Michel Barlaud 
email: barlaud@i3s.unice.fr
  
Wafa Belhajali 
  
Patrick Louis Combettes 
  
L Fillatre 
email: fillatre@i3s.unice.fr
  
  
  
  

come    

Classification and regression using an outer approximation projection-gradient method Michel Barlaud, Fellow, IEEE, Wafa Belhajali, Patrick L. Combettes Fellow, IEEE, and Lionel Fillatre Abstract-This paper deals with sparse feature selection and grouping for classification and regression. The classification or regression problems under consideration consists in minimizing a convex empirical risk function subject to an ℓ 1 constraint, a pairwise ℓ ∞ constraint, or a pairwise ℓ 1 constraint. Existing work, such as the Lasso formulation, has focused mainly on Lagrangian penalty approximations, which often require ad hoc or computationally expensive procedures to determine the penalization parameter. We depart from this approach and address the constrained problem directly via a splitting method. The structure of the method is that of the classical gradientprojection algorithm, which alternates a gradient step on the objective and a projection step onto the lower level set modeling the constraint. The novelty of our approach is that the projection step is implemented via an outer approximation scheme in which the constraint set is approximated by a sequence of simple convex sets consisting of the intersection of two half-spaces. Convergence of the iterates generated by the algorithm is established for a general smooth convex minimization problem with inequality constraints. Experiments on both synthetic and biological data show that our method outperforms penalty methods.

I. INTRODUCTION

In many classification and regression problems, the objective is to select a sparse vector of relevant features. For example in biological applications, DNA microarray and new RNA-seq devices provide high dimensional gene expression (typically 20,000 genes). The challenge is to select the smallest number of genes (the so-called biomarkers) which are necessary to achieve accurate biological classification and prediction. A popular approach to recover sparse feature vectors (under a condition of mutual incoherence) is to solve a convex optimization problem involving a data fidelity term Φ and the ℓ 1 norm [START_REF] Candès | The restricted isometry property and its implications for compressed sensing[END_REF], [START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ 1 minimization[END_REF], [START_REF] Donoho | Uncertainty principles and signal recovery[END_REF], [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]. Recent Lasso penalty regularization methods take into account correlated data using either the pairwise ℓ 1 penalty [START_REF] Jacob | Group lasso with overlap and graph lasso[END_REF], [START_REF] Li | Network-constrained regularization and variable selection for analysis of genomic data[END_REF], [START_REF] Tibshirani | Sparsity and smoothness via the fused lasso[END_REF] or the pairwise ℓ ∞ penalty [START_REF] Bondell | Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR[END_REF] (see also [START_REF] Figueiredo | Ordered weighted ℓ 1 regularized regression with strongly correlated covariates: Theoretical aspects[END_REF] for further developments). The sparsity or grouping constrained classification problem can be cast as the minimization of a smooth convex loss Φ subject a constraint ϕ(w) η, where ϕ is the ℓ 1 norm or a pairwise ℓ ∞ constraint function. The resulting optimization problem is to minimize ϕ(w) η Φ(w).

(1)

Most of the existing work has focused on Lagrangian penalty methods, which aim at solving the unconstrained problem of minimizing Φ + λϕ, where ϕ now acts as the penalty function.

Although, under proper qualification conditions, there is a formal equivalence between constrained and unconstrained Lagrangian formulations [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Chapter 19], the exact Lagrange multiplier λ can seldom be computed easily, which leaves the properties of the resulting solutions loosely defined. The main contribution of the present paper is to propose an efficient splitting algorithm to solve the constrained formulation (1) directly. As discussed in [START_REF] Combettes | Image restoration subject to a total variation constraint[END_REF], the bound η defining the constraint can often be determined from prior information on the type of problem at hand. Our splitting algorithm proceeds by alternating a gradient step on the smooth classification risk function Φ and a projection onto the lower level set w ∈ R d ϕ(w) η . The main focus is when ϕ models the ℓ 1 , pairwise ℓ 1 constraint, or pairwise ℓ ∞ constraint. The projection onto the lower level set is implemented via an outer projection procedure which consists of successive projections onto the intersection of two simple half-spaces. The remainder of the paper is organized as follows. Section II introduces the constrained optimization model. Section III presents our new splitting algorithm, which applies to any constrained smooth convex optimization problem. In particular we also discuss the application to regression problems. Section IV presents experiments on both synthetic and real classical biological and genomics data base.

II. PROBLEM MODELING

In this section we discuss our model. In section II-A we describe the loss function. Sections II-B and II-C describe the sparsity constraint model and the grouping sparsity constraint model, respectively. Finally the optimization problem is set up in Section II-D.

A. Risk minimization

We assume that m samples (x i ) 1 i m in R d are available. Typically m < d, where d is the dimension of the feature vector. Each sample x i is annotated with a label y i taking its value in {-1, +1}. The classification risk associated with a linear classifier parameterized by a vector w ∈ R d is given by

Φ : R d → R : w → 1 m m i=1 φ y i x i | w . (2) 
We restrict our investigation to convex losses φ which satisfy the following assumption.

Assumption 1 Let f : R → [0, 1] be an increasing Lipschitzcontinuous function which is antisymmetric with respect to the point (0, f (0)) = (0, 1/2), integrable, and differentiable at 0 with f ′ (0) = max f ′ . The loss φ : R → R is defined by

(∀t ∈ R) φ(t) = -t + t -∞ f (s)ds. (3) 
Examples of functions which satisfy Assumption 1 include that induced by the function f : t → 1/(1 + exp(-t)), which leads to the logistic loss φ : t → ln(1 + exp(-t)), for which φ ′′ (0) = 1/4. Another example is the Matsusita loss [START_REF] Matusita | Distance and decision rules[END_REF] 

φ : t → 1 2 -t + 1 + t 2 , (4) 
which is induced by

f : t → t/ √ 1 + t 2 + 1 /2.
The first advantage of this class of losses is that it allows us to compute the posterior probability without computing Platt approximation [START_REF] Belhajali | Boosting stochastic Newton with entropy constraint for large-scale image classification[END_REF], [START_REF] Platt | Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[END_REF]. The function f relates a prediction x i | w of a sample x i to the posterior probability for the class +1 via

P Y i = +1 | x i = f ( x i | w ). (5) 
This property will be used in Section IV to compute the posterior probability without any approximation. This probability is necessary to compute the area under the ROC curve (AUC). The second advantage is that the loss φ in Assumption 1 is convex, everywhere differentiable with a Lipschitz-continuous derivative, and it is twice differentiable at 0 with φ ′′ (0) = max φ ′′ . In turn, the function Φ of (2) is convex and differentiable, and its gradient

∇Φ : w → 1 m m i=1 f x i | w x i (6) 
has Lipschitz constant

β = f ′ (0) m i=1 x i 2 m = φ ′′ (0) m i=1 x i 2 m . (7) 
Applications to classification often involve normalized features. In this case, [START_REF] Censor | Cyclic subgradient projections[END_REF] reduces to β = f ′ (0) = φ ′′ (0).

B. Sparsity model

In many applications, collecting a sufficient amount of features to perform prediction is a costly process. The challenge is therefore to select the smallest number of features (genes or biomarkers) necessary for an efficient classification and prediction. The problem can be cast as a constrained optimization problem, namely, minimize

w∈R d w 0 δ Φ(w), (8) 
where w 0 is the number of nonzero entries of w. Since • 0 is not convex, (8) is usually intractable and an alternative approach is to use the norm • 1 as a surrogate, which yields the Lasso formulation [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] minimize

w∈R d w 1 η Φ(w). (9) 
It has been shown in the context of compressed sensing that under a so-called restricted isometry property, minimizing with the • 1 norm is tantamount to minimizing with the • 0 penalty in a sense made precise in [START_REF] Candès | The restricted isometry property and its implications for compressed sensing[END_REF].

C. Grouping sparsity model

Let us consider the graph S of connected features (i, j). The basic idea is to introduce constraints on the coefficients for features ω i and ω j connected by an edge in the graph. In this paper we consider two approaches: directed acyclic graph and undirected graph. Fused Lasso [START_REF] Tibshirani | Sparsity and smoothness via the fused lasso[END_REF] encourages the coefficients ω i and ω j of features i and j connected by an edge in the graph to be similar. We define the problem of minimizing under the directed acyclic graph constraint as minimize

w∈R d (i,j)∈S |ωi-ωj| η Φ(w), (10) 
for some suitable parameters η 0. In the second, undirected graph, approach [START_REF] Bondell | Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR[END_REF] one constrains the coefficients of features ω i and ω j connected by an edge using a pairwise ℓ ∞ constraint.

The problem is to minimize

w∈R d (i,j)∈S max(|ωi|,|ωj|) η Φ(w). (11) 
To approach the constrained problems ( 9) and ( 10), state of the art methods employ a penalized variant [START_REF] Donoho | Signal recovery and the large sieve[END_REF], [START_REF] Donoho | Uncertainty principles and signal recovery[END_REF], [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF], [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF].

In these Lagrangian approaches the objective is to minimize Φ+λϕ, where λ > 0 aims at controlling sparsity and grouping, and where the constraints are defined by one of the following (see ( 9), [START_REF] Combettes | Strong convergence of block-iterative outer approximation methods for convex optimization[END_REF], and ( 11)

)      ϕ 1 = • 1 ϕ 2 : w → (i,j)∈S max(|ω i |, |ω j |) ϕ 3 : w → (i,j)∈S |ω i -ω j |. (12) 
The main drawback of current penalty formulations resides in the cost associated with the reliable computation of the Lagrange multiplier λ using homotopy algorithms [START_REF] Donoho | Signal recovery and the large sieve[END_REF], [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF], [START_REF] Hastie | The entire regularization path for the support vector machine[END_REF], [START_REF] Mairal | Complexity analysis of the lasso regularization path[END_REF]. The worst complexity case is O(3 d ) [START_REF] Mairal | Complexity analysis of the lasso regularization path[END_REF], which is usually intractable on real data. Although experiments using homotopy algorithms suggest that the actual complexity is O(d) [START_REF] Mairal | Complexity analysis of the lasso regularization path[END_REF], the underlying path algorithm remains computationally expensive for high-dimensional data sets such as the genomic data set. To circumvent this computational issue, we propose a new general algorithm to solve either the sparse [START_REF] Combettes | Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections[END_REF] or the grouping (10) constrained convex optimization problems directly.

D. Optimization model

Our classification minimization problem is formally cast as follows.

Problem 1 Suppose that φ satisfies Assumption 1 and let ϕ : R d → R be convex. Set

Φ : R d → R : w → 1 m m i=1 φ y i x i | w ( 13 
)
and

C = w ∈ R d ϕ(w) η , (14) 
and let β be the Lipschitz constant of ∇Φ, as defined in [START_REF] Censor | Cyclic subgradient projections[END_REF].

The problem is to

minimize w∈C Φ(w). (15) 
In Section IV, we shall focus on the three instances of the function ϕ defined in [START_REF] Combettes | Proximal thresholding algorithm for minimization over orthonormal bases[END_REF]. We assume throughout that there exists some ρ ∈ R such that x ∈ C Φ(x) ρ is nonempty and bounded, which guarantees that ( 13) has at least one solution. In particular, this is true if Φ or ϕ is coercive.

III. SPLITTING ALGORITHM

In this section, we propose an algorithm for solving constrained classification problem [START_REF] Condat | Fast projection onto the simplex and the l 1 ball[END_REF]. This algorithm fits in the general category of forward-backward splitting methods, which have been popular since their introduction in data processing problem in [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF]; see also [START_REF] Combettes | Proximal thresholding algorithm for minimization over orthonormal bases[END_REF], [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF], [START_REF] Mosci | Solving structured sparsity regularization with proximal methods[END_REF], [START_REF] Schmidt | Convergence rates of inexact proximal-gradient methods for convex optimization[END_REF], [START_REF] Sra | Optimization for Machine Learning[END_REF]. These methods offer flexible implementations with guaranteed convergence of the sequence of iterates they generate, a key property to ensure the reliability of our variational classification scheme.

A. General framework

As noted in Section II, Φ is a differentiable convex function and its gradient has Lipschitz constant β, where β is given by [START_REF] Censor | Cyclic subgradient projections[END_REF]. Likewise, since ϕ is convex and continuous, C is a closed convex set as a lower level set of ϕ. The principle of a splitting method is to use the constituents of the problems, here Φ and C, separately. In the problem at hand, it is natural to use the projection-gradient method to solve [START_REF] Condat | Fast projection onto the simplex and the l 1 ball[END_REF]. This method, which is an instance of the proximal forward-backward algorithm [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF], alternates a gradient step on the objective Φ and a projection step onto the constraint set C. It is applicable in the following setting, which captures Problem 1.

Problem 2 Let Φ : R d → R be a differentiable convex function such that ∇Φ is Lipschitz-continuous with constant β ∈ ]0, +∞[, let ϕ : R d → R be a convex function, let η ∈ R, and set C = w ∈ R d ϕ(w) η . The problem is to minimize w∈C Φ(w). ( 16 
)
Let P C denote the projection operator onto the closed convex set C. Given w 0 ∈ R d , a sequence (γ n ) n∈N of strictly positive parameters, and a sequence (a n ) n∈N in R d modeling computational errors in the implementation of the projection operator P C , the projection-gradient algorithm for solving Problem 2 assumes the form

for n = 0, 1, . . . v n = w n -γ n ∇Φ(w n ) w n+1 = P C (v n ) + a n . (17) 
We derive at once from [14, Theorem 3.4(i)] the following convergence result, which guarantees the convergence of the iterates.

C = p ∈ R d ϕ(p) η p ∈ R d ϕ(p) ϕ(p k ) p k p 0 • • • p k+1 • p k+1/2 s k H(p k , p k+1/2 ) H(p 0 , p k )
Fig. 1: A generic iteration for computing the projection of p 0 onto C.

Theorem 1 Suppose that Problem 2 has at least one solution, let w 0 ∈ R d , let (γ n ) n∈N be a sequence in ]0, +∞[, and let

(a n ) n∈N be a sequence in R d such that n∈N a n < +∞, inf n∈N γ n > 0, and sup n∈N γ n < 2 β . (18) 
Then the sequence (w n ) n∈N generated by [START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ 1 minimization[END_REF] converges to a solution to Problem 2.

Theorem 1 states that the whole sequence of iterates converges to a solution. Using classical results on the asymptotic behavior of the projection-gradient method [25, Theorem 5.1(2)], we can complement this result with the following upper bound on the rate of convergence of the objective value.

Proposition 1 In Theorem 1 suppose that (∀n ∈ N) a n = 0. Then there exists ϑ > 0 such that, for n large enough,

Φ(w n ) -inf Φ(C) ϑ/n.
The implementation of ( 17) is straightforward except for the computation of P C (v n ). Indeed, C is defined in ( 14) as the lower level set of a convex function, and no explicit formula exists for computing the projection onto such a set in general [3, Section 29.5]. Fortunately, Theorem 1 asserts that P C (v n ) need not be computed exactly. Next, we provide an efficient algorithm to compute an approximate projection onto C.

B. Projection onto a lower level set

Let p 0 ∈ R d , let ϕ : R d → R be a convex function, and let η ∈ R be such that

C = p ∈ R d ϕ(p) η = ∅. ( 19 
)
The objective is to compute iteratively the projection P C (p 0 ) of p 0 onto C. The principle of the algorithm is to replace this (usually intractable) projection by a sequence of projections onto simple outer approximations to C consisting of the intersection of two affine half-spaces [START_REF] Combettes | Strong convergence of block-iterative outer approximation methods for convex optimization[END_REF].

We first recall that

s ∈ R d is called a subgradient of ϕ at p ∈ R d if [3, Chapter 16] (∀y ∈ R d ) y -p | s + ϕ(p) ϕ(y). (20) 
The set of all subgradients of ϕ at p is denoted by ∂ϕ(p). If ϕ is differentiable at p, this set reduces to a single vector, namely the gradient ∇ϕ(p). The projection P C (p 0 ) of p 0 onto C is characterized by

P C (p 0 ) ∈ C (∀p ∈ C) p -P C (p 0 ) | p 0 -P C (p 0 ) 0. (21) 
Given x and y in R d , define a closed affine half-space H(x, y) by

H(x, y) = p ∈ R d p -y | x -y 0 . ( 22 
)
Note that H(x, x) = R d and, if x = y, H(x, y) is the closed affine half-space onto which the projection of x is y.

According to [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF], C ⊂ H(p 0 , P C (p 0 )).

The principle of the algorithm at iteration k is as follows (see Fig. 1). The current iterate is p k , and C is contained in the half-space H(p 0 , p k ) onto which p k is the projection of p 0 (see [START_REF] Hastie | The entire regularization path for the support vector machine[END_REF]). If ϕ(p k ) > η, any subgradient s k ∈ ∂ϕ(p k ) is in the normal cone to the lower level set p ∈ R d ϕ(p) ϕ(p k ) at p k , and the associated subgradient projection of p k onto C is [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF], [START_REF] Censor | Cyclic subgradient projections[END_REF], [START_REF] Combettes | Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections[END_REF] 

p k+1/2 =    p k + η -ϕ(p k ) s k 2 s k if ϕ(p k ) > η p k if ϕ(p k ) η. (23) 
As noted in [START_REF] Combettes | Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections[END_REF], it follows from (20) that the closed halfspace H(p k , p k+1/2 ) serves as an outer approximation to C at iteration k, i.e., C ⊂ H(p k , p k+1/2 ). Altogether, since we have also seen that C ⊂ H(p 0 , p k ),

C ⊂ C k , where C k = H(p 0 , p k ) ∩ H(p k , p k+1/2 ). (24) 
Finally, the update p k+1 is the projection of p 0 onto the outer approximation C k to C. As the following lemma from [START_REF] Haugazeau | Sur les Inéquations Variationnelles et la Minimisation de Fonctionnelles Convexes[END_REF] (see also [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 29.25]) shows, this computation is straightforward.

Lemma 1 Let x, y, and z be points in R d such that

H(x, y) ∩ H(y, z) = ∅. ( 25 
)
Moreover, set a = x -y, b = y -z, χ = a | b , µ = a 2 , ν = b 2 , and ρ = µν -χ 2 . Then the projection of x onto H(x, y) ∩ H(y, z) is Q(x, y, z) =                z if ρ = 0 and χ 0 x -1 + χ ν b if ρ > 0 and χν ρ y + ν ρ χa -µb if ρ > 0 and χν < ρ. (26) 
Note that, if ϕ(p k ) η, then p k ∈ C and the algorithm terminates with p k = P C (p 0 ). Indeed, since C ⊂ H(p 0 , p k ) [10, Section 5.2] and p k is the projection of p 0 onto H(p 0 , p k ),

we have p 0 -p k p 0 -P C (p 0 ) . Hence p k ∈ C ⇔ p k = P C (p 0 ), i.e., ϕ(p k ) η ⇔ p k = P C (p 0 ).
To sum up, the projection of p 0 onto the set C of ( 19) will be performed by executing the following routine.

for k = 0, 1, . . .           if ϕ(p k ) η ⌊terminate. ζ k = η -ϕ(p k ) s k ∈ ∂ϕ(p k ) p k+1/2 = p k + ζ k s k / s k 2 p k+1 = Q(p 0 , p k , p k+1/2 ). (27) 
The next result from [10, Section 6.5] guarantees the convergence of the sequence (p k ) k∈N generated by [START_REF] Li | Network-constrained regularization and variable selection for analysis of genomic data[END_REF] to the desired point.

Proposition 2 Let p 0 ∈ R d , let ϕ : R d → R be a convex function, and let η ∈ R be such that C = p ∈ R d ϕ(p) η = ∅. Then either [START_REF] Li | Network-constrained regularization and variable selection for analysis of genomic data[END_REF] terminates in a finite number of iterations at P C (p 0 ) or it generates an infinite sequence (p k ) k∈N such that p k → P C (p 0 ).

To obtain an implementable version of the conceptual algorithm [START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ 1 minimization[END_REF], consider its nth iteration and the computation of the approximate projection w n+1 of v n onto C using [START_REF] Li | Network-constrained regularization and variable selection for analysis of genomic data[END_REF]. We first initialize [START_REF] Li | Network-constrained regularization and variable selection for analysis of genomic data[END_REF] with p 0 = v n , and then execute only K n iterations of it. In doing so, we approximate the exact projection onto C by the projection p Kn onto C Kn-1 . The resulting error is a n = P C (p 0 )-p Kn . According to Theorem 1, this error must be controlled so as to yield overall a summable process. First, since P C is nonexpansive [3, Proposition 4.16], we have

P C (p 0 ) -P C (p Kn ) p 0 -p Kn → 0. (28) 
Now suppose that ϕ(p Kn ) > η (otherwise we are done). By convexity, ϕ is Lipschitz-continuous relative to compact sets [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 8.41]. Therefore there exists ζ > 0 such that 0 < ϕ(p Kn )-η = ϕ(p Kn )-ϕ(P C (p 0 )) ζ p Kn -P C (p 0 ) → 0.

In addition, assuming that int(C) = ∅, using standard error bounds on convex inequalities [START_REF] Lewis | Error bounds for convex inequality systems[END_REF], there exists a constant ξ > 0 such that

p Kn -P C (p Kn ) ξ ϕ(p Kn ) -η → 0. (29) 
Thus,

a n = P C (p 0 ) -p Kn P C (p 0 ) -P C (p Kn ) + P C (p Kn ) -p Kn p 0 -p Kn + ξ ϕ(p Kn ) -η . ( 30 
)
Thus, is suffices to take K n large enough so that, for instance, we have p 0p Kn ξ 1 /n 1+ǫ and ϕ(p Kn )η ξ 2 /n 1+ǫ for some ξ 1 > 0, ξ 2 > 0, and ǫ > 0. This will guarantee that n∈N a n < +∞ and therefore, by Theorem 1, the convergence of the sequence (w n ) n∈N generated by the following algorithm to a solution to Problem 2.

for n = 0, 1, . . .

                  v n = w n -γ n ∇Φ(w n ) p 0 = v n for k = 0, 1, . . . , K n -1           ζ k = η -ϕ(p k ) if ζ k 0 ⌊terminate. s k ∈ ∂ϕ(p k ) p k+1/2 = p k + ζ k s k / s k 2 p k+1 = Q(p 0 , p k , p k+1/2 ) w n+1 = p Kn . (31) 
Let us observe that, from a practical standpoint, we have found the above error analysis not to be required in our experiments since an almost exact projection is actually obtainable with a few iterations of [START_REF] Li | Network-constrained regularization and variable selection for analysis of genomic data[END_REF]. For instance, numerical simulations (see Fig. 2) on the synthetic data set described in Section IV-A show that ( 27) yields in about K n ≈ 7 iterations a point very close to the exact projection of p 0 onto C. Note that the number of iterations of ( 27) does not depend on the dimension d.

Remark 1 (multiple constraints) We have presented above the case of a single constraint, since it is the setting employed in subsequent sections. However, the results of [START_REF] Combettes | Strong convergence of block-iterative outer approximation methods for convex optimization[END_REF]Section 6.5] enable us to extend this approach to problems with p constraints, see Appendix A.

C. Application to Problem 1

It follows from ( 6), [START_REF] Lewis | Error bounds for convex inequality systems[END_REF], and [START_REF] Li | Network-constrained regularization and variable selection for analysis of genomic data[END_REF], that [START_REF] Platt | Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[END_REF] for the classification problem can be written explicitly as follows, where ε is an arbitrarily small number in ]0, 1[ and where β is given by [START_REF] Censor | Cyclic subgradient projections[END_REF].

for n = 0, 1, . . .                                               γ n ∈ [ε, (2 -ε)/β] v n = w n - γ n m m i=1 y i φ ′ y i x i | w n x i p 0 = v n for k = 0, 1, . . . , K n -1                                   ζ k = η -ϕ(p k ) if ζ k 0 ⌊terminate. s k ∈ ∂ϕ(p k ) p k+1/2 = p k + ζ k s k / s k 2 χ k = p 0 -p k | p k -p k+1/2 µ k = p 0 -p k 2 ν k = p k -p k+1/2 2 ρ k = µ k ν k -χ 2 k if ρ k = 0 and χ k 0 p k+1 = p k+1/2 if ρ k > 0 and χ k ν k ρ k p k+1 = p 0 + 1 + χ k ν k p k+1/2 -p k if ρ k > 0 and χ k ν k < ρ k p k+1 = p k + ν k ρ k χ k p 0 -p k +µ k p k+1/2 -p k w n+1 = p Kn . ( 32 
) A subgradient of ϕ 1 at (ξ i ) 1 i d ∈ R d is s = (sign(ξ i )) 1 i d , where sign : ξ →      1 if ξ > 0 0 if ξ = 0 -1 if ξ < 0. ( 33 
)
The ith component of a subgradient of ϕ 2 at (ξ i )

1 i d ∈ R d is given by (i,j)∈S sign(ξ i ) if |ξ i | |ξ j | 0 otherwise. ( 34 
)
The ith component of a subgradient of ϕ 3 at

(ξ i ) 1 i d ∈ R d is given by (i,j)∈S sign(ξ i -ξ j ) if ξ i = ξ j 0 otherwise. ( 35 
)

D. Application to regression

A common approach in regression is to learn w ∈ R d by employing the quadratic loss

Ψ : R d → R : w → 1 2m m i=1 x i | w -y i 2 (36)
instead of the function Φ of ( 13) in Problem 2. Since Ψ is convex and has a Lipschitz-continuous gradient with constant β = σ 2 1 , where σ 1 is the largest singular value of the matrix

[x 1 | • • • |x m ],
it suffices to change the definition of v n in [START_REF] Qian | Glmnet for matlab[END_REF] by

v n = w n - γ n m m i=1 ( x i | w n -y i x i . ( 37 
)

IV. EXPERIMENTAL EVALUATION

We illustrate the performance of the proposed constrained splitting method on both synthetic and real data sets.

A. Synthetic data set

We first simulate a simple regulatory network in genomic described in [START_REF] Li | Network-constrained regularization and variable selection for analysis of genomic data[END_REF]. A genomic network is composed of regulators (transcription factors, cytokines, kinase, growth factors, etc.) and the genes they regulate. Our notation is as follows:

• m: number of samples.

• N reg : number of regulators.

• N g : number of genes per regulator.

• d = N reg (N g + 1). The entry ξ i,j of the matrix X = [x 1 | • • • |x m ] ⊤ ,
composed of m rows and d columns, is as follows.

(i) The rth regulator of the ith sample is

ξ i,reg r = ξ i,Ng(r-1)+r = ξ i,r(Ng+1)-Ng ∼ N (0, 1).
This defines ξ i,j for j of the form r(N g + 1) -N g . (ii) The genes associated with ξ i,reg r have a joint bivariate normal distribution with a correlation of ρ = 0.7

ξ i,r(Ng+1)-Ng+k ∼ N ̺ ξ i,reg r , 1 -̺ 2 .
This defines ξ i,j = r(N g + 1) -N g .

The regression response Y is given by Y = Xw + ε, where ε ∼ N (0, σ 2 ) with σ = 2.

Example 1

In this example, we consider that 9 genes regulated by the same regulators are activated and 1 gene is inhibited. The true regressor is defined as

w = 5, 5 √ 10 , . . . 9 , -5 √ 10 , . . . 1 , -5, -5 √ 10 , . . . 9 , 5 √ 10 , . . . 1 , 3, 3 √ 10 , . . . 9 , -3 √ 10 , . . . 1 , -3, -3 √ 10 , . . . 9 , 3 √ 10 , . . . 1 
, 0, . . ., 0 .

Example 2 We consider that 8 genes regulated by the same regulators are activated and 2 genes are inhibited. The true regressor is defined as

w = 5, 5 √ 10 , . . . 8 , -5 √ 10 , . . . 2 , -5, -5 √ 10 , . . . 8 , 5 √ 10 , . . . 2 , 3, 3 √ 10 , . . . 8 , -3 √ 10 , . . . 2 , -3, -3 √ 10 , . . . 8 , 3 √ 10 , . . . 2 
, 0, . . ., 0 .

Example 3 This example is similar to Example 1, but we consider that 7 genes regulated by the same regulators are activated and 3 genes are inhibited. The true regressor is

w = 5, 5 √ 10 , . . . 7 , -5 √ 10 , . . . 3 , -5, -5 √ 10 , . . . 7 , 5 √ 10 , . . . 3 , 3, 3 √ 10 , . . . 7 , -3 √ 10 , . . . 3 , -3, -3 √ 10 , . . . 7 , 3 √ 10 , . . . 3 
, 0, . . ., 0 .

B. Breast cancer data set

We use the breast cancer data set [START_REF] Van De | A gene-expression signature as a predictor of survival in breast cancer[END_REF], which consists of gene expression data for 8,141 genes in 295 breast cancer tumors (78 metastatic and 217 non-metastatic). In the time comparison evaluation, we select a subset of the 8141 genes (range 3000 to 7000) using a threshold on the mean of the genes. We use the network provided in [START_REF] Chuang | Network-based classification of breast cancer metastasis[END_REF] with p = 639 pathways as graph constraints in our classifier. In biological applications, pathways are genes grouped according to their biological functions [START_REF] Chuang | Network-based classification of breast cancer metastasis[END_REF], [START_REF] Li | Network-constrained regularization and variable selection for analysis of genomic data[END_REF]. Two genes are connected if they belong to the same pathway. Let S i be the subset of genes that are connected to gene i. In this case, we have a subset of only 40,000 connected genes in S i . Note that we compute the subgradient (34) only on the subset S i of connected genes.

C. Comparison between penalty method and our ℓ 1 constrained method for classification First, we compare with the penalty approach using glmnet MATLAB software [START_REF] Qian | Glmnet for matlab[END_REF] on the breast cancer data set described in Section IV-B. We tuned the number of path iterations n λ for glmnet for different values of the feature dimension. The number of nonzero coefficients w 0 increases with n λ . The glmnet method requires typically 200 path iterations or more (see Fig. 3). Our classification implementation uses the logistic loss. Let w 1 η be the surrogate sparsity constraint. Fig. 4 shows for different values of the feature dimension that the number of nonzero coefficients w 0 decreases monotonically with the number of iterations. Consequently, the sweep search over η consists in stopping the iterations of the algorithm when w 0 reaches value specified a priori. Our direct constrained strategy does not require the often heuristic search for meaningful and interpretable Lagrange multipliers. Moreover, we can improve processing time using sparse computing. Namely, at each iteration we compute scalar products using only the sparse sub-vector of nonzero values. We compare time processing using the breast cancer data set (n = 295 samples, d = 3022) described in Section IV-B. We provide time comparison using a 2.5 GHz Macbook Pro with an i7 processor and Matlab software. We report time processing in Table I using glmnet software [START_REF] Qian | Glmnet for matlab[END_REF] and our method using either Matlab ℓ 1 or a standard mex ℓ 1 file. Moreover, since the vector w is sparse, we provide mex-sparse and matlb-sparse times using sparse computing. Fig. 5 shows that our constrained method is ten times faster than glmnet [START_REF] Qian | Glmnet for matlab[END_REF]. A numerical experiment is available in [1].

A potentially competitive alternative ℓ 1 constrained optimization algorithms for solving the projection part of our constrained classification splitting algorithm is that described in [START_REF] Condat | Fast projection onto the simplex and the l 1 ball[END_REF]. We plug the specific projection onto the ball algorithm into our splitting algorithm. We provide time comparison (in seconds) in Table II for classification for the breast cancer data set (d = 3022) described in Section IV-B. Note that the most expensive part of our algorithm in terms of computation is the evaluation of the gradient. Although the projection onto the ℓ 1 ball [START_REF] Condat | Fast projection onto the simplex and the l 1 ball[END_REF] is faster than our projection, our method is basically 12% slower than the specific ϕ 1 constrained method for dimension d = 3022. However, our sparse implementation of scalar products is twice as fast. Moreover, since the complexity of our method relies on the computation of scalar products, it can be easily sped up using multicore CPU or Graphics Processing Unit (GPU) devices, while the speed-up of the projection on the ball [START_REF] Condat | Fast projection onto the simplex and the l 1 ball[END_REF] using CPU or GPU is currently an open issue. In addition our method is more flexible since it can take into account more sophisticated constraints such as ϕ 2 , ϕ 3 , or any convex constraint. We evaluate classification performance using area under the ROC curve (AUC). The result of Table III show that our ϕ 1 constrained method outperforms the ϕ 1 penalty method by 5.8%. Our ϕ 2 constraint improves slightly the AUC by 1% over the ϕ 1 constrained method. We also observe a significant improvement of our constrained ϕ 2 method over the penalty group Lasso approach discussed in [START_REF] Jacob | Group lasso with overlap and graph lasso[END_REF]. In addition, the main benefit of the ϕ 2 constraint is to provide a set of connected genes which is more relevant for biological analysis than the individual genes selected by the ϕ 1 constraint.

D. Comparison of various constraints for regression

In biological applications, gene activation or inhibition are well known and summarized in the ingenuity pathway analysis (IPA) database [2]. We introduce this biological a priori knowledge by replacing the ϕ 3 constraint by

ϕ 4 : w → (i,j)∈S |ω i -a ij ω j |, (38) 
where a ij = 1 if genes i and j are both activated or inhibited, and a ij = -1 if gene i is activated and gene j inhibited. We compare the estimation of w for Example 3 using ϕ 1 versus the ϕ 2 and ϕ 4 constraint. For each fold, we estimate the regression vector w on 100 training samples. Then we evaluate on new 100 testing samples. We evaluate regression using the mean square error (MSE) in the training set and the predictive mean square error (PMSE) in the test set. We use randomly half of the data for training and half for testing, and then we average the accuracy over 50 random folds. We show in Fig. 6a the true regression vector and, in Fig. 6b, the estimation using the ϕ 1 constraint for Example 3. In Fig. 6c we show the results of the estimation with the ϕ 2 constraint, and in Fig. 6d with the ϕ 4 constraint. We provide for the three examples the mean square error as a function of η for ϕ 1 (Fig. 7), ϕ 2 (Fig. 8), and ϕ 4 (Fig. 9). We report for Example 2 in Fig. 10 the estimation of the mean square error in the training set as a function of the number of training samples for the ϕ 1 , ϕ 2 , and ϕ 4 constraint. The ϕ 4 constraint outperforms both the ϕ 2 and the ϕ 1 constrained method. However, the selection of the parameter η for constraint ϕ 4 is more challenging.

V. CONCLUSION

We have used constrained optimization approaches to promote sparsity and feature grouping in classification and regres- sion problems. To solve these problems, we have proposed a new efficient algorithm which alternates a gradient step on the data fidelity term and an approximate projection step onto the constraint set. We have also discussed the generalization to multiple constraints. Experiments on both synthetic and biological data show that our constrained approach outperforms penalty methods. Moreover, the formulation using the ϕ 4 constraint outperforms those using the pairwise ϕ 2 and the ϕ 1 constraint. 
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TABLE I :

 I Time comparison (Matlab and mex) versus glmnet[START_REF] Qian | Glmnet for matlab[END_REF].

		mex-sparse		mex	Matlab	Matlab-sparse	mex [32]
	Time(s)	0.0230	0.0559	0.169	0.0729	0.198
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TABLE II :

 II Time comparison(s) with projection onto the ℓ 1 ball[START_REF] Condat | Fast projection onto the simplex and the l 1 ball[END_REF] for dimension d = 3022 using Matlab.

		Matlab	Matlab sparse	ball [15]
	Time (s)	0.169	0.0729	0.149

TABLE III :

 III Breast cancer AUC comparisons.

		glmnet [32] Group Lasso [24]	ϕ 1	ϕ 2
	AUC (%)	64.5	66.7	71.3	72.3

APPENDIX A -THE CASE OF MULTIPLE CONSTRAINTS

Let Φ be as in Problem 2 and, for every j ∈ {1, . . . , p}, let ϕ j : R d → R be convex, let η j ∈ R, and let α j ∈ ]0, 1] be such that (A1)

In other words,

Now define

where

Then p k+1 = Q(p 0 , p k , p k+1/2 ) → P C (p 0 ) [10, Theorem 6.4] and therefore the generalization

⌊terminate. for j = 1, . . . , p ⌊s j,k ∈ ∂ϕ j (p k ) compute p k+1/2 as in (A2)-(A4) w n+1 = p Kn .

(A5) of ( 31) solves (A1).