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Classical and Advanced Models for Laminated Plates
with Piezoelectric Layers Actuated in Shear Mode

M. D’Ottavio, T. Wallmersperger, and B. Kröplin
Institute of Statics and Dynamics of Aerospace Structures, Universität Stuttgart, Stuttgart, 
Germany

We discuss the two-dimensional modelling of laminated plates
with embedded piezoelectric layers actuated in shear mode. Re-
fined approaches are necessary to capture all relevant phenomena
characterizing the electro-mechanical interactions. The frame-
work of our approach is a previously established Unified Formu-
lation, which permits the use of Equivalent Single Layer as well as
Layer-Wise descriptions in conjunction with higher-order thick-
ness approximations. Two distinct model types are proposed: clas-
sical models based on Hamilton’s principle and advanced models
based on a novel partially mixed four-field formulation. Advanced
models are capable of a priori fulfilling the interlaminar conti-
nuity of all transverse fluxes. In this paper, we adopt an analyt-
ical Navier-type closed-form solution method to solve the result-
ing system of coupled partial differential equations governing the
static and the free-vibration problems. Different interlaminar con-
ditions and electrode configurations are addressed. The proposed
2D models recover accurately the global and local response of ex-
act 3D solutions available in literature. An assessment of various
2D models confirms the superiority of the advanced models with
respect to classical ones. By virtue of their accuracy, the analytical
solutions obtained from our higher-order advanced models could
be employed for providing reference solutions for more general
numerical approximation schemes like the FEM which are more
suitable for practically relevant applications.

Keywords multilayered structures, piezoelectric materials,
shear actuation, closed-form solution, higher-order
formulations, unified formulation

1. INTRODUCTION
Smart structures have gained increasing attention in the past

20 years due to their capability to extend the structural response
beyond the purely passive load-carrying. To this aim, compos-
ite laminated panels, i.e., plates and shells made of stacked
plies or sandwich structures, have been considered for host-
ing layers of active materials. Piezoelectrics are perhaps the
most popular active materials due to their applicability as sen-

sors and actuators in the most useful engineering applications
[1].

In view of a practical implementation of the attractive
smart structures technology, one key step is the development
of numerical models useful in structural design. Due to the
usually thin panel geometries, two-dimensional (2D) struc-
tural formulations provide computationally convenient models.
Piezoelectric laminates demand a consistent representation of
the electro-mechanical variables and their interactions [2, 3].
Several different modelling approaches have been reviewed in
[4, 5]. These works point out the importance of a true multi-
field approach for an accurate local response analysis. Since the
electric loadings (i.e., prescribed electric potential and/or elec-
tric charge) are possibly applied at the layer level, a smeared
representation of the electric variables over the laminate cross-
section proves inadequate. For this reason, hybrid approaches
have been proposed which combine an Equivalent Single Layer
(ESL) description for the displacement field with a Layer-Wise
(LW) description for the electric potential as in, e.g., [6–8].
However, the use of ESL kinematics entailing a continuous dis-
tribution of the transverse strains in the laminate cross-section
violates the physical conditions characterising the response at
the layers’ interfaces [9, 10]. Within the classical “generalized
displacements”-based formulations, full LW assumptions have
been thus proposed for the displacement field and the electric
potential as in, e.g., [11, 12]. However, these models cannot
ensure the interlaminar equilibrium due to the different electro-
mechanical properties of adjacent layers.

Previous studies on purely elastic laminates have shown the
necessity of adequately satisfying the interlaminar conditions
and the role of the transverse normal stress in the fulfilment
of the local equilibrium [13, 14]. A natural tool to derive 2D
models for multilayered panels satisfying a priori the interlam-
inar equilibrium conditions was proposed by Reissner on the
basis of a partially mixed variational equation [15, 16]. Early
successful applications of the so-called Reissner’s Mixed Vari-
ational Theorem (RMVT) to purely elastic laminates are re-
ported in [17, 18]. More recently, Carrera and coworkers [19–
21] compared classical (i.e., displacement-based) and advanced
(i.e., RMVT-based) formulations in the framework of a Uni-
fied Formulation, which has been detailed in [22]. The Unified



Formulation allows easy implemention of a large number of hi-
erarchical 2D models by utilizing an extensive index notation
and has been lately implemented into a commercial FEM tool
[23]. Both ESL and LW descriptions can be employed for the
involved variables, for which constant, linear or higher-order
assumptions can be easily introduced. Since the full 3D con-
stitutive law is retained, transverse normal effects are automat-
ically included. The importance of a consistent submodelling
technique based on a sound hierarchical approach like the Uni-
fied Formulation has been early recognized for elastic laminates
[24] and recently highlighted for piezoelectric structures [25].

The Unified Formulation has been extended to piezoelectric
laminates for classical generalized displacements-based models
in [26–28]. Current developments aim at extending the partially
mixed approach of RMVT to coupled multifield problems, in
particular thermo- and electro-mechanics [29]. A partial ex-
tension of RMVT to piezoelectricity, in which the transverse
stresses are a priori continuous at the interlaminar boundaries,
has been presented within the Unified Formulation in [30] and
successively applied in [31, 32]. The underlying three-field for-
mulation has been previously employed to derive a bimaterial
interface and a free surface element which exactly fulfil the me-
chanical equilibrium [33]. A complete extension of RMVT to
piezoelectricity, in which the interlaminar continuity of both the
transverse stress and the transverse electric displacement is a
priori fulfilled, has been formally derived in [34]. On the ba-
sis of the derivation in [30], the full piezoelectric RMVT has
been employed in conjunction with the Unified Formulation in
[35, 36].

All above mentioned models of piezoelectric laminates in-
volve the extension actuation mode, which exploits the 31-
effect of a piezoceramic polarized in thickness direction. In
order to maximize the actuation efficiency, the piezo-layers
working in the extension mode should be placed at the outer
positions of the laminate. This configuration exposes the ac-
tive layers to environmental loadings and impact. Moreover,
the high bending strains may prove detrimental for the brit-
tle piezoceramic materials. The implementation of piezoelectric
layers into the laminate to form an adaptive sandwich structure
has been thus proposed by exploiting the shear mode actuation
based on the 15-effect [37]. Preliminary studies have indicated
promising features of the piezoelectric sandwich structures, in
particular for vibration damping applications [38].

Many proposed models for piezoelectric sandwich beams
or plates rely on classical Kirchhoff assumptions for the ex-
terior faces [38–41] and apply the first-order [38–40] or the
third-order shear deformation theory [41] for the piezoelectric
core. Analytical solutions for continuous piezoelectric sand-
wich structures have been obtained by the state space approach
for simple shear-deformable beam formulations with equivalent
single layer kinematics in [42]. Exact solutions based on the
three-dimensional coupled piezoelectric formulation are given
in [43] for the static problem in a generalized plane state of de-
formation (cylindrical bending). Exact 3D solutions for the vi-

bration problem in cylindrical bending are reported along with
an active damping analysis for sandwich plates [44] and cylin-
drical shells [45]. While the works cited above have the general-
ized displacements as independent unknowns, a mixed formula-
tion involving the transverse fluxes (i.e., the transverse stresses
and the transverse electric displacement) as additional indepen-
dent variables is used in [46, 47]. The mixed formulation is em-
ployed in conjunction with the state space approach to obtain
exact 3D solutions for the static (sensor and actuator) and free-
vibration response of sandwich structures with a shear actuated
piezoelectric core.

In this work, the Unified Formulation is applied to laminates
with embedded, shear actuated piezoelectric layers. Both clas-
sical (i.e., generalized displacements-based) and advanced (i.e.,
based on the piezoelectric extension of RMVT) modelling ap-
proaches are presented and compared. Particular attention is de-
voted to the interlaminar conditions and the electric boundary
conditions. Numerical results are obtained for different configu-
rations within a closed-form solution based on Navier’s method
for static and free-vibration problems. An outline of this article
is as follows: Section 2 recalls the 3D governing equations and
introduces the employed notation. In Section 3, the classical
and advanced 2D models are derived on the basis of two vari-
ational equations (given in Sections 3.1 and 3.2, respectively)
and according to the Unified Formulation (Section 3.3). The
closed-form solution is discussed along with the interlaminar
conditions in Section 4. The validation of the proposed formula-
tion for both the static problem and the free-vibration problem,
is performed in Section 5 by comparing the results of the most
accurate 2D models with exact 3D solutions available in litera-
ture. The capability of the Unified Formulation is demonstrated
by means of a numerical assessment of a free-vibration problem
in Section 6. Finally, in Section 7 conclusions are given and an
outlook is suggested.

2. CONTINUUM MECHANICS OF PIEZOELECTRIC
LAMINATED PLATES
We consider a laminated plate consisting of Nl homoge-

neous layers, which is described in terms of the in-plane coor-
dinates x, y (with � = [x × y]) and the thickness coordinate z
(Figure 1). Within the small signal range and considering only
small displacements, the linearized gradient relations defining

FIG. 1. Geometry description and employed notation for a multilayered
plate. P indicates the direction of polarisation of piezoelectric layers.



the strain and the electric fields ε, E are employed for each layer
k [48]:

εk
p = [

εk
1 , ε

k
2 , ε

k
6

]T = Bpuk ; (1a)

εk
n = [

εk
4 , ε

k
5 , ε

k
3

]T = Bn�uk + Bnzuk ; (1b)

Ek
p = [

Ek
x , Ek

y

]T = Be��k ; (1c)

Ek
n = Ek

z = Bez�
k, (1d)

where uk and �k are the displacement vector and the electric
potential in the kth layer and the superscript T denotes trans-
position. The differential arrays B contain the partial derivative
operators with respect to the spatial coordinates xi , ∂

∂xi
= ∂xi ,

and read

Bp =

∂x 0 0

0 ∂y 0
∂y ∂x 0


 ; Bn� =


0 0 ∂x

0 0 ∂y

0 0 0


 ; Be� =

[−∂x

−∂y

]
;

(2a)

Bnz =

∂z 0 0

0 ∂z 0
0 0 ∂z


 ; Bez = −∂z . (2b)

Note that the standard contracted Voigt-Kelvin notation is
employed. The in-plane (subscript p) and transverse (subscript
n) contributions have been split in view of the subsequent 2D
modelling technique.

The divergence equations stating the mechanical and elec-
trical equilibrium for each layer k are written in the general
dynamic case as

∇σk + bk = ρk ü; (3a)

∇Dk = 0. (3b)

A dot stays for temporal derivative and double dots indicate
acceleration. ρ denotes the mass density and b the vector of
body forces. Since the electromagnetic wavelengths are much
longer than the elastic ones of the same frequency, we make
use of the hypothesis of a quasi-static electric field [49].

Conditions for the mechanical and electrical fluxes as well as
for the generalized displacements are prescribed on the bound-
ary � of the multilayered domain according to

t = σ · nt = t̄ on �t ; q = −D · nq = q̄ on �q ; (4a)

u = ū on �u ; � = �̄ on ��. (4b)

For simplicity, the common assumption � = �t ∪ �u =
�q ∪ �� has been introduced. n is the outward normal to the
boundary portion �, t represents the traction component, q de-
notes the surface charge density and a bar indicates prescribed
values.

The material behavior is expressed within the linear piezo-
electricity theory according to [50]. Splitting the stress σ and

electric displacement D tensors in their in-plane and transverse
components according to Eq. (1) the inverse and direct effects
are expressed as

σp = Ce
ppεp +Ce

pnεn − eT
ppEp −eT

npEn; (5a)

σn = Ce T
pn εp +Ce

nnεn − eT
pnEp −eT

nnEn; (5b)

Dp = eppεp +epnεn + εs
ppEp +εs

pnEn (5c)

Dn = enpεp +ennεn + εs T
pn Ep +εs

nnEn (5d)

where the superscript k has been dropped out for clarity, and
the superscripts e and s indicate that the material coefficients
are taken at constant electric field and at constant strain, re-
spectively. A purely mechanical behavior is obtained by setting
the piezoelectric coefficients e to zero. By ordering the compo-
nents of the fluxes according to the scheme given in Eq. (1)—
i.e., σp = [σ1 σ2 σ6], σn = [σ4 σ5 σ3], Dp = [Dx Dy] and
Dn = Dz—the tensors of elastic, dielectric and piezoelectric
coefficients for an in-plane (x axis) polarized material read [34]

Ce
pp =


Ce

11 Ce
12 0

Ce
12 Ce

22 0
0 0 Ce

66


 ;

Ce
pn =


0 0 Ce

13
0 0 Ce

23
0 0 0


 ; Ce

nn =

Ce

44 0 0
0 Ce

55 0
0 0 Ce

33


 ; (6a)

εs
pp =

[
εs

11 0
0 εs

22

]
; εs

pn =
[

0
0

]
; εs

nn = εs
33; (6b)

epp =
[

e11 e12 0
0 0 e26

]
; epn =

[
0 0 e13

0 0 0

]
; enp = [

0 0 0
]

;

enn = [
0 e35 0

]
. (6c)

The above relations have been written in the coordinate sys-
tem defined by the principal directions of an orthotropic ma-
terial. By building the stiffness arrays, the rotation angle θ k

defining the relative orientation between the material axes and
the structural reference frame must be taken into account (the
required transformations can be found in, e.g., [51]). Through-
out this work, the polarization axis of piezoelectric layers is as-
sumed to coincide with the structural x axis. In the constitutive
behavior of elastic layers the piezoelectric coefficients are set
to zero.

2.1. Interlaminar conditions
All layers in the laminate are assumed to be perfectly

bonded. Therefore, the displacement and the transverse stress
fields are interlaminar continuous:

uk t − u(k+1) b = 0; σk t
n − σ(k+1) b

n = 0, (7)

where the superscripts k t and (k + 1) b denote the top of the k th

layer and the bottom of the (k+1)th layer, respectively. As far as



the electrical variables are concerned, we distinguish a “bare”
interface from an electroded interface. Since the main attention
is given to the mechanical response of the laminate, there is no
need to explicitly model the thin electrodes as additional lay-
ers, and a representation of the effects induced on the through-
thickness distributions of the field variables is sufficient. The
following interlaminar conditions are distinguished:

1. Interface without electrodes: the electric potential and the
transverse electric displacement are continuous:

�k t − �(k+1) b = 0; Dk t
z − D(k+1) b

z = 0. (8)

2. Electroded interface: depending on the electric conditions
defined on the electrode, we distinguish the following
configurations:

• Prescribed potential: if a potential �̄ is given, a dis-
continuity of Dz is possible because the electrode is
capable of collecting a surface charge q:

�k t = �(k+1) b = �̄; Dk t
z −D(k+1) b

z = q. (9)

Whenever an electric potential is prescribed on an
electrode, the collected charge is a free variable.

• Prescribed charge: the discontinuity of Dz is pre-
scribed by the applied charge density q̄ according
to the second of Eq. (4a) [52]

�k t −�(k+1) b = 0; Dk t
z − D(k+1) b

z = q̄. (10)

In the special case of an open-circuited electrode
(i.e., q̄ = 0), the prescribed jump vanishes and the
interlaminar continuity conditions in Eq. (8) are re-
covered. Whenever an electric charge is prescribed
on an electrode, the corresponding electric poten-
tial is a free variable. However, in literature the con-
tinuity of the electric potential is often relaxed in
this case [46, 47].

3. TWO-DIMENSIONAL MODELS: THE UNIFIED
FORMULATION
The variational procedure is employed to establish the con-

sistent set of governing equations and boundary conditions for
the piezoelectric laminate. Classical formulations are obtained
from the well-established extension of Hamilton’s principle to
piezoelectric media [49]. Alternatively, “advanced” formula-
tions are proposed on the basis of a novel four-field partially
mixed variational equation corresponding to the extension of
Reissner’s Mixed Variational Theorem (RMVT) to piezoelec-
tric laminates [34]. Within an axiomatic modelling technique,
we introduce a priori assumptions for the thickness behaviour

of the three-dimensional field variables. The peculiar index no-
tation of the Unified Formulation is employed to derive a hierar-
chic series of models within both the classical and the advanced
formulations.

3.1. Classical Models: Hamilton’s Principle
Classical formulations utilize the generalized displacements

as independent unknowns and rely on Hamilton’s principle ap-
plied to piezoelectric media [49]. Following the usual proce-
dure for laminated structures (see, e.g., [51]), we write the vari-
ational equation for each layer (the index k is dropped out for
clarity):

∫ t1

t0

[ ∫
�k

∫
hk

δεT
pGσpC + δεT

nGσnC + δuT (ρü − b) dz d�

−
∫

�k

∫
hk

δET
pGDpC + δET

nGDnC dz d�

]
dt

−
∫ t1

t0

[∫
�k

t

δuT t̄ d� −
∫

�k
q

δ� q̄ d�

]
dt =

∫ t1

t0

δW k
e dt.

(11)

δW k
e represents the virtual work done by the external applied

forces. Subscripts G and C indicate that the quantities are de-
fined by the gradient relations in Eq. (1) and by the constitutive
equations reported in Eq. (5), respectively.

3.2. Advanced Models: The Piezoelectric Reissner
Equation

The derivation of the partially mixed variational statement
follows the guidelines presented in [30] and yields the follow-
ing expression (see also [29, 34]):

∫ t

t0

[ ∫
�k

∫
hk

δεT
pGσpC + δεT

nGσnM + δσT
nM (εnG − εnC )

+ δuT (ρü − b) dz d�

−
∫

�k

∫
hk

δET
pGDpC + δET

nGDnM

+ δDT
nM (EnG − EnC ) dz d�

]
dt

−
∫ t

t0

[ ∫
�k

t

δuT t̄ d� −
∫

�k
q

δ� q̄ d�

]
dt =

∫ t1

t0

δW k
e dt.

(12)

Note that the external work definition as well as all boundary
terms remain unchanged with respect to Hamilton’s principle.
The partially mixed equation allows to formulate an indepen-
dent assumption for the transverse fluxes and, hence, to model
them to exactly fulfil the interlaminar continuity (subscript M).
Quantities defined by the gradient relations in Eq. (1) are de-
noted by the subscript G. A subscript C indicates that the quan-
tity is defined by the constitutive equations associated to the



partially mixed formulation, which are expressed as follows:

σpC = CM
ppεpG + CM

pnσnM − eM T
pp EpG − eM T

np DnM (13a)

εnC = −CM T
pn εpG + CM

nnσnM + eM T
pn EpG + eM T

nn DnM (13b)

DpC = eM
ppεpG + eM

pnσnM + εM
ppEpG + εM

pnDnM (13c)

EnC = −eM
npεpG − eM

nnσnM − εM T
pn EpG + εM

nnDnM (13d)

The mixed coefficient arrays (superscript M) can be ex-
pressed in terms of the elasticity, dielectric and piezoelectric
coefficients introduced in Eq. (6) in the following manner:

CM
pp =




Ce
11 − Ce

13
2

Ce
33

Ce
12 − Ce

13Ce
23

Ce
33

0

Ce
12 − Ce

13Ce
23

Ce
33

Ce
22 − Ce

23
2

Ce
33

0

0 0 Ce
66


 ; CM

pn =




0 0 Ce
13

Ce
33

0 0 Ce
23

Ce
33

0 0 0


 ;

CM
nn =




1
Ce

44
0 0

0 1
Ce

55

[
1 − e2

35
κCe

55

]
0

0 0 1
Ce

33


 ; εM

pp =
[
εs

11 + e2
13

Ce
33

0

0 εs
22

]
;

εM
pn =

[
0
0

]
; εM

nn = 1

κ
; eM

pp =
[

e11 − Ce
13e13

Ce
33

e12 − Ce
23e13

Ce
33

0

0 0 e26

]
;

eM
pn =

[
0 0 e13

Ce
33

0 0 0

]
; eM

np = [
0 0 0

]
;

eM
nn =

[
0 e35

κCe
55

0
]

; κ = εs
33 + e2

35

Ce
55

. (14)

3.3. Thickness Assumptions
The thickness assumptions for the generic independent vari-

able U k(x, y, z) and its virtual variation δU k(x, y, z) are postu-
lated as:

U k(x, y, zk) = Fk
s (zk) Ũ k

s (x, y) with s = 0, 1, 2, . . . N ;
(15a)

δU k(x, y, zk) = Fk
τ (zk) Ũ k

τ (x, y) with τ = 0, 1, 2, . . . N .

(15b)

To accomplish a hierarchic modelling technique, the order
N of the polynomial employed for the postulated thickness be-
havior remains a free parameter. In this work, linear (N = 1)
up to fourth-order (N = 4) polynomials are used for the thick-
ness assumptions. Additionally, the level at which the thickness
assumptions are introduced is a further free choice of the for-
mulation. Two different laminate descriptions can be thus im-
plemented, namely [51]:

• Layer-Wise (LW) descriptions are obtained by
introducing the thickness assumptions for each layer
separately. An appropriate assembly procedure is
employed to build the multilayered contributions
by taking into account the interface conditions. An

LW description possesses a number of Degrees Of
Freedom (DOF) which depends on the number of
layers utilized for subdividing the laminate.

• Equivalent Single Layer (ESL) descriptions are ob-
tained by applying the thickness assumptions through-
out the whole multilayered cross-section. The number
of DOF is, hence, independent from the number of lay-
ers constituting the laminate. To improve the interlam-
inar response of ESL models by allowing a discon-
tinuous slope at the interfaces, Murakami’s Zig-Zag
function can be superimposed to the standard ESL dis-
placement field [17, 53].

The expressions for the employed polynomial functions
for the ESL and LW descriptions can be found in numer-
ous previous works based on the Unified Formulation (e.g.,
[22, 26, 27, 31, 35]). By extensively using the index notation
(specifically, the expansion indexes τ , s and the layer index k),
the Unified Formulation is capable of representing in a compact
and implementation-friendly manner a large variety of 2D mod-
els. The models employed in this work are summarized in the
following along with the acronyms used for their designation:

• Classical Models: The electric potential is always
assumed within an LW description. The displacement
field u can be chosen to be either ESL or LW. The
acronym is constructed according to Figure 2. The
polynomial order N of the thickness assumptions is
the same for all variables.

• Advanced Models: The approximations for the gen-
eralized displacements are introduced as in classical
models (i.e., u ESL or LW, � always LW); the addi-
tional independent approximations for the transverse
fluxes are introduced always at layer level. Again, the
same order N is considered for all variables. An “M”
in the acronym indicates the use of the mixed formu-
lation (Figure 2).

FIG. 2. Construction of the employed acronyms for the numerical analysis.



TABLE 1
Material data employed in the numerical analyses

In-plane (x-axis) polarised
piezoceramic PZT-5H (from [46, 47])

Ce
11 117 [GPa] e12 = e13 −6.5 [C/m2]

Ce
22 = Ce

33 126 [GPa] e11 23.3 [C/m2]
Ce

12 = Ce
13 84.1 [GPa] e26 = e35 17 [C/m2]

Ce
23 79.5 [GPa] εs

11 130 10−10 [C/Vm]
Ce

55 = Ce
66 23 [GPa] εs

22 = εs
33 150.3 10−10 [C/Vm]

Ce
44 23 [GPa] ρ 7500 [kg/m3]

0◦ Graphite-Epoxy (from [43, 47])
Ce

11 183.443 [GPa] e12 = e13 —
Ce

22 = Ce
33 11.662 [GPa] e11 —

Ce
12 = Ce

13 4.363 [GPa] e26 = e35 —
Ce

23 3.918 [GPa] εs
11 153.0 10−10 [C/Vm]

Ce
55 = Ce

66 7.170 [GPa] εs
22 = εs

33 153.0 10−10 [C/Vm]
Ce

44 2.870 [GPa] ρ 1580 [kg/m3]

4. CLOSED-FORM SOLUTION
The two-dimensional models are obtained following the

standard procedure to eliminate the thickness coordinate. The
thickness assumptions are introduced into the variational equa-
tion along with the associated subsidiary conditions (i.e., the
gradient relations and the respective constitutive equations).
The differentiations defined by the operators in Eq. (2b) are car-
ried out and the thickness coordinate zk is finally eliminated by
pre-integrating over the layer thickness hk . In view of the subse-
quent analytical solution of the resulting 2D problem, the strong
form of the governing partial differential equations is first re-
covered by integrating by parts the appropriate terms of the do-
main integrals.

Analytical solutions can be found for problems with certain
lamination schemes and boundary conditions. We consider a
rectangular plate of dimension x = [0, a], y = [0, b] and
thickness h (Fig. 1) with a cross-ply lay-up which prevents
the coupling between direct stresses and shearing strains (i.e.,
Ce

16 = Ce
26 = Ce

36 = 0) as well as the coupling between the
transverse shear components (i.e., Ce

45 = 0). The lateral bound-
aries are considered to be mechanically simply supported:

uk
y = uk

z = 0 at x = 0, a; (16a)

uk
x = uk

z = 0 at y = 0, b. (16b)

Electrically, the lateral edges perpendicular to the polarization
direction (i.e., the x-direction in the present case) are supposed
to be insulated (charge-free), while the remaining edges pair is
taken to be grounded (potential-free):

Dk
x = 0 at x = 0, a; (17a)

�k = 0 at y = 0, b. (17b)

FIG. 3. Laminate configurations for the static and free-vibration problems.

Under the above conditions, the Navier solution technique
can be employed to find solutions which exactly fulfill the gov-
erning partial differential equations and the boundary condi-
tions. By limiting the analysis to a single term of the infinite
double series expansion, a closed-form solution is obtained.
The in-plane distribution of the field variables reads

[
ũk

x (x, y) ; σ̃ k
xz(x, y)

] = [
ûk

x ; σ̂ k
xz

]
cos

(mxπx

a

)
sin

(myπy

b

)
;

(18a)[
ũk

y(x, y) ; σ̃ k
yz(x, y)

] = [
ûk

y ; σ̂ k
yz

]
sin

(mxπx

a

)
cos

(myπy

b

)
;
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ûk

z ; σ̂ k
zz

]
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)
sin

(myπy

b

)
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(18c)[
�̃k(x, y) ; D̃k

z (x, y)
] = [

�̂k ; D̂k
z

]
cos

(mxπx

a

)
sin

(myπy

b

)
,

(18d)

with mx and my being the number of half-waves in the x and
y direction, respectively. The single-term expressions for the
external loadings are assumed as

p(x, y) = p0 sin
(mxπx

a

)
sin

(myπy

b

)
; (19a)

q̄(x, y) = q̄0 cos
(mxπx

a

)
sin

(myπy

b

)
. (19b)

Introducing the above functions into the 2D governing equa-
tions of the four-field partially mixed model, the following set
of coupled algebraic equations is obtained:

δûk
τ : K̂kτ s

uu ûk
s + K̂kτ s

uv �̂k
s + K̂kτ s

us (σ̂k
n)s + K̂kτ s

ud (D̂k
n)s

= M̂kτ s ük
s + p̂k

τ (20a)



FIG. 4. Results of the static analysis with the actuator configuration: mechanical response.

δ�̂k
τ : K̂kτ s

vu ûk
s + K̂kτ s

vv �̂k
s + K̂kτ s

vs (σ̂k
n)s + K̂kτ s

vd (D̂k
n)s = q̂k

e τ

(20b)

δ(σ̂k
n)τ : K̂kτ s

su ûk
s + K̂kτ s

sv �̂k
s + K̂kτ s

ss (σ̂k
n)s + K̂kτ s

sd (D̂k
n)s = 0

(20c)

δ(D̂k
n)τ : K̂kτ s

du ûk
s + K̂kτ s

dv �̂k
s + K̂kτ s

ds (σ̂k
n)s + K̂kτ s

dd (D̂k
n)s = 0

(20d)

For classical models with only the generalized displace-
ments as independent unknowns, only the first two rows and
columns pertaining to the variables û and �̂ are present:

δûk
τ : K̂kτ s

uu ûk
s + K̂kτ s

uv �̂k
s = M̂kτ s ük

s + p̂k
τ (21a)

δ�̂k
τ : K̂kτ s

vu ûk
s + K̂kτ s

vv �̂k
s = q̂k

e τ (21b)

The governing equations Eqs. (20) and (21) are expressed in
terms of the so-called “fundamental nuclei” of the formula-
tion. These arrays are independent from the laminate descrip-
tion type (i.e., ESL or LW) and are formally invariant with re-
spect to the polynomial terms τ, s. The “fundamental nuclei”
for the classical and the advanced formulations are explicitly
reported in the Appendix. Appropriate program loops cycling
over the thickness polynomials τ, s = 1, . . . N provide the
contributions at layer level. The layer contributions are sub-
sequently assembled at multilayered level by cycling over all



FIG. 5. Results of the static analysis with the actuator configuration: electrical response.

layers k = 1, . . . Nl . The appropriate assembly scheme for each
variable depending on the laminate description method must
be adopted here. The interlaminar conditions are included ac-
cording to Section 2.1. at this stage. The loading terms p̂k

τ , q̂k
e τ

represent the kinematically equivalent distribution of the ap-
plied pressure loadings and electric charges, respectively, over
the layer DOF. External loadings associated to prescribed dis-
placements or electric potential are applied as Dirichlet con-
ditions on the assembled system. The free-vibration analy-
sis is conducted by solving the purely mechanical eigenvalue
problem

(K̂mm − ω2M̂)û = 0 (22)

which is obtained after application of all Dirichlet conditions
and after all other variables have been statically condensed out.
As a consequence, the equivalent “mechanical” stiffness K̂mm

contains all information concerning the electric boundary con-
ditions. This procedure is in conformity to what reported in [54]

for the distinction between open-circuited and short-circuited
electrode configurations.

5. NUMERICAL VALIDATION
The proposed models are compared to exact 3D solutions

available in open literature for both static and free-vibration
analysis [46, 47]. In all cases, a square three-layered plate of
edge length a = 3 cm and total thickness h = 3 mm is con-
sidered. The piezoceramic PZT-5H layer is placed between two
elastic fibre-reinforced layers (0◦ Graphite-Epoxy composite,
Gr-Ep) and all layers have the same thickness hk = 1 mm. The
material data are given in Table 1. Two different configurations
are considered in the following (see Figure 3):

• Actuator configuration: a potential difference is pre-
scribed at the top and bottom electrodes of the piezo-
layer according to the Dirichlet boundary conditions
�2 t = −�̄ and �2 b = +�̄, where �̄ = 100 V (Fig-
ure 3(a)).



FIG. 6. Results of the static analysis with the sensor configuration: mechanical response.

• Sensor configuration: a transverse pressure load de-
fined by Eq. (19a) with p0 = −0.1 MPa is applied
on the top surface of the laminate (Figure 3(b)). The
electrodes are taken to be in open-circuit condition,
i.e., q = 0 on the top and bottom surfaces of the piezo-
layers.

Except for the transverse pressure load applied in the sensor
configuration, in all cases the top and bottom surfaces of the
laminate are stress-free and charge free. For the purpose of val-
idation, we report the results obtained with the most accurate

thickness assumptions, which correspond to an LW assumption
of 4th order for all involved variables.

5.1. Static Analysis
The results for the actuator and the sensor configurations

are depicted in Figures 4–7, respectively. The thickness be-
haviours of all variables are in excellent agreement with those
obtained with the full 3D analysis reported in [46]. In particu-
lar, all higher-order, asymmetric thickness variations are cor-
rectly captured by the LD4 and LM4 models. Furthermore,
all natural boundary conditions (i.e., the vanishing transverse



FIG. 7. Results of the static analysis with the sensor configuration: electrical response.

shear stresses and transverse electric displacement at the lami-
nate top and bottom as well as the conditions on the transverse
normal stress) are accurately reproduced. Spurious oscillations
would be obtained if Dirichlet conditions on Dz or σn were im-
posed. In the present case, the LD4 model is accurate enough
for correctly representing the interlaminar conditions discussed
in Section 2.1. Hence, the classical and the advanced model are
in perfect accordance.

For the sensor configuration in the case study proposed in
[46], the interlaminar continuity of the electric displacement
comes along with a discontinuity of the electric potential (Fig-
ure 7(a)). This behaviour corresponds with an insulated piezo-
electric layer and the electric field inside the elastic layers van-
ishes. However, laminates with embedded piezoceramics do not
need an insulation sheet because the insulating capability can be
provided by the adjacent elastic layers. For this reason, we com-
plement this case study by a modified sensor configuration with
a continuous distribution of the electric potential, in accordance
to the definition given in Section 2.1. The comparison between

the configuration admitting a “jump” in the electric potential
and the modified sensor configuration with continuous � is de-
picted in Figure 8. Since no difference was recognizable in the
mechanical response, only the electric variables have been plot-
ted. It can be seen that the electric coupling between the elastic
and the piezoelectric layers due to the electroded interface in-
duces an electric field inside the elastic layers. An asymmetric
distribution of the Dz is caused by the mechanical loading ap-
plied on the top surface of the laminate.

5.2. Free-Vibration Analysis
The first five non-dimensional eigenfrequencies ω̄ =

(a2/h)
√

(ρ/C22) f (where the subscript f indicates that the me-
chanical properties are those of the elastic faces) are reported in
Table 2 along with the exact 3D solutions reported in [47].

The short-circuit (SC) condition corresponds to the actua-
tor configuration depicted in Figure 3(a) in which �̄ = 0 V.
The open-circuit (OC) condition corresponds to the sensor



FIG. 8. Comparison between the electrical response of the sensor configurations with a continuous and a discontinuous electric potential distribution.

configuration with no mechanical loading (Figure 3(b)). Again,
we distinguish the case in which the piezoelectric layer is in-
sulated (i.e., the electric potential can be discontinuous at the
electrode) from that in which the electroded interface forces the
continuity of the electric potential. While the former configura-

TABLE 2
Non-dimensional frequencies ω̄ and respective EMCC κ for
the first five vibration modes (first thickness mode: mz = 1)

3D Advanced
Mode [47] model LM4

(mx , my) SC OC SC OCi OCc κi κc

(1,1) 7.834 7.893 7.834 7.893 7.893 0.122 0.122
(1,2) 11.939 11.999 11.939 11.999 11.998 0.100 0.099
(1,3) 19.776 19.837 19.776 19.837 19.836 0.079 0.078
(2,1) 24.030 24.588 24.030 24.588 24.580 0.212 0.210
(2,2) 26.586 27.151 26.586 27.151 27.137 0.203 0.200

tion is denoted as OCi , the latter is indicated with OCc. Follow-
ing [55], the electro-mechanical coupling coefficient (EMCC) κ

can be computed from the open-circuit and short-circuit eigen-
frequencies ωOC and ωSC as

κ =
√

ω2
OC − ω2

SC

ω2
OC

. (23)

This is a meaningful parameter for quantifying the electro-
mechanical energy conversion capability and is, hence, a sound
indicator of the actuation efficiency of the considered structure.
The EMCCs computed on the basis of the OCi and OCc config-
urations are denoted by κi and κc, respectively, and are reported
in Table 2 also. Since the most accurate classical and advanced
models (i.e., LD4 and LM4) provide identical results, only the
values obtained from the LM4 model are reported in the ta-
ble. The perfect agreement of our 2D model with the exact 3D
solution of [47] is emphasized. As expected, a higher EMCC



FIG. 9. Comparison between the electrical modes associated to the OCi and the OCc configurations.

is reached for modes which are characterized by a higher num-
ber of waves in the polarization direction (x-axis). Furthermore,
the insulated configuration yields in general a higher OC fre-
quency with respect to the OCc configuration. The comparison
between the electrical mode shapes of these two configurations
is depicted in Figure 9 (no difference could be recognized in
the mechanical modes). The amplitudes have been made non-
dimensional according to [47]. The existence of an electric field
in the elastic layers is easily recognized in the OCc configura-
tion. On the contrary, this configuration entails a slightly less
intense electric field into the piezoelectric layer (Figure 9(a)).

6. ASSESSMENT OF 2D MODELS
To demonstrate the capabilities of the Unified Formulation

we assess the results obtained with various 2D models and com-
pare them with an available exact solution. We consider the
same free-vibration problem studied in the previous section and
for which an exact 3D solution is available [47]. The focus is
here put on the first 3 thickness modes of the fundamental in-

plane mode (mx = my = 1). For simplicity, only the short-
circuit configuration is taken into account. Table 3 reports the
non-dimensional eigenfrequencies obtained from some selected
2D models. In order to facilitate the assessment, the table con-
tains also the percentage errors

� = 100
ω̄2D − ω̄3D

ω̄3D
% (24)

for each mode and for each formulation.
At first, we recall that the exact solution in [47] has shown

that the 2nd thickness mode is characterized by the lowest
electro-mechanical coupling. This is the reason the errors asso-
ciated to this mode are in general smaller than those related to
Mode 1 and Mode 3. The most accurate 2D models are capable
of recovering exactly all 3D solutions. Models with lower-order
polynomial approximations or an ESL description of the dis-
placement field show errors of up to 4%. The results show that,
for a given thickness assumption for the displacement field and
the electric potential, the advanced models perform better than



TABLE 3
Non-dimensional frequencies ω̄ and percentage error � for the

first three thickness modes (mx = my = 1): assessment of
various 2D models

Mode 1 Mode 2 Mode 3

ω̄1 � ω̄2 � ω̄3 �

3D (Ref. [47]) 7.834 — 38.355 — 76.061 —
LM4 7.834 0.00 38.355 0.00 76.061 0.00
LD4 7.834 0.00 38.355 0.00 76.061 0.00
LM1 7.835 0.01 38.392 0.10 76.339 0.37
LD1 8.044 2.68 38.393 0.10 76.396 0.44
EMZ4 7.853 0.25 38.410 0.14 76.617 0.73
EDZ4 7.859 0.32 38.412 0.15 76.645 0.77
EM4 7.942 1.38 38.428 0.19 76.410 0.46
ED4 7.949 1.47 38.439 0.22 76.492 0.57
EM2 7.928 1.20 38.556 0.52 76.715 0.86
ED2 7.962 1.63 38.573 0.57 76.822 1.00
EMZ1 8.022 2.40 38.447 0.24 77.367 1.72
EDZ1 8.132 3.80 38.448 0.24 77.368 1.72
EM1 7.956 1.60 38.494 0.36 77.421 1.79
ED1 8.166 4.24 38.609 0.66 77.538 1.94

the classical ones. The reason is to be attributed to the refined
representation of the piezoelectric interactions due to the inde-
pendent LW description of the transverse flux variables. Note
that a linear approximation of the electric potential inside the
piezoelectric layer induces large errors in the classical formu-
lations LD1 and ED1. This error is reduced in the respective
partially mixed four-fields formulations LM1 and EM1. The in-
clusion of the Zig-Zag function improves the accuracy of the
result provided the polynomial order is sufficiently high to cap-
ture the principal electro-mechanical interactions. This explains
the better performance of the EMZ4 model with respect to the
EM4 model and the contemporaneous inferior performance of
the EMZ1 model in comparison to the EM2 model1.

7. CONCLUSIONS AND OUTLOOK
In this work we have extended the established Unified

Formulation to adaptive structures with shear actuated piezo-
ceramic layers. Classical models based on the piezoelectric
Hamilton’s principle as well as advanced models derived within
a novel partially mixed four-field formulation have been pro-

1We note that the Zig-Zag function is superimposed only to the
displacement field assumption, and that the expansion order N is the
same for all unknowns. Therefore, in EMZN and EDZN formulations
the electric potential and the transverse fluxes have a polynomial as-
sumption of one order higher than the displacements (e.g., an EDZ1
model has a quadratic assumption for �, while the assumption for the
displacement field u consists of a linear polynomial plus the superim-
posed Zig-Zag function)

posed. Advanced models are particularly attractive for the anal-
ysis of laminated structures because they ensure a priori the
fulfilment of all interlaminar continuity conditions. Since shear
actuated piezo-layers are embedded into the adaptive lami-
nate, an appropriate description of the interlaminar conditions
is mandatory. Great care has been posed on the definition of
physically sound electrical boundary conditions in cases of
electroded interfaces. A Navier-type closed-form solution has
been presented for the static and free-vibration problems of
laminated plates. The validation computations have shown that
the most accurate 2D models can precisely recover the exact
3D solutions. This feature can be exploited by proposing new
reference solutions for numerical approximations within, e.g.,
the Finite Element Method (FEM). An assessment of differ-
ent thickness assumptions has highlighted the capabilities of
the Unified Formulation. The hierarchic order of the imple-
mented models can help to shed light on the requirements posed
to an approximate model by complex electro-mechanical inter-
actions. For the presented case study, the advanced formula-
tions have confirmed their superiority with respect to classical
ones.

Future studies should promote practically relevant compar-
isons between piezo-layers actuated in shear and in the more
classical extension mode. A FEM implementation of 2D piezo-
electric elements based on the Unified Formulation can improve
the 3D formulations currently available in commercial soft-
ware. The hierarchic nature of the Unified Formulation based
elements can be conveniently exploited to propose a computa-
tionally efficient submodelling technique. These works should
make the attractive smart structures technology more ripe to
face practical design issues.
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46. Benjeddou, A., and Deü, J.-F., “Piezoelectric transverse shear actuation
and sensing of plates. Part 1: A three-dimensional mixed state space for-
mulation. Part 2: Application and analysis,” Journal of Intelligent Material
Systems and Structures 12, 435–449;451–467 (2001).
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8. APPENDIX

8.1. Fundamental Nuclei for the Analytical Solution
The fundamental arrays for both the classical and the ad-

vanced formulations are explicitly reported in the following.
The layer-specific thickness integrals are first introduced ac-
cording to

{Eτ s ; Eτz s ; Eτ sz ; Eτz sz }
=

∫
hk

{Fτ Fs ; Fτ ,z Fs ; Fτ Fs,z ; Fτ ,z Fs,z } dzk

Since the arrays relative to the purely mechanical response
are formally not affected by the in-plane polarisation scheme,
only the piezoelectric arrays are given.2 The expression for
the purely mechanical arrays (i.e., K̂kτ s

uu , M̂kτ s, K̂kτ s
us , K̂kτ s

su and
K̂kτ s

ss ) can be found elsewhere [13, 30, 31].

K̂kτ s
uv =
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x ek
11 + m2

yek
26

) + Eτz sz e
k
35

Eτ smx my
(
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26

)
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(−Eτz sek
13 + Eτ sz e

k
35

)

 K̂kτ s

vu

K̂kτ s
uv = [

K̂kτ s
uv (1, 1) K̂kτ s
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k
13 + Eτz sek

35

)]
K̂kτ s

vv = [−Eτ s
(
m2

xε
s
11

k + m2
yε

s
22

k) − Eτz sz ε
s
33

k]

2The modification of the coefficient C M
nn

k
22 does not alter the formal

expression of the arrays obtained for the mechanical RMVT.

The fundamental nuclei of the partially mixed four-field for-
mulation are expressed in terms of the constitutive coefficients
defined in Eq. (14) and read

K̂kτ s
uv = [

K̂kτ s
vu

]T =




Eτ s

(
m2

x eM
pp

k

11
+ m2

yeM
pp

k

23

)
Eτ smx my

(
eM

pp
k

12
+ eM

pp
k

23

)
0


 ;

K̂kτ s
ud = [

K̂kτ s
du

]T =

0

0
0


 ;

K̂kτ s
vv =

[
−Eτ s

(
m2

xε
M
pp

k

11
+ m2

yε
M
pp

k

22

)]
; K̂kτ s

vd = [
Eτz s

]
;

K̂kτ s
dv = [

Eτ sz

]
;

K̂kτ s
sv = [

K̂kτ s
vs

]T =

 0

0
−mx Eτ seM

pn
k

13


 ;

K̂kτ s
sd = [

K̂kτ s
ds

]T =

 0

0
−Eτ seM

nn
k
12


 ;

K̂kτ s
dd =

[
εM

nn
k
Eτ s

]
.




