regulated by the same

regulators are activated and 2 genes are inhibited. The true

regressor is defined as

w =

(
5,

5√
10

, . . .

︸ ︷︷ ︸
8

,
−5√
10

, . . .

︸ ︷︷ ︸
2

,−5,
−5√
10

, . . .

︸ ︷︷ ︸
8

,
5√
10

, . . .

︸ ︷︷ ︸
2

, 3,

3√
10

, . . .

︸ ︷︷ ︸
8

,
−3√
10

, . . .

︸ ︷︷ ︸
2

,−3,
−3√
10

, . . .

︸ ︷︷ ︸
8

,
3√
10

, . . .

︸ ︷︷ ︸
2

, 0, . . ., 0

)
.

Example 3 This example is similar to Example 1, but we

consider that 7 genes regulated by the same regulators are

activated and 3 genes are inhibited. The true regressor is

w =

(
5,

5√
10

, . . .

︸ ︷︷ ︸
7

,
−5√
10

, . . .

︸ ︷︷ ︸
3

,−5,
−5√
10

, . . .

︸ ︷︷ ︸
7

,
5√
10

, . . .

︸ ︷︷ ︸
3

, 3,

3√
10

, . . .

︸ ︷︷ ︸
7

,
−3√
10

, . . .

︸ ︷︷ ︸
3

,−3,
−3√
10

, . . .

︸ ︷︷ ︸
7

,
3√
10

, . . .

︸ ︷︷ ︸
3

, 0, . . ., 0

)
.

B. Breast cancer data set

We use the breast cancer data set [37], which consists of

gene expression data for 8,141 genes in 295 breast cancer

tumors (78 metastatic and 217 non-metastatic). In the time

comparison evaluation, we select a subset of the 8141 genes

(range 3000 to 7000) using a threshold on the mean of the

genes. We use the network provided in [8] with p = 639
pathways as graph constraints in our classifier. In biological

applications, pathways are genes grouped according to their

biological functions [8], [27]. Two genes are connected if they

belong to the same pathway. Let Si be the subset of genes

that are connected to gene i. In this case, we have a subset of

only 40,000 connected genes in Si. Note that we compute the

subgradient (34) only on the subset Si of connected genes.

C. Comparison between penalty method and our ℓ1 con-

strained method for classification

First, we compare with the penalty approach using glmnet

MATLAB software [32] on the breast cancer data set described

in Section IV-B. We tuned the number of path iterations nλ

for glmnet for different values of the feature dimension. The

number of nonzero coefficients ‖w‖0 increases with nλ. The

glmnet method requires typically 200 path iterations or more

(see Fig. 3).

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

Fig. 3: Glmnet: Number of nonzero coefficients as a function

of nλ.

Our classification implementation uses the logistic loss. Let

‖w‖1 6 η be the surrogate sparsity constraint. Fig. 4 shows

for different values of the feature dimension that the number

of nonzero coefficients ‖w‖0 decreases monotonically with the

number of iterations. Consequently, the sweep search over η
consists in stopping the iterations of the algorithm when ‖w‖0
reaches value specified a priori.
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TABLE I: Time comparison (Matlab and mex) versus glmnet

[32].

mex-sparse mex Matlab Matlab-sparse mex [32]

Time(s) 0.0230 0.0559 0.169 0.0729 0.198

1000 2000 3000 4000 5000 6000 7000 8000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 5: Computing time as a function of the dimension.

10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

Fig. 4: Number of nonzero coefficients as a function of the

number of iterations.

Our direct constrained strategy does not require the often

heuristic search for meaningful and interpretable Lagrange

multipliers. Moreover, we can improve processing time using

sparse computing. Namely, at each iteration we compute scalar

products using only the sparse sub-vector of nonzero values.

We compare time processing using the breast cancer data

set (n = 295 samples, d = 3022) described in Section IV-

B. We provide time comparison using a 2.5 GHz Macbook

Pro with an i7 processor and Matlab software. We report

time processing in Table I using glmnet software [32] and

our method using either Matlab ℓ1 or a standard mex ℓ1 file.

Moreover, since the vector w is sparse, we provide mex-sparse

and matlb-sparse times using sparse computing. Fig. 5 shows

that our constrained method is ten times faster than glmnet

[32]. A numerical experiment is available in [1].

A potentially competitive alternative ℓ1 constrained opti-

mization algorithms for solving the projection part of our

constrained classification splitting algorithm is that described

in [15]. We plug the specific projection onto the ball algorithm

into our splitting algorithm. We provide time comparison (in

seconds) in Table II for classification for the breast cancer data

set (d = 3022) described in Section IV-B. Note that the most

expensive part of our algorithm in terms of computation is the

TABLE II: Time comparison(s) with projection onto the ℓ1

ball [15] for dimension d = 3022 using Matlab.

Matlab Matlab sparse ball [15]

Time (s) 0.169 0.0729 0.149

TABLE III: Breast cancer AUC comparisons.

glmnet [32] Group Lasso [24] ϕ1 ϕ2

AUC (%) 64.5 66.7 71.3 72.3

evaluation of the gradient. Although the projection onto the ℓ1

ball [15] is faster than our projection, our method is basically

12% slower than the specific ϕ1 constrained method for

dimension d = 3022. However, our sparse implementation of

scalar products is twice as fast. Moreover, since the complexity

of our method relies on the computation of scalar products,

it can be easily sped up using multicore CPU or Graphics

Processing Unit (GPU) devices, while the speed-up of the

projection on the ball [15] using CPU or GPU is currently

an open issue. In addition our method is more flexible since

it can take into account more sophisticated constraints such as

ϕ2, ϕ3, or any convex constraint. We evaluate classification

performance using area under the ROC curve (AUC). The

result of Table III show that our ϕ1 constrained method

outperforms the ϕ1 penalty method by 5.8%. Our ϕ2 constraint

improves slightly the AUC by 1% over the ϕ1 constrained

method. We also observe a significant improvement of our

constrained ϕ2 method over the penalty group Lasso approach

discussed in [24]. In addition, the main benefit of the ϕ2

constraint is to provide a set of connected genes which is

more relevant for biological analysis than the individual genes

selected by the ϕ1 constraint.

D. Comparison of various constraints for regression

In biological applications, gene activation or inhibition are

well known and summarized in the ingenuity pathway analysis

(IPA) database [2]. We introduce this biological a priori

knowledge by replacing the ϕ3 constraint by

ϕ4 : w 7→
∑

(i,j)∈S

|ωi − aijωj |, (38)

where aij = 1 if genes i and j are both activated or inhibited,

and aij = −1 if gene i is activated and gene j inhibited. We

compare the estimation of w for Example 3 using ϕ1 versus the

ϕ2 and ϕ4 constraint. For each fold, we estimate the regression

vector w on 100 training samples. Then we evaluate on new

100 testing samples. We evaluate regression using the mean

square error (MSE) in the training set and the predictive mean

square error (PMSE) in the test set. We use randomly half of

the data for training and half for testing, and then we average

the accuracy over 50 random folds.

We show in Fig. 6a the true regression vector and, in Fig. 6b,

the estimation using the ϕ1 constraint for Example 3. In Fig. 6c

we show the results of the estimation with the ϕ2 constraint,

and in Fig. 6d with the ϕ4 constraint. We provide for the

three examples the mean square error as a function of η for
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Fig. 6: Example 3: (a): True vector w. (b): Estimation with the ϕ1 constraint. (c): Estimation with the ϕ2 constraint. (d):

Estimation with the ϕ4 constraint.

45 50 55 60 65 70 75 80 85 90
2

2.5

3

3.5

4

4.5

5

5.5

6

Fig. 7: ϕ1 constraint for Examples 1, 2, and 3. Mean square

error as a function of the parameter η.

ϕ1 (Fig. 7), ϕ2 (Fig. 8), and ϕ4 (Fig. 9). We report for

Example 2 in Fig. 10 the estimation of the mean square error

in the training set as a function of the number of training

samples for the ϕ1, ϕ2, and ϕ4 constraint. The ϕ4 constraint

outperforms both the ϕ2 and the ϕ1 constrained method.

However, the selection of the parameter η for constraint ϕ4

is more challenging.

V. CONCLUSION

We have used constrained optimization approaches to pro-

mote sparsity and feature grouping in classification and regres-

0.4 0.45 0.5 0.55 0.6 0.65 0.7
1

1.5

2

2.5

3

3.5

4

4.5

Fig. 8: ϕ2 constraint for Examples 1, 2, and 3. Mean square

error as a function of the parameter η.

sion problems. To solve these problems, we have proposed a

new efficient algorithm which alternates a gradient step on

the data fidelity term and an approximate projection step onto

the constraint set. We have also discussed the generalization

to multiple constraints. Experiments on both synthetic and

biological data show that our constrained approach outper-

forms penalty methods. Moreover, the formulation using the

ϕ4 constraint outperforms those using the pairwise ϕ2 and the

ϕ1 constraint.
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Fig. 9: ϕ4 constraint for Examples 1, 2, and 3. Mean square

error as a function of the parameter η.
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Fig. 10: MSE as a function of the number of samples m for

Example 2.

APPENDIX A – THE CASE OF MULTIPLE CONSTRAINTS

Let Φ be as in Problem 2 and, for every j ∈ {1, . . . , p}, let

ϕj : R
d → R be convex, let ηj ∈ R, and let αj ∈ ]0, 1] be

such that
∑p

j=1 αj = 1. Consider the problem

minimize
ϕ1(w)6η1

...
ϕp(w)6ηp

Φ(w). (A1)

In other words, C =
⋂p

j=1

{
w ∈ R

d
∣∣ ϕj(w) 6 ηj

}
in (16).

Let k ∈ N. For every j ∈ {1, . . . , p}, let sj,k ∈ ∂ϕj(pk) and

set

pj,k =




pk +

ηj − ϕj(pk)

‖sj,k‖2
sj,k if ϕj(pk) > ηj

pk if ϕj(pk) 6 ηj .
(A2)

Now define

pk+1/2 = pk + Lk

(
p∑

j=1

αjpj,k − pk

)
, (A3)

where

Lk =

p∑

j=1

αj‖pj,k − pk‖2

∥∥∥∥∥

p∑

j=1

αjpj,k − pk

∥∥∥∥∥

2 . (A4)

Then pk+1 = Q(p0, pk, pk+1/2) → PC(p0) [10, Theorem 6.4]

and therefore the generalization

for n = 0, 1, . . .

vn = wn − γn∇Φ(wn)
p0 = vn
for k = 0, 1, . . . ,Kn − 1

ζk = min16j6p

(
ηj − ϕj(pk)

)

if ζk > 0
⌊terminate.

for j = 1, . . . , p
⌊sj,k ∈ ∂ϕj(pk)

compute pk+1/2 as in (A2)–(A4)

wn+1 = pKn
.

(A5)

of (31) solves (A1).
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