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Closed-form solutions for the free-vibration problem
of multilayered piezoelectric shells

M. D’Ottavio, D. Ballhause, B. Kröplin, E. Carrera 
1. Introduction

Piezoelectric components have been an important
research object since many years due to their unique fea-
ture to couple electric and mechanical characteristics in
one single material. For the last 50 years, their use as elec-
tro-mechanical transducers in sensor as well as in actua-
tor applications has been continuously increasing. More
recently, piezoelectrics have been considered among the
most suitable materials for extending the structural capa-
bilities beyond the purely passive load carrying one. Adap-
tive structures, in which the active material is embedded
into the host structure, thus contributing to the overall stiff-
ness, are an example for these striven high-performance
structures. Vibration and noise suppression, controlled
active deformation and health monitoring are among the
* Corresponding author. Tel.: +49 711 68562484; fax: +49 711
68563706.

E-mail address: dottavio@isd.uni-stuttgart.de (M. D’Ottavio).
most important applications of these ‘‘intelligent’’ struc-
tural components.

Since the typical structural elements in many engineer-
ing fields are thin, lightweight panels, the interest in two-
dimensional models able to predict the behavior of plates
and shells with embedded piezoelectric elements have cap-
tured the attention of the research community. The intro-
duction of piezoelectric material into a passive structure
naturally leads to a multilayered component, and it has
been recognized that classical models are not suitable for
an accurate design of such structures, see for example the
review article of Noor and Burton [1] and the references
cited herein. Interlaminar Continuity (IC) of the transverse
stresses as well as the related discontinuity of the slopes of
the displacement distributions in thickness direction at the
layers’ interfaces are the main effects arising in multilayered
structures which cannot be captured by classical formula-
tions based on Love First Approximation Theories
(LFAT), see e.g. [2]. Many refined theories for plates and
shells have been proposed in order to meet the modeling
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Fig. 1. Notations for the description of the shell geometry.
requirements – known as C0
z -Requirements – posed by

these characteristics; further details can be found, e.g., in
the monograph of Reddy [3] and in the paper of Carrera
[4]. For curved structures, Koiter [5] recognized the impor-
tance of transverse stress effects even for homogeneous
shells and recommended the inclusion of such effects when-
ever a consistent higher-order model has to be proposed.

The fundamentals for the modeling of piezoelectric
materials have been given in many contributions, in partic-
ular in the pioneering works of Mindlin [6], EerNisse [7],
Tiersten and Mindlin [8], and in the monograph of Tiersten
[9]. The embedding of piezoelectric layers into plates and
shells sharpens the requirements of an accurate modeling
of the resulting adaptive structure due to the localized elec-
tro-mechanical coupling, see e.g. the review of Saravanos
and Heyliger [10]. Therefore, within the framework of
two-dimensional approaches, layerwise descriptions have
been often proposed either for the electric field only (see,
e.g., the works of Kapuria [11] and of Ossadzow-David
and Touratier [12]) or for both the mechanical and electri-
cal unknowns (e.g., [13]). An attempt to mathematically
substantiate axiomatic two-dimensional piezoelectric shell
formulations by the means of asymptotic expansions can
be found in the book of Rogacheva [14]. An exhaustive
overview of the many different modeling approaches and
solution techniques for laminated piezoelectric plates and
shells is far beyond the scope of this paper; more details
on this topic can be found, e.g., in the already cited review
of Saravanos and Heyliger, and in the surveys of Gopina-
than et al. [15] and of Benjeddou [16]. For the last years
interest has been emerging for mixed formulations involv-
ing also stresses and dielectric displacements as primary
variables, see for example [17] and [18].

In the present work, a series of two-dimensional, hierar-
chic models for laminated shells including piezoelectric lay-
ers is presented and employed for the free-vibration
analysis of shell-type structures. Linear up to fourth-order
assumptions for the mechanical displacements and for the
electric potential in the thickness direction have been
considered. The number of mechanical unknowns can be
independent from the number of layers constituting the
laminate (Equivalent Single Layer – ESL – descriptions),
or they can be defined in each layer (Layerwise – LW –
descriptions). The electric potential has always been con-
sidered within an LW description. The so-called ‘‘electric
stiffness’’ of the piezoelectric layers can therefore be taken
into account provided an at least linear variation of the
electric field is assumed. The large number of different
models could be conveniently implemented exploiting the
‘‘Unified Formulation’’ proposed by Carrera [19]. For cer-
tain mechanical and geometrical properties of the consid-
ered problems, a Navier-type closed-form solution can be
found: this analytical approach fulfills exactly both the
domain equations and the boundary conditions. This solu-
tion technique has already been successfully employed in
combination with the Unified Formulation for elastic
plates [20], elastic shells [21] and for piezoelectric plates
[22]. In all cases, the exact 3D solution (when available)
could be recovered by the most accurate formulations. In
this work, the modeling method based on the Unified
Formulation and the analytical Navier-type solution is
extended to doubly curved, layered shells embedding piezo-
electric material. A good agreement with results available
in open literature confirms the validity of the method also
for piezoelectric shells. The presented formulations are
exemplarily applied to the study of the influence of the elec-
tro-mechanical coupling on some characteristic vibratory
behaviors of laminated cylinders.

The work is organized as follows: Section 2 presents the
fundamental equations for the description of the shell
geometry and kinematics as well as of the coupled elec-
tro-mechanical material behavior. The two-dimensional
modeling is described in Section 3 and the resulting govern-
ing equations are derived in Section 4. Section 5 is dedi-
cated to the numerical verification of the proposed model
and to the analysis of the electro-mechanical coupling in
adaptive shells.

2. Preliminaries

2.1. Shell geometry

The description of the geometry of the shell structure
employed throughout this work is based on the classical
works of Kraus [23] and Novozhilov [24]. In the following,
the mathematical description of the multilayered shell
geometry depicted in Fig. 1 will be given for each layer k.
Thus, the index k will in general not be a summation index.
The reference surface Xk of the kth layer is described with
the curvilinear coordinates ak, bk which are lines of princi-
pal curvature, see Fig. 1. This reference system is always
orthogonal since the directions of principal curvature are
always mutually perpendicular. The increase of the arc
length dsak corresponding to an infinitesimal increase dak

of the coordinate ak defines the metric of the surface mea-
sured with the Lamé parameter Ak according to

dsak ¼ Akdak ð1Þ

For the coordinate bk holds an analogous relation with the
Lamé coefficient Bk. The thickness of the layer is measured



along the direction perpendicular to the two curvilinear
coordinates. In each point of the reference surface this
direction is described by the rectilinear coordinate zk; the
Lamé coefficient associated to this coordinate is unitary.
Considering the change of the radii of curvatures due to
a variation along the thickness coordinate, the square of
an infinitesimal linear segment in the layer is given by

ðdskÞ2 ¼ H 2
ak
ðdakÞ2 þ H 2

bk
ðdbkÞ

2 þ ðdzkÞ2 ð2Þ

with the two metric coefficients H ak , Hbk
given by

H ak ¼ Ak 1þ zk

Rak

� �
; Hbk

¼ Bk 1þ zk

Rbk

� �
ð3Þ

Rak and Rbk
are the principal radii of curvature along the

coordinates ak and bk, respectively. The associated infini-
tesimal area and volume elements are given accordingly by

dXk ¼ H ak Hbk
dakdbk ð4aÞ

dV k ¼ H ak Hbk
dakdbk dzk ð4bÞ

respectively. While the above equations hold for arbitrary
shell geometries, in the remainder of this paper we restrict
our analysis to shells with constant radii of curvature, i.e.
with Ak = Bk = 1. Cylindrical shells as well as open spher-
ical panels can be included in the analysis. Closed spheres
and general shells of revolution, for which the radius of
curvature is a function of the distance from the axis are
not accounted for.

2.2. Geometric relations

The strains arising in the shell after deformation are split
in the in-plane and the transverse components, denoted (�p)i

and (�n)i, respectively. To the former belong the strains
along the two curvilinear coordinates as well as the in-
plane shear deformation. The transverse strains are the
components of the strain tensor related to a deformation
in the thickness direction, i.e. the two transverse shear
strains and the transverse direct strain. Within the small
strain assumption, the linear geometrical relationships
between the displacements uk

i ¼ ½uk
a; uk

b; uk
z �

T and the strains
in each layer k read in compact array notation [23]

ð�pÞki ¼ ½�k
aa; �

k
bb; �

k
ab�

T ¼ ðDpÞijuk
j þ ðApÞijuk

j ð5aÞ
ð�nÞki ¼ ½�k

bz; �
k
az; �

k
zz�

T ¼ ðDnXÞijuk
j þ ðAnÞijuk

j þ ðDnzÞijuk
j ð5bÞ

where the usual summation convention has been employed
and the superscript T indicates the transposition operator.
The indices i and j are intended to run from 1 to 3. The
matrix operators in Eq. (5a) are split into a differential
one and an operator related to the curvature terms:

ðDpÞij ¼

oa
Hak

0 0

0
ob

Hbk
0

ob

Hbk

oa
Hak

0

2
6664

3
7775; ðApÞij ¼

0 0 1
Hak Rak

0 0 1
Hbk

Rbk

0 0 0

2
664

3
775 ð6Þ
Analogously, the operators in Eq. (5b) are

ðDnXÞij ¼

0 0 oa
Hak

0 0
ob

Hbk

0 0 0

2
6664

3
7775; ðAnÞij ¼

�kD

Hak Rak
0 0

0 �kD

Hbk
Rbk

0

0 0 0

2
6664

3
7775;

ðDnzÞij ¼
oz 0 0

0 oz 0

0 0 oz

2
64

3
75 ð7Þ

The symbol on stands for the partial differential operator
with respect to the coordinate n, i.e. on ¼ o

on. The separation
of terms and operators acting on the reference surface from
those related to the thickness direction will result useful for
the axiomatic modeling technique presented in Section 4.

The above geometrical relations retain all curvature
terms. Simplified relations have been often proposed for
thin (Love-type assumptions) and for shallow shells (Don-
nell-type assumptions). Within the thin shell assumption,
terms of the type z/R are neglected in Eq. (3), leading to
the position H ak ¼ Hbk

¼ 1. kD is a trace operator allowing
for the introduction of Donnell-type assumptions for shal-
low shells. Within this approximation the contributions of
the in-plane (stretching) displacements ua, ub to the change
of curvature are neglected.

The geometrical relations defining the electric field as a
function of the electric potential read in curvilinear coordi-
nates for the kth layer

Ek
i ¼ ½Eak ;Ebk

;Ezk �
T ¼ � 1

Hak

oUk

oak
� 1

Hbk

oUk

obk
� oUk

ozk

h iT
ð8Þ

where Ek
i is the electric field vector and Uk the electric poten-

tial. In order to handle matrices of equal dimensions, anal-
ogous to the ones quoted in Eq. (5), the above relation is
exploded to a 3 · 3 system by writing the scalar potential
Uk in a vector whose components are all identical, i.e.
Uk

i ¼ ½Uk; Uk; Uk�T. Furthermore, the terms related to the
in-plane and transverse behavior may be split leading finally
to the following geometric relation defining the electric field:

Ek
i ¼ ðDXeÞijUk

j þ ðDneÞijUk
j ð9Þ

with

ðDXeÞij ¼

� oa
Hak

0 0

0 � ob

Hbk
0

0 0 0

2
664

3
775; ðDneÞij ¼

0 0 0

0 0 0

0 0 �oz

2
64

3
75
2.3. Constitutive equations

In this work, a linearly coupled electro-mechanical
material behavior is considered. Since we are concerned
with a generalized displacement-based approach, the state
function defining conveniently the energetic content of
the material is the electric enthalpy H (see, e.g., [25]). In
vector notation, this state function reads



H ¼ Hð�r;EjÞ ¼
1

2
eCE

qr�q�r � eiqEi�q �
1

2
eS

ijEiEj ð10Þ

In Eq. (10) eCE
qr is the matrix of the elastic moduli, eS

ij is the
matrix of the dielectric coefficients and eiq is the matrix con-
taining the piezoelectric coefficients. The superscripts E and
S of the matrices of the elastic and dielectric constants indi-
cate that the coefficients are taken at constant electric field
and at constant strain, respectively. The indices q and r run
from 1 to 6 and define the 6 components of the engineering
strain and stress vectors. Since the electric field is defined
by only three components, the indices i and j range from
1 to 3.

The constitutive equations are obtained upon derivation
of the state function with respect to the independent
variables:

rq ¼
oH
o�q
¼ eCE

qr�r � eqjEj ð11aÞ

Di ¼ �
oH
oEi
¼ eir�r þ eS

ijEj ð11bÞ

Upon subdividing the in-plane (index p) and the transverse
(index n) terms of the mechanical stresses and strains, the
constitutive equations for each layer read

ðrpÞki ¼ ðeCE
ppÞ

k
ijð�pÞkj þ ðeCE

pnÞ
k
ijð�nÞkj � ðepÞkijEk

j ð12aÞ
ðrnÞki ¼ ðeCE

npÞ
k
ijð�pÞkj þ ðeCE

nnÞ
k
ijð�nÞkj � ðenÞkijEk

j ð12bÞ
Dk

i ¼ ðepÞkijð�pÞkj þ ðenÞkijð�nÞkj þ ðeSÞkijEk
j ð12cÞ

where the following arrays characterizing a monoclinic
material have been considered:

ðeCE
ppÞ

k
ij ¼

eC11
eC12

eC16eC12
eC22

eC26eC16
eC26

eC66

2
664

3
775; ðeCE

pnÞ
k
ij ¼

0 0 eC13

0 0 eC23

0 0 eC36

2
664

3
775

ðeCE
npÞ

k
ij ¼

0 0 0

0 0 0

eC13
eC23

eC36

2
664

3
775; ðeCE

nnÞ
k
ij ¼

eC44
eC45 0

eC45
eC55 0

0 0 eC33

2
664

3
775

ð13Þ
The dielectric and piezoelectric coefficients are written as

ðeSÞkij ¼
e11 0 0

0 e22 0

0 0 e33

2
64

3
75; ek

iq ¼
0 0 0 e14 e15 0

0 0 0 e24 e25 0

e31 e32 e33 0 0 e36

2
64

3
75

ð14Þ
The above matrix ek

iq is referred to a polarization axis
aligned in the thickness direction, and it has been split in
the two contributions (see Eq. (12)):

ðepÞkij ¼
0 0 0

0 0 0

e31 e32 e36

2
64

3
75; ðenÞkij ¼

e14 e15 0

e24 e25 0

0 0 e33

2
64

3
75
ð15Þ
The subscripts are related to the components in the curvi-
linear system according to the contracted notation
1 = aa, 2 = bb, 3 = zz, 4 = bz, 5 = az, 6 = ab.

Since this work deals with a closed-form solution tech-
nique, some additional symmetry properties for the consti-
tutive law are enforced in order to avoid undesired
couplings preventing an analytical solution. On the other
hand, many practically implemented materials possess
these higher-order symmetries. We thus limit the analysis
to orthotropic materials, for which

eC16 ¼ eC26 ¼ eC36 ¼ eC45 ¼ 0 ð16Þ

must be set in the arrays Eq. (13). Concerning the piezo-
electric layers, transversely isotropic materials with respect
to the polarization axis are considered, and the following
identities hold:

e14 ¼ e25 ¼ e36 ¼ 0; e31 ¼ e32; e15 ¼ e24; eS
11 ¼ eS

22

ð17Þ
3. Thickness assumptions: the unified formulation

The key step in any axiomatic modeling of plates and
shells consists in the choice of the expansion of the
unknowns in the thickness direction in order to reduce
the problem to a two-dimensional one. In this work, the
‘‘Unified Formulation’’ according to Carrera [19] is
employed. Within this formulation, an expansion is done
for both the mechanical and electrical unknowns (displace-
ments and electric potential, respectively) in each layer
along the thickness coordinate zk according to the general
form

uk
i ðx; y; zkÞ ¼ fiðx; yÞF k

sðzkÞðU k
i Þs ð18aÞ

Ukðx; y; zkÞ ¼ gðx; yÞF k
sðzkÞðUk

i Þs ð18bÞ

with the summation index s running from 1 to N. N is the
employed order of the expansion and is a free parameter of
the formulation. By the extensive use of this index nota-
tion, a large variety of formulations for the multilayered
structures can be derived by assembling differently the
same basic arrays, called fundamental nuclei. This unique
feature simplifies dramatically the implementation and
comparison of many different theories.

The functions Fs(zk) are selected in different forms
depending on the description method used for the model.
In the case of Equivalent Single Layer (ESL) descriptions,
a Taylor expansion is used according to

F k
sðzkÞ ¼ ðzkÞs with s ¼ 0; 1; . . . ;N � 1 ð19Þ

In this case, the unknowns related to s = 0 are simply the
values on the reference surface; the displacement unknowns
associated with s = 1 represent the rotations of the cross-
section in an analogous way compared to the well-known
First-Order Shear Deformation Theories (FSDT).

A refinement of ESL formulations may be achieved
by superimposing to the above expansion the so-called



Fig. 2. Effects of MZZF in conjunction with a second-order ESL
description.
Murakami ZigZag Function (MZZF), see also [26,27]. This
function allows the introduction of a discontinuity in the
slopes of the displacements and thus represents a step
towards the fulfillment of the C0

z -requirements. In this lat-
ter case, the expansion Eq. (19) is extended by the ZigZag
term yielding for the general unknown U the following
through-thickness approach

UðzkÞ ¼ ðzkÞsUs þ ð�1ÞkfkUZZ with fk ¼
2zk

hk
ð20Þ

where hk is the thickness of the layer. Observing Fig. 2, it
is important to underline that the MZZF introduces a
dependency of the through-thickness behavior on the
layer number within a layer-independent ESL formulation.
Nonetheless, the added unknown UZZ assumes the same
value for each layer, thus respecting the layer-indepen-
dency of the basis formulation.

Layerwise (LW) descriptions require in the assembly
procedure to respect the interlaminar continuity of the dis-
placements and of the electric potential: for this purpose,
Legendre polynomials P(fk) are suitable for building the
interpolating functions Fs(zk) [28]

F k
t ðzkÞ ¼

P 0ðfkÞ þ P 1ðfkÞ
2

; F k
bðzkÞ ¼

P 0ðfkÞ � P 1ðfkÞ
2

ð21aÞ

F k
sðzkÞ ¼ P s � P s�2 with s ¼ 2; 3; . . . ;N ð21bÞ

In this case, the unknowns associated to the linear expan-
sion for N = 1 represent the values of the unknowns at
the top (Ft) and bottom (Fb) of the layer. Additional nodes
along the zk axis allow then a higher-order distribution of
the unknowns in the layer thickness. Interlaminar Continu-
ity (IC) is hereafter enforced by simply setting

Uk
s¼t ¼ Ukþ1

s¼b ð22Þ
3.1. Employed assumptions for the primary variables

The primary variables for the present generalized dis-
placement-based approach are the mechanical displace-
ments ui and the electric potential U. In the following, for
the displacements either ESL or LW descriptions are used,
while only a LW description of the electric potential is con-
sidered. This choice seems reasonable since it may well cap-
ture the steep local gradients arising from the sharp
discontinuities of the electrical properties between piezo-
electric and passive layers.

Furthermore, without loss of generality, we restrict our
analysis to formulations with the same order of expansion
N for all involved fields, irrespective of the description
method selected for the displacements. Formulations based
on an ESL description are denoted as EDN models; if the
MZZF is superimposed to the ED-formulation, the model
will be indicated as EDZN. Models based on a layerwise
description of the displacements will be denoted by the
acronym LDN.

Linear (N = 1) up to fourth-order (N = 4) expansions in
the thickness direction are considered. In total, 11 different
formulations are derived and compared. Additionally, sim-
plified models like FSDT or Classical Lamination Theory
(CLT) may be recovered enforcing some transverse contri-
butions associated to the ED1 model to vanish: this is
implemented within a typical penalty technique.

The proposed model will be used in the next section to
derive the governing equations for the free-vibration prob-
lem of multilayered shells with embedded piezoelectric
layers.

4. Governing equations

The equations are presented within a variational formu-
lation in the framework of Hamilton’s principle. Due to the
very different time-scales of the involved electrical and
mechanical field the former one can be considered as
quasi-static: electrical inertia effects are therefore neglected.
The variational statement is conveniently formulated in the
standard tensorial notation [7,9]

d
Z t1

t0

dt
Z

V
� 1

2
q _ui _ui þ Hð�qr;EiÞdV

� �

� d
Z t1

t0

dt
Z

C
ui�ti � U�q� tiðui � �uiÞ � qðU� UÞdS

� �
¼ 0

ð23Þ
ti represents the surface tractions and q the surface charge
densities; quantities with a bar are prescribed on the do-
main boundary C. For a multilayered shell, Eq. (23) can
be re-written for each layer by including additional bound-
ary terms related to the interlaminar surfaces of each layer.
However, these additional boundary terms vanish in the
multilayered body in the assembly procedure by canceling
each other, provided the layers are perfectly bonded and
with a unique electric potential. Hence, without consider-
ing these terms and splitting the in-plane and transverse
strain energies according to Eq. (5), an equivalent form
for Eq. (23) isZ t1

t0

dt
XNl

k¼1

Z
V k

ðd�pÞki ðrpÞki þ ðd�nÞki ðrnÞki � dEk
i D

k
i

þ duk
i q

k€uk
i dV ¼ 0 ð24Þ



Fig. 3. Expansion of the fundamental nuclei to the layer-specific
contributions.
Note that, according to the electric enthalpy formulation,
the virtual variations have been applied to the displace-
ments and the electric potential. Introduction of both the
constitutive equations Eq. (12) and the geometric relations
Eqs. (5,9) yields the following variational equation:Z t1

t0

dt
XNl

k¼1

Z
V k

½ ðDpÞli þ ðApÞli
� �

duk
i �

TðeCE
ppÞ

k
lm½ðDpÞmjþ ðApÞmj�uk

j

þ ½ððDpÞli þ ðApÞliÞduk
i �

TðeCE
pnÞ

k
lm½ðDnXÞmjþ ðAnÞmj þ ðDnzÞmj�uk

j

þ ½ððDnXÞli þ ðAnÞli þ ðDnzÞliÞduk
i �

TðeCE
npÞ

k
lm½ðDpÞmjþ ðApÞmj�uk

j

þ ½ððDnXÞli þ ðAnÞli þ ðDnzÞliÞduk
i �

TðeCE
nnÞ

k
lm½ðDnXÞmjþ ðAnÞmj

þ ðDnzÞmj�uk
j � ½ððDpÞli þ ðApÞliÞduk

i �
TðepÞklmððDXeÞmj þ ðDneÞmjÞUk

j

� ½ððDnXÞli þ ðAnÞli þ ðDnzÞliÞduk
i �

TðenÞklmððDXeÞmj þ ðDneÞmjÞUk
j

� ½ððDXeÞli þ ðDneÞliÞdUk
i �

T ðepÞklm½ðDpÞmj þ ðApÞmj�
�

þðenÞklm½ðDnXÞmj þ ðAnÞmjþ ðDnzÞmj�
	

uk
j � ½ððDXeÞli þ ðDneÞliÞdUk

i �
T

� ðeSÞklmððDXeÞmj þ ðDneÞmjÞUk
j þ duk

i q
k€uk

i dV ¼ 0 ð25Þ

Upon introduction of the assumptions Fs for the through-
thickness behavior of the unknowns and Fs for the weight-
ing functions according to Eq. (18b), the domain integral is
conveniently split into the integration in thickness direction
zk and the integration on the reference surface Xk. Consid-
ering the integration on the reference surface, in order to
shift the differential operators acting on the in-plane coor-
dinates from the weighting functions to the unknowns, an
integration by parts according to the schemeZ

Xk

ððDXÞjiduk
i Þ

Tuk
j dX ¼ �

Z
Xk

duk
i

TððDXÞijuk
j ÞdX

þ
Z

Ck

duk
i

TððIXÞijuk
j ÞdC ð26Þ

is done. The operators interested by this transformations
are (Dp)ij, (DnX)ij and (DXe)ij. The matrices resulting in
the boundary terms are

ðIpÞij ¼

1
Hak

0 0

0 1
Hbk

0

1
Hbk

1
Hak

0

2
6664

3
7775; ðInXÞij ¼

0 0 1
Hak

0 0 1
Hbk

0 0 0

2
664

3
775;

ðIXeÞij ¼
� 1

Hak
0 0

0 � 1
Hbk

0

0 0 0

2
664

3
775 ð27Þ

The integrations in thickness direction may then be per-
formed in a direct manner: this allows a straightforward
and exact evaluation of all curvature contributions, involv-
ing terms multiplied or divided by the metric coefficients
H ak and Hbk

. These integrals are quoted in Appendix A.
Finally, since the virtual variations of the displacements

duk
is and of the electric potential dUk

is are independent, the
governing equations for the resulting coupled electro-
mechanical system can be written in the following set of
equations:

duk
is : ðKssk

uu Þijuk
jsþðKssk

ue ÞijUk
js¼�ðM sskÞij€uk

jsþðpmsÞi ð28aÞ
dUk

is : ðKssk
eu Þijuk

jsþðKssk
ee ÞijUk

js ¼ ðpesÞi ð28bÞ

The arrays (pms)i and (pes)i indicate the variationally consis-
tent mechanical and electrical loads, respectively. Along
with these governing equations the following boundary
conditions hold:

uk
is ¼ �uk

is or

ðPssk
uu Þijuk

js þ ðPssk
ue ÞijUk

js ¼ ðPssk
uu Þij�uk

js þ ðPssk
ue ÞijUk

js ð29aÞ

Uk
is ¼ Uk

is or

ðPssk
eu Þijuk

js þ ðPssk
ee ÞijUk

js ¼ ðPssk
eu Þij�uk

js þ ðPssk
ee ÞijUk

js ð29bÞ

The matrices Kij, Mij and Pij are the so called fundamental
nuclei of the formulation: these represent the stiffness con-
tributions for each layer and for each couple s, s of the
selected order of the expansion. These expressions are
invariant with respect to both the different description level
(ESL or LW) and the expansion order N for the through-
thickness assumptions. The fundamental nuclei are quoted
in Appendix A. The assembly procedures to build the
arrays for the multilayered structure are described in the
next section.

4.1. Assembly of system arrays

The contributions of the single terms s, s are first assem-
bled at layer level following the scheme depicted in Fig. 3.
For an LW description, the layer-specific arrays are assem-
bled accounting for the continuity of the degrees of
freedom (DOFs) at the interface according to Eq. (22).
ESL descriptions require a simple superimposition of the
layer-specific contributions since the layer-specific DOFs
are coincident with the DOFs of the multilayered structure.
For clarity, the two different assembly procedures for the
two description methods are depicted in Fig. 4.



Fig. 4. Schemes describing the assembly procedures of multilayered
contributions.
4.2. Closed-form solution for the free-vibration problem

For the derived boundary value problem, for particular
geometry, material symmetry and boundary conditions, an
analytical solution can be derived. For simply supported
shells, a Navier-type closed-form solution may be found
with the following expressions:

uk
asðak; bk; tÞ ¼ ûk

as cos
mpak

ak

� �
sin

npbk

bk

� �
eixmnt ð30aÞ

uk
bsðak; bk; tÞ ¼ ûk

bs sin
mpak

ak

� �
cos

npbk

bk

� �
eixmnt ð30bÞ

uk
zsðak; bk; tÞ ¼ ûk

zs sin
mpak

ak

� �
sin

npbk

bk

� �
eixmnt ð30cÞ

Uk
sðak; bk; tÞ ¼ bUk

s sin
mpak

ak

� �
sin

npbk

bk

� �
eixmnt ð30dÞ

ak and bk are the arc lengths of the shell along the two coor-
dinates a and b. m and n represent the number of half-
waves in a and b direction, respectively. These numbers
characterize the vibration mode associated to the circular
frequency xmn. i ¼

ffiffiffiffiffiffiffi
�1
p

is the imaginary unit and t the
time.

In the remainder of this article, only the free-vibration
analysis will be addressed. The external loading (mechani-
cal and electrical) is therefore set to zero. Introduction of
the expressions Eq. (30) into the governing equations (28)
leads to a linear set of ordinary differential equations in
time:

ðbK uuÞijûj þ ðbK ueÞij bUj ¼ x2
mnðM̂Þijûj ð31aÞ

ðbK euÞijûj þ ðbK eeÞij bUj ¼ 0 ð31bÞ
A hat denotes quantities obtained after introduction of the
harmonic functions into the governing equations. The cou-
pled electro-mechanical system can be conveniently
reduced to a purely mechanical one by condensing
statically the electrical unknowns:

bUj ¼ �ðbK eeÞ�1
ij ðbK euÞijûj ð32Þ

Substitution of this relation into the mechanical equation
gives

½ðbK uuÞij � ðbK ueÞijðbK eeÞ�1
ij ðbK euÞij�ûj ¼ x2

mnðM̂Þijûj ð33Þ

As usual, the free-vibration response of the condensed sys-
tem Eq. (33) is computed as solution of the associated
eigenvalue problem

kKij � kmnMijk ¼ 0 ð34Þ
where kmn ¼ x2

mn and

Kij ¼ ðbK uuÞij � ðbK ueÞijðbK eeÞ�1
ij ðbK euÞij ð35Þ

The eigenvectors ûðmnÞ
i associated to the eigenvalues kmn de-

fine the vibration modes in terms of the mechanical dis-
placements. The electrical modes are recovered from the
mechanical ones according to Eq. (32) as

bUðmnÞ
i ¼ �ðbK eeÞ�1

ij ðbK euÞijû
ðmnÞ
j ð36Þ
5. Free-vibration analysis of piezoelectric shells

Previous studies have shown that higher-order thickness
expansions together with the closed-form analytical solu-
tion technique yield a simulation method, which is capable
to recover the exact three-dimensional response of lami-
nated elastic shells [29] and of laminated piezoelectric
plates [22]. For the free-vibration problem of multilayered,
piezoelectric shells only few works are available in open
literature presenting exact 3D-solutions. Verification com-
putations are presented considering the results obtained
by Drumheller and Kalnins in [30] for an homogeneous
piezoelectric cylinder, and those obtained by Heyliger
et al. in [13] for a laminated ring. Finally, the eigenfrequen-
cies of a laminated cylinder are presented and the effects of
the electro-mechanical coupling are discussed.

5.1. Numerical verification

Drumheller and Kalnins analyze the free-vibration
response of a simply supported cylinder constituted by
homogeneous piezoelectric material with short-circuited
surfaces [30]. With reference to Fig. 5, cylinders of variable
length a are considered; the mean line radius is
Rb = 11.1125 mm and the shell thickness is h = 3.175 mm
(the material data are reported in Table 1). The two consid-
ered vibration modes are schematically represented in
Fig. 6. These modes are obtained in the present theory by
setting m = 1 (fundamental mode in the cylinder axis)
and n = 0 (axisymmetric mode, i.e. ob = 0).



Fig. 5. Geometry and notation employed for the description of a layered,
closed cylindrical shells (Ra =1). Case of a laminate with 2 layers.

Table 1
Material data for the piezoelectric cylinder [30]

Material constants for PZT-4
CE

11 ¼ CE
22 139.89 GPa e31 = e32 �5.5864 C/m2

CE
33 113.16 GPa e33 16.3801 C/m2

CE
12 78.62 GPa e15 = e24 12.2013 C/m2

CE
13 ¼ CE

23 76.54 GPa eS
11 ¼ eS

22 59.77 · 10�10 C/V m

CE
44 ¼ CE

55 26.91 GPa eS
33 58.57 · 10�10 C/V m

CE
66 30.64 GPa q 7.5 · 103 kg/m3

Fig. 6. Axisymmetric modes of a piezoelectric cylinder considered in [30].

Fig. 7. Free-vibration frequencies [rad/s] for the piezoelectric cylinder
[30].
The results are given in Fig. 7. For the out-of-phase
(OP) mode, a very good agreement with the reference
results can be recognized for both the models involving a
linear and a fourth-order assumption for the thickness dis-
tributions. For the in-phase (IP) mode, the results of the
ED1 and the ED4 formulations show a larger difference
due to the more important role played by the thickness
effects compared to the OP-mode. However, the reference
solution is seen to lie in-between the closed-form solutions
obtained for the most accurate ED4 formulation and the
less accurate ED1 formulation. Note that the electric stiff-
ness term, represented by ðbK eeÞij in Eq. (31b), vanishes for
a linear distribution of the electric potential. Recalling the
approximations introduced in the reference solution [30],
the results depicted in Fig. 7 confirm the validity of the pro-
posed model. Finally, note that the numerical values of
Drumheller and Kalnins have been graphically extracted
from a picture included in the cited reference; therefore,
only a qualitative assessment has been proposed in the
present work.

Heyliger et al. calculate the natural frequencies of a lam-
inated ring consisting of an inner isotropic, elastic layer of
Titanium (Ti) and an outer piezoceramic layer (PZT-4)
[13]. The geometry of the ring is depicted in Fig. 8 (left),
where the coordinates and notations defined in Fig. 5 have
been employed. To reduce the computational cost, only a
quarter of the ring is considered in [13], and various sym-
metry conditions holding on the edges h = 0, h = p/2 and
x = 0 (see Fig. 8) are given as boundary conditions for
the dynamic analysis. The piezoelectric layer is polarized
in radial direction and has a thickness of hP = 0.25h =
0.001 m. The employed material parameters for the tita-
nium layer are E = 114 GPa, m = 0.3, q = 2768 kg/m3 and
e = e0 = 8.85 · 10�12 C/Vm; those for PZT-4 are given in
Fig. 8 (right).

In [13], a Finite Element (FE) formulation is presented
based on a layerwise description of the coupled electro-
mechanical problem. The symmetry conditions corre-
sponding to a vanishing circumferential displacement on



Fig. 8. Left: Geometry of the laminated ring considered in [13] (all quantities given in [m]). Right: Data for transversally isotropic PZT-4 material (note:
G12 ¼ E1

2ð1þm12Þ).

Table 2
Natural frequencies [Hz] for the layered ring

Ref. [13] n = 4 n = 8 n = 12 n = 16 n = 20
31.27 170.42 407.29 745.21 1190.48

LD4 31.64 (1.18) 171.60 (0.69) 406.87 (0.10) 736.08 (1.23) 1158.53 (2.68)
LD3 31.64 (1.18) 171.60 (0.69) 406.87 (0.10) 736.08 (1.23) 1158.53 (2.68)
LD2 31.64 (1.18) 171.60 (0.69) 406.89 (0.09) 736.12 (1.22) 1158.63 (2.68)
LD1 33.28 (6.43) 180.51 (5.92) 427.99 (5.08) 774.25 (3.90) 1218.56 (2.36)
ED4 31.65 (1.22) 171.64 (0.72) 406.98 (0.08) 736.28 (1.20) 1158.87 (2.66)
ED3 31.65 (1.22) 171.65 (0.72) 407.00 (0.07) 736.32 (1.19) 1158.92 (2.65)
ED2 31.66 (1.25) 171.70 (0.75) 407.13 (0.04) 736.59 (1.16) 1159.43 (2.61)
ED1 35.54 (13.66) 192.74 (13.10) 456.95 (12.19) 826.54 (10.91) 1300.67 (9.26)

The values in parentheses are the relative percentual differences with respect to the reference solution.
the edges h = 0 and h = p/2 as well as to a vanishing axial
displacement at x = 0 (group 7 of the cited reference) are
represented within the present formulation by m = 0 and
n = 4,8,12,16,20. Only the mode characterized by a pure
circumferential deformation has been considered, i.e.
ûk

as ¼ 0. The electrical boundary conditions consist of a
short-circuit between the top and bottom surface of the pie-
zoelectric layer. Table 2 reports the results obtained by the
present formulations as well as the relative difference (in
percent) with respect to the values in [13]. It can be seen
that a qualitative jump is associated to the consideration
of the electrical stiffness introduced by an at least quadratic
assumption for the electric potential: in fact, all linear for-
mulations (LD1, ED1) provide results of clearly lower
quality, the related models resulting always too stiff. Except
for slight differences in the higher modes, the closed-form
solutions of all formulations present a good agreement
with the approximate FE solution proposed in literature.
It is interesting to note that, for higher modes, the ana-
lytical solution for less accurate formulations represents
better the FE solution. This may be due to the superimpo-
sition of two distinct errors, i.e. the discretization error and
the error in the thickness assumptions, which cancel out,
thus providing a better agreement.

5.2. Electro-mechanical coupling in free-vibrations of

adaptive laminates

The aim is to systematically evaluate the influence of the
electro-mechanical coupling on the free-vibration charac-
teristics of multilayered plates and shells with embedded
piezoelectric materials. In this work, the parameter indicat-
ing the amount of electro-mechanical interaction is selected
to be the relative difference between the frequencies of the
fully coupled system and the frequencies obtained neglect-
ing the piezoelectric coefficients, i.e. setting ek

iq ¼ 0. Thus, in
the latter case the piezoelectric materials give only a
mechanical contribution to the shell stiffness. Note that
an alternative definition of the amount of electro-mechan-
ical interaction in smart shells has been proposed by
Rogacheva [14] and applied, e.g., by Benjeddou [31]: it
considers the relative difference between the natural
frequencies related to the piezo-layers working under
open-circuit condition and the natural frequencies obtained
with the piezo-layers working in short-circuit.

The simply supported, 5-layered square piezoelectric
plate, for which Heyliger and Saravanos presented in
[32] an exact 3D solution, is considered. Ballhause et al.
could recover the exact 3D solution within the ‘‘Unified
Formulation’’ [22]. The geometrical and material data as
well as the electrical and mechanical boundary conditions
can be taken from the cited references. The first frequency
parameter c1 = x1 · 10�2 of the plate is given in Table 3
for both the coupled electro-mechanical case (LD4) and
the uncoupled case (LD4m). Thin (a/h = 100) and thick
(a/h = 4) plates are considered. For the considered geom-
etries, an influence between 1.5% and 5.5% has been
obtained. The piezo-layers are polarized in thickness direc-
tion and the contributions of the electrical stiffness to the
resulting plate stiffness increase with the slenderness of the



Table 3
Influence of piezoelectric coupling on the first frequency parameter
c1 = x1 · 10�2 [rad/s] for a simply supported, laminated square plate

a/h

2 4 10 50 100

LD4 136604 57074.0 13526.4 618.104 155.285
LD4m 134551 55514.8 12905.6 584.085 146.680
D [%] 1.50 2.73 4.59 5.50 5.54

Geometry and material parameters given in [32].

Table 4
Effect of modeling on the piezoelectric coupling (first frequency parameter
c1 = x1 · 10�2) [rad/s]

a/h = 100 a/h = 4

Coupled Uncoupled D [%] Coupled Uncoupled D [%]

LD1 155.508 146.953 5.50 57252.5 55754.8 2.61
ED4 155.319 146.825 5.47 58713.8 56939.3 3.02
EDZ3 155.329 147.021 5.35 57656.7 56185.2 2.15
ED2 155.450 147.124 5.36 69413.7 66641.7 3.99
EDZ1 172.847 171.773 0.62 63204.7 63030.6 0.28
ED1 172.956 171.884 0.62 74105.9 73720.9 0.52

Geometry and material parameters given in [32].

Table 5
Influence of piezoelectric coupling on c2 = x2 · 10�5 [rad/s] for a hollow,
laminated piezoelectric cylinder (a/h = 10)

Rb/a

2 5 10 20 50 100

LD4 15.0880 10.0089 9.0537 8.7987 8.7260 8.7155
LD4m 14.7289 9.7321 8.7896 8.5377 8.4659 8.4555
D [%] 2.38 2.76 2.92 2.97 2.98 2.98

Same lay-up and materials of [32].

Table 6
Influence of piezoelectric coupling on c2 = x2 · 10�5 [rad/s] for a hollow,
laminated piezoelectric cylinder (a/Rb = 1)

h/Rb

0.01 0.02 0.05 0.1 0.2 0.5

LD4 2.4779 4.9662 12.5864 26.1330 56.2050 154.3188
LD4m 2.4247 4.8594 12.3144 25.5693 55.0733 154.8242
D [%] 2.15 2.15 2.16 2.16 2.01 1.62

Same lay-up and materials of [32].
plate. Note that a saturation effect arises for the thin plate
limit, i.e. the rate of the increase of the influence with the
slenderness tends to zero for very thin plates. These con-
siderations are completed by an analysis of the effects of
the model accuracy on the capability to capture the phys-
ics of the electro-mechanical coupling. Table 4 reports the
influence of the piezoelectric coupling obtained with differ-
ent theories. For a thin plate (a/h = 100), the differences
between different formulations are rather small, except
for first-order ESL models (ED1 and EDZ1): this clearly
states the importance of the inclusion of the electrical stiff-
ness, which cannot be represented by first-order formula-
tions characterized by a linear distribution of the electric
potential. Nonetheless, the linear layerwise formulation
LD1 captures the relevant effects due to a localized adjust-
ing of the mechanical and electrical field in each layer. In
the case of a thick plate (a/h = 4), the error introduced by
lower-order approximations in the mechanical field seems
to be dominant: for example, considering the ED4 case,
the error in the estimated influence of the piezoelec-
tric effect is approximately 100% (3.02% for ED4 com-
pared to 1.50% for LD4), but the electric field model
is exactly the same of the LD4 case, i.e. a layerwise,
fourth-order model. In the case of first-order formula-
tions, the piezoelectric influence results to be dramatically
underestimated: The very large errors introduced by the
unsatisfactory modeling of the mechanical field are in
these cases superimposed to the errors deriving from the
disregard of the electrical stiffness leading to a meaningless
result.

In this work, the above case study is extended to curved
shells by considering the free-vibration response of a sim-
ply supported, hollow cylinder consisting of the same mate-
rials and lay-up of the plate. The free-vibration frequency
parameter c2 = x2 · 10�5 for the second axisymmetric
mode is given. Note that the fundamental axisymmetric
frequency corresponds to the mode obtained for m = 0,
n = 4 but, since this mode is characterized by a vanishing
deformation in thickness direction, i.e. uk

z ¼ 0 in the whole
cross-section, the piezoelectric effect on this mode can be
neglected. The second frequency parameter c2 is associated
to the ‘‘flexural’’ mode with m = 1, n = 0 and it involves a
deformation in the thickness direction. In Table 5, results
are given for different curvatures radii Rb and for a con-
stant thickness-to-length ratio a/h = 10. On the other hand,
in Table 6 the variable geometric parameter is the thickness
while the curvature ratio a/Rb has been kept constant and
equal to 1. In all cases, the electrical boundary conditions
are a short-circuit between the external shell surfaces. In
order to verify the influence of curvature and thickness
on the electro-mechanical coupling in laminated piezoelec-
tric shells, the data obtained by the most accurate LD4
formulation are reported for both the coupled and the
uncoupled case.

Observing Table 6 it can be stated that the thickness of
the hollow cylinder has a smaller effect on the electro-
mechanical coupling with respect to the case of flat plate.
The variation induced in the natural frequency by the
piezoelectric effect is nearly constant for thin cylinders
(about 2.15%) and is reduced to about 1.6% for thick
cylinders, whereas for the flat plate variations up to 4%
could be established by varying the plate thickness. As
far as the curvature is concerned, Table 5 shows a varia-
tion of the natural frequency of the selected mode rang-
ing from 2.4% for small curvature radii up to 3% for



shallow cylinders. Thus, a reduction of the curvature
slightly increases the influence of the piezoelectric effect.
From these results it appears that the electric stiffness
has nearly a constant effect on the considered axisym-
metric vibration mode, i.e. the geometric parameters do
not modify significantly the role played by the electro-
mechanical coupling.
6. Conclusion

This paper has presented a closed-form solution for the
free-vibration problem of multilayered shells with embed-
ded piezoelectric layers. The hierarchic modeling capability
of the employed ‘‘Unified Formulation’’ allows the com-
parison between theories of different accuracy, ranging
from a quasi-3D formulation to simple, lower-order theo-
ries. In particular, this work has focussed on the influence
of the electro-mechanical coupling on the free-vibration
response of multilayered structures. The relevance of the
electric stiffness has been pointed out. Furthermore, a few
parametric studies were presented in order to show the
influence of some geometric parameters on the piezoelectric
coupling effect. The thickness of a plate embedding thick-
ness-polarized piezoelectric layers has shown to be a funda-
mental parameter: the piezoelectric coupling is more
efficient in slender plates than in thick plates. For the con-
sidered vibration modes of hollow cylinders, the thickness
and the curvature radius seem to have a less important role.
The present work has shown that an accurate model for
piezoelectric laminates can give important insights useful
for the design of efficient piezoelectric devices. It is finally
remarked that the adopted closed-form solution technique
can be successfully used only for some specific cases; a
more general solution method, based, e.g., on the Finite
Element Method, could be employed in combination with
the Unified Formulation to simulate more complicated
structures.
Appendix A. Fundamental nuclei of the formulation

This appendix reports the explicit expressions for the
fundamental nuclei appearing in Eqs. (28,29). First, the fol-
lowing quantities are introduced from the integration in
thickness direction over the layer thickness hk:
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Upon introduction of the above layer integrals, the funda-
mental arrays for the domain equations read:
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For brevity, only the non-vanishing terms of the arrays
have been quoted. Note, once the integration-by-parts
has been performed, the in-plane differential operators
oa,ob, . . . ,oab act simply on the unknowns.

Finally, the fundamental nuclei related to the boundary
terms read:
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