
HAL Id: hal-01367077
https://hal.science/hal-01367077

Submitted on 9 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sensitivity analysis of thickness assumptions for
piezoelectric plate models

M. d’Ottavio, O. Polit

To cite this version:
M. d’Ottavio, O. Polit. Sensitivity analysis of thickness assumptions for piezoelectric plate models.
Journal of Intelligent Material Systems and Structures, 2009, 20 (15), pp.1815-1834. �hal-01367077�

https://hal.science/hal-01367077
https://hal.archives-ouvertes.fr


Sensitivity Analysis of Thickness Assumptions for
Piezoelectric Plate Models

MICHELE D’OTTAVIO* AND OLIVIER POLIT
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INTRODUCTION

P
IEZOELECTRIC sensors and actuators are increas-
ingly used in intelligent structures because their

characteristics meet many requirements posed by rele-
vant technical applications, for instance active vibration
damping, health monitoring, or shape adaptation
(Chopra, 1996, 2002). Piezoelectric patches can be con-
veniently attached to or embedded into a hosting struc-
ture depending on the exploited actuation mode. The
design of intelligent structures demands accurate numer-
ical studies because an experimental try-and-error pro-
cedure is often excessively time-comsuming and
expensive. Due to the complexity of practically relevant
components, approximate structural models for beams,
plates and shells are usually employed in the numerical
simulations.
There are several ways to formulate approximate

structural models. One possibility is to rationally
derive them upon taking the thin plate limit of the full
3D equations governing the piezoelectric continuum
(Maugin and Attou, 1990; Rogacheva, 1994; Bisegna
and Maceri, 1996a,b). Thanks to the direct deduction
from full 3D equations, this approach ensures consis-
tency and permits to estimate the approximation error

(Cheng et al., 2000; Reddy and Cheng, 2001). However,
this method has been usually restricted to formulate
low-order plate or shell models, whose applicability is
limited to quite thin patches and low-frequency
response.

An alternative way to construct structural models
refers to the more intuitive ‘axiomatic’ approach, by
which the through-thickness behavior of the field vari-
ables is a priori postulated on the basis of ‘reasonable’
assumptions (Naghdi, 1972). The axiomatic approach
has encountered a broad success thanks to its mathemat-
ical manageability that permits a straightforward formal
application to complex problems, in particular multi-
layered structures and multiphysical coupling. Despite
its attractive simplicity, this modeling technique is sub-
ject to a certain arbitrariness reflected in the choice of
hypotheses concerning the behavior of mechanical and
electrical field variables (Gopinathan et al., 2000).
A vast amount of literature has been accordingly dedi-
cated to axiomatic models with differently chosen thick-
ness assumptions, and the following overview has by no
means the aim of being exhaustive.

Wang and Yang (2000) summarized a large number of
axiomatic models for piezoelectric plates and classified
them with respect to their applicability for the analysis
of transducers working in different frequency ranges.
Reddy (1999) and Robbins and Chopra (2006) proposed
various models for the simulation of multilayered panels
with piezoelectric actuators. They discussed classical and
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refined single layer as well as layer-wise kinematic
assumptions by referring to the hypothesis of a constant
electric field. Based on the same assumption for the
electrical field, Mannini and Gaudenzi (2004) extended
the hierarchic approach of Gaudenzi et al. (1995, 1998)
to formulate finite elements for piezo-actuated lami-
nates. Since in these models the converse piezoelectric
effect is assumed to be negligible, the electrical field
variables do not explicitly appear as additional
unknowns. However, the review articles of Saravanos
and Heyliger (1999) and Benjeddou (2000) pointed
out the importance of retaining an adequate approxima-
tion for the electric degrees of freedom to consistently
represent the piezoelectric interaction, in particular for
sensor applications. Hence, Sze et al. (2004) and Polit
and Bruant (2006) compared different approximations
for the electric degrees of freedom within a multilayered
model based on Reissner�Mindlin kinematics. Similarly,
Pietrzakowski (2008) compared the vibration response
of piezoelectric Kirchhoff and Reissner�Mindlin lami-
nates with linear and quadratic assumptions for the elec-
trostatic potential. A refined kinematic model involving
higher-order trigonometric expansions for the electro-
static potential has been formulated by Fernandes and
Pouget (2001) for homogeneous piezoelectric plates and
subsequently extended to laminates upon accounting for
electro-mechanical interfaces (Fernandes and Pouget,
2002).
While the literature mentioned above is focussed on

the so-called extension mode (31 mode) of transversely
polarized patches, shear-actuated piezoelectric elements
are attracting interest since the pioneering works of Sun
and Zhang (1995), Zhang and Sun (1996, 1999),
Benjeddou et al. (1997), and Trindade et al. (1999).
This actuation mode is based on the transverse shear
deformation, which makes the classical Kirchhoff
assumption of a vanishing shear stress meaningless
(Vel and Batra, 2001a). Since shear-actuated elements
are usually embedded into a smart sandwich structure
(Baillargeon and Vel, 2005), models based on first-order
shear deformation theory (Raja et al., 2004) have been
enhanced by formulating higher-order kinematics to
resolve transverse shear effects and cross-section warp-
ing (Aldraihem and Khdeir, 2003). Trindade and
Benjeddou (2006, 2008) recently proposed a third-
order sandwich beam theory that retains a cubic approx-
imation for the electrostatic potential.
Classical plate theories are usually based on the

hypothesis of a transverse deflection that remains con-
stant through the thickness. This calls for the use of the
reduced constitutive law for enforcing the condition of a
vanishing transverse normal stress (Bhaskar and
Varadan, 2001). Reduced constitutive coefficients have
been employed in several of the already mentioned
higher-order models (Reddy, 1999; Fernandes and
Pouget, 2001, 2002; Raja et al., 2004; Trindade and

Benjeddou, 2006, 2008). However, the available exact
solutions for piezoelectric laminates working in exten-
sion (Heyliger and Brooks, 1996; Heyliger, 1997) and in
shear mode (Benjeddou and Deü, 2001; Vel and Batra,
2001b) show that the transverse normal deformation
plays a more relevant role compared to purely elastic
laminates. Hence, refined axiomatic models for prob-
lems involving coupled multiphysics (in particular piezo-
electricity and thermo-mechanics) have been proposed
based on the full 3D constitutive relation by e.g. Batra
and Vidoli (2002), Cho and Oh (2003), and Kant and
Shiyekar (2008). If full 3D constitutive laws are retained,
the kinematic model should be carefully chosen in order
to avoid a spurious stiffening mechanism known as
Poisson locking (Büchter et al., 1994; Carrera and
Brischetto, 2008a,b).

In the last years, a family of axiomatic models has
been developed for laminated plates and shells with
piezoelectric layers (Ballhause et al., 2005; D’Ottavio
and Kröplin, 2006; D’Ottavio et al., 2006, 2008;
Carrera and Brischetto, 2007a,b). Thanks to a compact
notation known as Carrera’s Unified Formulation
(CUF), a large number of models can be constructed
within one single software (Carrera, 2000, 2003). Since
these theories retain the full 3D constitutive law, the
most refined models of CUF can accurately recover
the exact 3D solutions, as demonstrated in the quoted
references. In CUF, the field variables are grouped
together as displacements, transverse stresses, electro-
static potential, and transverse electric displacement,
and all variables are expanded in the thickness direction
with polynomials of the same order N. A similar
approach to the analysis of elastic plates has been pro-
posed by Batra et al. (2002), in which a series of K-th
order theories has been constructed based on the mixed
Hellinger�Reissner functional by introducing assump-
tions of order K for the displacements and in-plane
stresses and (Kþ 2) for the transverse stresses (with
K2 (1, 5)). Recently, Demasi (2008) extended the flexi-
bility of CUF for elastic laminates by permitting differ-
ent polynomial orders for each single displacement
component. This so-called Generalized Unified
Formulation (GUF) is thus a powerful means to
thoroughly assess the role of each single thickness
assumption on the overall accuracy of the plate model.
Moreover, the GUF can be conveniently employed to
find the axiomatic model that maximizes the ratio
between accuracy and required computational effort
for a specific problem.

In this work, the basic ideas of the GUF are extended
to the analysis of homogeneous piezoelectric plates.
Within the classical variational formulation of Tiersten
(1969), independent polynomial assumptions are intro-
duced for in-plane displacements, transverse displace-
ment, and electrostatic potential. Either the full
3D constitutive law or the reduced constitutive



coefficients can be utilized for the extension and the
shear actuation modes. Therefore, a large number of
axiomatic plate theories for piezoelectric actuator and
sensor applications are constructed. These models are
then assessed with respect to their capability to represent
the coupled piezoelectric response of various actuator
and sensor configurations. The GUF appears hence as
a natural tool for assessing 2D models because it permits
to systematically compare all terms of the approximated
coupled piezoelectric behavior.
An outline of the article is as follows. The governing

equations for the piezoelectric continuum are recalled in
section ‘Equation of a 3D Piezoelectric Continuum’.
Section ‘The Piezoelectric GUF’ introduces the axiom-
atic plate models obtained by the piezoelectric GUF and
their Navier-type analytical solution. The effects of an
inconsistent kinematic model in conjunction with a full
3D constitutive law are exemplarily shown in Section
‘Linear Elastic Plates’ for linear elastic plates by
addressing the well-known Poisson locking. Sections
‘Piezoelectric Plate Working In 31-Mode’ and
‘Piezoelectric Plate Working In 15-Mode’ present results
for piezoelectric actuators and sensors working in exten-
sion and shear mode, respectively. Section ‘Conclusions
and Outlook’ summarizes the principal findings, identi-
fies model recommendations and suggests an outlook
towards further investigations.

EQUATIONS OF A 3D PIEZOELECTRIC

CONTINUUM

The governing equations for a piezoelectric contin-
uum describe the mechanical field and electrical field
as well as the constitutive law representing the piezo-
electric interactions. For both fields, equilibrium of the
intensive variables (i.e., the mechanical stresses �ij and
the electric displacement Di) is expressed by divergence
equations, while the extensive variables (i.e., the
mechanical strains eij and the electric field Ei) are defined
by gradient equations. The set of partial differential
equations is closed by conditions defined on the
domain boundary �¼�u[�t¼��[�q by prescribing
values for the displacement ui and the electrostatic
potential � or for the traction ti and the electric
charge density q (Tiersten, 1969):

. Mechanical field:

@�ij
@xi
¼ � €uj; �ij ¼

1

2

@ui
@xj
þ
@uj
@xi

� �
; ð1aÞ

ui ¼ �ui on �u; �ij nj ¼ �ti on �t: ð1bÞ

. Electrical field:

@Di

@xi
¼ 0; Ei ¼ �

@�

@xi
; ð2aÞ

� ¼ �� on ��; Di ni ¼ � �q on �q: ð2bÞ

The standard Einstein tensor notation has been used
with the indexes i, j being defined in the set {1, 2, 3}.
The domain is described by the Cartesian coordinates
xi¼ {x, y, z}, z being the thickness direction of the plate.
The mass density has been indicated by �, the symbol ni
stays for the cosine director of the outward normal to
the domain boundary, and prescribed values have been
indicated by a bar.

The piezoelectric interactions depend on the polariza-
tion scheme and on the actuation mode. In this work, we
refer to the transverse extension mode associated to a
thickness polarization and to the transverse shear mode
associated to an in-plane (first axis) polarization. In
either case, the typical patch configuration is considered,
with electrode-covered top and bottom faces of the plate
and an electric field that is built up along the plate thick-
ness. The full 3D constitutive equations describing the
direct (sensor) and converse (actuator) piezoelectric
effect read:

. Extension mode (31-mode, polarization along x3¼ z):

Dx ¼ "11Ex þ e15�xz; Dy ¼ "22Ey þ e24�yz; ð3aÞ

Dz ¼ "33Ez þ e31�xx þ e32�yy þ e33�zz: ð3bÞ

�xx ¼ ~C11�xx þ ~C12�yy þ ~C13�zz þ ~C16�xy � e31Ez; ð4aÞ

�yy ¼ ~C21�xx þ ~C22�yy þ ~C23�zz þ ~C26�xy � e32Ez; ð4bÞ

�zz ¼ ~C31�xx þ ~C32�yy þ ~C33�zz � e33Ez; ð4cÞ

�yz ¼ ~C44�yz � e24Ey; �xz ¼ ~C55�xz � e15Ex; ð4dÞ

�xy ¼ ~C61�xx þ ~C62�yy þ ~C66�xy: ð4eÞ

. Shear mode (15-mode, polarization along x1¼ x):

Dx ¼ "11Ex þ e11�xx þ e12�yy þ e13�zz; ð5aÞ

Dy ¼ "22Ey þ e26�xy; Dz ¼ "33Ez þ e35�xz: ð5bÞ

�xx ¼ ~C11�xx þ ~C12�yy þ ~C13�zz þ ~C16�xy � e11Ex; ð6aÞ

�yy ¼ ~C21�xx þ ~C22�yy þ ~C23�zz þ ~C26�xy � e12Ex; ð6bÞ

�zz ¼ ~C31�xx þ ~C32�yy þ ~C33�zz � e13Ex; ð6cÞ

�yz ¼ ~C44�yz; �xz ¼ ~C55�xz � e35Ez; ð6dÞ

�xy ¼ ~C61�xx þ ~C62�yy þ ~C66�xy � e26Ey: ð6eÞ

Standard contracted tensor notation has been used, the
elastic stiffness coefficients at constant electric field



being indicated by ~Cpq (with p and q ranging between
1 and 6), the dielectric permittivity coefficients at con-
stant strain being represented by eij, and the piezoelectric
stress coefficients being indicated by eip. The above con-
stitutive equations have been reported for the case of an
orthotropic material with principal axes aligned with the
structural reference system. A merely elastic material
behavior can be recovered from the piezoelectric rela-
tions upon setting the coefficients eip to zero.
Classical plate theories are usually based on the kine-

matic assumption of a zero transverse normal strain by
postulating u3(x, y, z)¼w0(x, y). However, in order to
comply with the thin plate condition yielding a negligible
transverse normal stress, these models employ a modi-
fied constitutive law with the following reduced coeffi-
cients (see, e.g., Fernandes and Pouget, 2001):

CR
�� ¼

~C�� � ~C�3
~C�3
~C33

; eRip ¼ eip � ei3
~Cp3

~C33

;

"Rij ¼ "ij þ
ei3 ej3

~C33

,

ð7Þ

with �, �2 {1, 2}, i, j2 {1, 2, 3} and p2 {1, . . . , 6}.
Irrespective of the kind of constitutive equations

employed in the model, the key point in formulating
an axiomatic model is to select approximations for
the electrical and mechanical field variables so to
consistently represent the piezoelectric interactions.
As emphasized by Roccella and Gaudenzi (2005),
reduced 2D models should not constrain the coupled
material response in order to reproduce the relevant
energetic contributions and, hence, to be confidently
applicable for predicting the response of piezoelectric
sensors and actuators. In the following Section, these
approximations will be introduced within the notation
of the GUF and a large number of 2D models will be
available. Their subsequent assessment with respect to
different piezoelectric interactions (i.e., direct and con-
verse effects within extension and shear actuation
modes) will permit to identify the terms of the assump-
tions that are responsible for the relevant energy
contributions.

THE PIEZOELECTRIC GUF

The approximate structural models for the piezoelec-
tric continuum are formulated on the basis of the irre-
ducible Hamilton’s principle in the form stated by
Tiersten (1969), which in the static case reads:

Z
Vk

��ji �ij � �Ei Di dV ¼

Z
�t

�ui �ti ��

Z
�q

�� �q �: ð8Þ

The axiomatic assumptions for the through-thickness
behavior of the generic field variable U(x, y, z) are

expressed in GUF as:

fux, uyg ðx, y, zÞ ¼
XNu

s¼0

Fu
s ðzÞfûx s, ûy sgðx, yÞ; ð9aÞ

uzðx, y, zÞ ¼ wðx, y, zÞ ¼
XNw

s¼0

Fw
s ðzÞŵsðx, yÞ; ð9bÞ

�ðx, y, zÞ ¼
XN�

s¼0

F�
s ðzÞ�̂sðx, yÞ: ð9cÞ

The polynomial functions Fu
s ðzÞ and Fw

s ðzÞ are the
terms of the development in Taylor series, i.e.,:

Fu
s ðzÞ ¼ Fw

s ðzÞ ¼ z s ð10Þ

with s ¼ 0,1, . . . ,Nu and s ¼ 0,1, . . . ,Nw: In order to
facilitate the access to prescribed values for the electro-
static potential at the top and bottom face of the
plate, the polynomial functions F�

s ðzÞ are chosen by
superposing higher order terms to a linear Lagrange
interpolation:

F�
0 ¼

P0 � P1

2
; F�

1 ¼
P0 þ P1

2
;

F�
s ¼ Ps � Ps�2 for s ¼ 2,3, . . . ,N�: ð11Þ

The basis functions Ps are Legendre polynomials defined
over the non-dimensional thickness coordinate � ¼ 2z=h
according to:

P0 ¼ 1; P1 ¼ �; Ps ¼
1

s
ð2s� 1Þ�Ps�1 � ðs� 1ÞPs�2½ �:

ð12Þ

The relevant feature of this approach is that the order
NU of the thickness expansion for the generic field vari-
able U is a free parameter of the model. By referring to
the formulation in Equation (8), we have U 2 {u,w,�}.
Therefore, different models are obtained by varying the
order NU. Models for elastic laminates will be identified
by the pair {Nu,Nw}, while the triplet {Nu,Nw,N�} will
be used to identify models for piezoelectric plates. As an
example, the classical Reissner�Mindlin kinematics for
elastic plates can be recovered by setting Nu¼ 1 and
Nw¼ 0, which corresponds to the model {1, 0}. The
most accurate model used in this work refers to a
fourth-order expansion for all field variables and it
will be indicated as N¼ 4. By adopting a sufficiently
high order NU, this approach has proven to be capable
of recovering exact 3D results even in the case of lami-
nated structures (Ballhause et al., 2005; D’Ottavio et al.,
2006, 2008). The models generally employ the full 3D
constitutive laws as displayed in Equations (3)�(6).
A subscript R will indicate models employing the
reduced constitutive equations with the coefficients



defined in Equation (7). No shear correction factors will
be used in this work.
The governing equations for the 2D models are for-

mulated following the standard procedure (Reddy,
2004). After substituting the constitutive law and the
gradient equations into Hamilton’s principle, the dis-
placement and the electrostatic potential are expressed
by the axiomatic expansions given in Equation (9). A set
of 2D partial differential equations is then obtained by
carrying out all derivatives along z and by calculating all
integrals over the cross-section. It is worth emphasizing
that each contribution to the internal virtual work per-
taining to each term of the polynomial approximation is
formally invariant with respect to the chosen expansion
orders {Nu,Nw,N�}, which leads to a particularly
appealing programming simplicity (Demasi, 2008).

Navier-type Closed-form Solution

The partial differential equations governing the 2D
model are solved in strong form by referring to the
Navier solution (see, e.g., Reddy (2004)). Therefore,
the analyses will be restricted to rectangular plates of
dimension a� b and constant thickness hmade of ortho-
tropic materials and with simply�supported edges for
which the following conditions hold:

~C45 ¼ ~C16 ¼ ~C26 ¼ ~C36 ¼ 0; ð13aÞ

uxðx, y ¼ 0Þ ¼ uxðx, y ¼ bÞ ¼ 0; ð13bÞ

uyðx ¼ 0, yÞ ¼ uyðx ¼ a, yÞ ¼ 0; ð13cÞ

wðx ¼ 0, yÞ ¼ wðx ¼ a, yÞ ¼ wðx, y ¼ 0Þ

¼ wðx, y ¼ bÞ ¼ 0 ð13dÞ

�xxðx ¼ 0, yÞ ¼ �xxðx ¼ a, yÞ ¼ 0 ð13eÞ

�yyðx, y ¼ 0Þ ¼ �yyðx, y ¼ bÞ ¼ 0: ð13fÞ

The Navier solution is expressed in terms of trigonomet-
ric functions which exactly meet all boundary conditions
in the following manner (Batra and Aimmanee, 2003):

ûx sðx, yÞ ¼
X1
mx¼0

X1
my¼0

Uxsmxmy
cos

mx	x

a

� �
sin

my	y

b

� �
;

ð14aÞ

ûy sðx, yÞ ¼
X1
mx¼0

X1
my¼0

Uysmxmy
sin

mx	x

a

� �
cos

my	y

b

� �
;

ð14bÞ

ŵsðx, yÞ ¼
X1
mx¼0

X1
my¼0

Wsmxmy
sin

mx	x

a

� �
sin

my	y

b

� �
:

ð14cÞ

The admissible electrical boundary conditions and
the corresponding Navier solution depend on the

polarization scheme:

. Thickness (z-axis) polarization:

�ðx¼ 0,yÞ ¼�ðx¼ a,yÞ ¼�ðx,y¼ 0Þ ¼�ðx,y¼ bÞ ¼ 0;

ð15aÞ

�̂sðx,yÞ ¼
X1
mx¼0

X1
my¼0

Vsmxmy
sin

mx	x

a

� �
sin

my	y

b

� �
:

ð15bÞ

. In-plane (x-axis) polarization:

�ðx, y ¼ 0Þ ¼ �ðx, y ¼ bÞ ¼ 0;

Dxðx ¼ 0, yÞ ¼ Dxðx ¼ a, yÞ ¼ 0: ð16aÞ

�̂sðx, yÞ ¼
X1
mx¼0

X1
my¼0

Vsmxmy
cos

mx	x

a

� �
sin

my	y

b

� �
:

ð16bÞ

In this work, we consider only the static response of the
fundamental flexural mode by setting always
mx¼my¼ 1. The response to more general loading dis-
tributions requires the use of the complete series solution
given in Equations (14), (15b), and (16b) (see, e.g.,
Carrera et al., 2007). If free-vibration analyses are
addressed, the vibration modes associated to different
values for mx and my should be carefully chosen
(Batra and Aimmanee, 2003).

LINEAR ELASTIC PLATES

Preliminary numerical investigations are dedicated to
the purely elastic response of a homogeneous and iso-
tropic square plate in bending. The plate thickness is
h¼ 1mm and different aspect ratios S ¼ a=h are consid-
ered. The employed material data correspond to those of
a typical Aluminum alloy (Al 2024) with Young’s mod-
ulus E¼ 73GPa and Poisson’s ratio 
¼ 0.34. The plate
is loaded on its top face by a distributed pressure:

p x, y, z ¼
h

2

� �
¼ p0 sin

	x

a

� �
sin

	 y

b

� �
: ð17Þ

The results for several reduced models are reported in
Table 1 in terms of the non-dimensional deflection at the
plate mid-point:

�wðz ¼ 0Þ ¼
100E

p0h3S4
wðx ¼ 0, y ¼ 0, z ¼ 0Þ: ð18Þ

All 2D models employ the full 3D constitutive relation
and are labeled by their kinematics defined by the



pair {Nu,Nw}. The exact 3D solution has been obtained
according to Demasi (2006). The results in Table 1 indi-
cate that an excessively stiff response is found for all
models with Nw< 2 when the full 3D constitutive law
is used. The constant transverse normal strain ezz
described by this kinematics does not match the linear
contributions of the bending strains exx and eyy in the
definition of the bending stresses �xx and �yy given in
Equations (4a) and (4b). This mechanism promotes the
so-called Poisson locking phenomenon (Büchter et al.,
1994; Carrera and Brischetto, 2008a,b). Table 1 shows
that the exact solution for thin plates in bending can be
recovered by the model {1, 2} (see also Paumier and
Raoult, 1997).
In thick plates (i.e., S� 10), the bending deformation

comes along with transverse shear strain. In order to
capture this effect, a refined description of the in-plane
displacement is required. The quadratic approximation
for the transverse deflection is still necessary for avoid-
ing Poisson locking. Both requirements are met in the
model {3, 2}, which leads to a quadratic variation of the
transverse shear strain along the cross section. Table 1
shows that this model correctly recovers the exact solu-
tion for all thickness ranges. The importance of a para-
bolic distribution of the transverse shear stresses �xz and
�yz is highlighted in Table 1 by the superior accuracy of
the {3, 2} kinematics with respect to the model {2, 3},
which is in turn characterized by a quadratic behavior
of the bending stresses �xx and �yy.
In order to emphasize the role of Poisson’s ratio 


within this peculiar locking phenomenon, the influence

of this material parameter on the accuracy of classical
plate kinematics has been detailed out. Table 2 and
Figure 1 report the errors produced when the
Reissner�Mindlin kinematics {Nu, Nw}¼ {1, 0} is used
in conjunction with a full 3D constitutive law. The
results in Table 2 show that this kinematics requires
the modified coefficients defined in Equation (7) in
order to annihilate the large errors of Poisson locking.
As shown in Figure 1, the error depends quadratically
on the value of Poisson’s ratio 
. By investigating the
role of aspect ratio on Poisson locking, Figure 1 shows
that the curves related to S¼ 50, 100, and 1000 coincide,
i.e. the error is not affected by the geometric parameter
S if the plate is thin enough. For small aspect ratios (i.e.,
S� 10), the errors due to low-order kinematic assump-
tions gain relevance and represent the dominant error
source for small values of Poisson’s ratio. Furthermore,
for increasing Poisson’s ratio 
, the error for thick plates
is shown to grow slower in comparison to the thin
plate case. These results lead to the conclusion that
Poisson locking is a material-dependent issue and not
a geometry-dependent error source.

PIEZOELECTRIC PLATE WORKING IN

31-MODE

We consider a square piezoelectric plate of side a and
thickness h¼ 1mm made of PZT-4 polarized along the
thickness direction. Sensor and actuator configurations
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Figure 1. Percentage error on the transverse deflection for the
model based on Reissner�Mindlin kinematics {1, 0} and full 3D con-
stitutive law: influence of Poisson’s ratio 
 and aspect ratio S ¼ a=h.

Table 2. Non-dimensional deflection �wðz ¼ 0Þ and
percentage error with respect to exact solution for the
Reissner�Mindlin kinematics {1, 0} with 3D and 2D
(subscript R) constitutive law: selected combinations of
aspect ratios S ¼ a=h and Poisson’s ratios m.

S Exact �wf1, 0g "(%) �wf1, 0gR "R(%)


¼0.05
4 3.8389 3.7285 2.88 3.7370 2.65
10 3.1970 3.1700 0.84 3.1785 0.58
1000 3.0721 3.0636 0.28 3.0721 0.00


¼0.45
4 3.3561 1.7302 48.45 3.3744 0.55
10 2.6023 0.9589 63.15 2.6031 0.03
1000 2.4562 0.8120 66.94 2.4562 0.00

Table 1. Bending of a simply supported, isotropic plate made of Al 2024: non-dimensional deflections �wðz ¼ 0Þ for
different models {Nu, Nw} employing the full 3D constitutive law.

S 3D {1, 0} {1, 1} {1, 2} {2, 1} {2, 2} {2, 3} {3, 2}

10 2.8655 2.1367 2.1367 2.8469 2.1367 2.8469 2.8469 2.8655
100 2.7252 2.0023 2.0023 2.7250 2.0023 2.7250 2.7250 2.7252
1000 2.7238 2.0009 2.0009 2.7238 2.0009 2.7238 2.7238 2.7238



of a homogeneous PZT-4 plate are analyzed as shown in
Figure 2. In the sensor case (Figure 2(a)), the bottom
face of the plate is grounded �(�¼�1)¼ 0 and the fol-
lowing pressure load is prescribed on the top face:

p x, y, z ¼
h

2

� �
¼ p0 sin

	x

a

� �
sin

	y

b

� �
, ð19Þ

with the load amplitude p0¼ 1MPa. In the actuator con-
figuration (Figure 2(b)), no mechanical loading is pres-
ent and the deformation is induced by an applied electric
field �Ez0. For this, the electrostatic potential on the top
and bottom surfaces of the plate is prescribed according
to:

� x, y, z ¼
h

2

� �
¼

�0

2
sin
	x

a
sin
	y

a
;

� x, y, z ¼ �
h

2

� �
¼ �

�0

2
sin
	x

a
sin
	y

a
:

ð20Þ

The prescribed potential level is �0¼ 100V and the
resulting electric field is �Ez0 ¼ 100V=mm.
Based on previous results obtained for piezoelectric

laminates (Ballhause et al., 2005), in the following the
solution of the most accurate model N¼ 4 will be con-
sidered as the reference solution.

Sensor Configuration

The sensor response is characterized by a bending
deformation of the plate by virtue of the applied
pressure load. Accordingly, the considered response
parameters will be made non-dimensional in the

following manner:

�w ¼
100 ~C11

p0a S3
w; �� ¼

e31
p0 a2

�:

��xx ¼
1

p0 S2
�xx; ��xz ¼

1

p0 S
�xz:

ð21Þ

The stress components are computed directly from the
constitutive relations given in Equation (4).

Figure 3 reports the evolution of the non-dimensional
parameters �w and �� evaluated at the plate center
� ¼ 2z=h ¼ 0 for varying aspect ratio S. The results
show that an at least quadratic approximation for the
electrostatic potential is necessary to capture the piezo-
electric interaction. Models with N�¼ 1 (i.e., the models
{1, 1, 1} and {1, 2, 1}) predict an incorrect deflection
that is larger than that of their counterparts with
N�¼ 2 (i.e., the models {1, 1, 2} and {1, 2, 2}, respec-
tively). This occurs because models with N�< 2 fail to
represent the electrostatic potential that is induced by
the bending strains through the direct piezoelectric
effect (Equations (3) and (4)). An at least linear electric
field, i.e., an at least quadratic electrostatic potential, is
necessary to match the linear bending strains and, hence,
to represent the amount of deformation energy that is
converted into electric energy by the piezoelectric sensor.
The piezoelectric coupling is thus responsible for an aug-
mentation of the apparent stiffness of the piezoelectric
plate. The results in Figure 3 indicate that the error
associated to the missing piezoelectric stiffness is not
substantially affected by the slenderness of the piezoelec-
tric plate. In fact, the need for a quadratic approxima-
tion for the electrostatic potential is dictated by the

a

= +50V

= −50V

h
+1
0
−1PZT-4

p(x,y,z=+h/2)

P

(a)

a

PZT-4
Ph 0

−1

+1

(b)

=0

E1 = E2 81.3 [GPa] e31 = e32 − 5.20 C
m2

E3 64.5 [GPa] e33 15.08 C
m2

n13 = n23 0.432 [–] e15 = e24 12.72 C
m2

n12 0.329 [–] e11 = e22 1475e0
C

Vm

G13 = G23 25.6 [GPa] e 33 1300e0
C

Vm

G12 30.6 [GPa] r 7500 kg
m3

(c)

Figure 2. Piezoelectric plate working in 31-mode (transverse extension): schematic of sensor and actuator configurations (top) and material
data for PZT-4 poled along the transverse z-axis (bottom): (a) Sensor configuration; (b) Actuator configuration; (c) Material data for transverse
polarized PZT-4 (e0¼ 8.85410�12 C/Vm).



piezoelectric coupling and, hence, it does not depend on
the geometric properties of the plate. Furthermore, the
results obtained with the models {1, 1, 1} and {1, 1, 2}
demonstrate that an at least quadratic distribution of
the transverse displacement is necessary when the full
3D constitutive law is employed. This extends the valid-
ity of the remarks concerning Poisson locking (section
‘Linear Elastic Plates’) to piezoelectric plates.
Figure 4 reports the through-thickness distributions

of the non-dimensional response parameters �w and ��
obtained for a quite thin plate (S¼ 1000) by several
low-order models with Nu¼ 1. The reference solution
(N¼ 4) yields a parabolic and symmetric distribution
of the electrostatic potential, whose value is zero at the
top surface: ��ð� ¼ 1Þ ¼ 0. Models with Nw< 2 and full
3D constitutive law suffer Poisson locking and possess a

spurious additional stiffness. On the other hand, models
with N�< 2 are not capable to capture the induced elec-
tric field and predict larger deformations because of the
missing piezoelectric stiffness. Furthermore, no differ-
ence can be noted between the model {1, 0, 1}R (respec-
tively {1, 0, 2}R) and the model {1, 2, 1} (respectively
{1, 2, 2}). The same behavior is thus found for models
exploiting the reduced constitutive coefficients with
Nw¼ 0 and those using the full 3D constitutive law
with Nw¼ 2.

The local response is reported in Figure 5 in terms of
through-thickness distributions of the non-dimensional
stresses ��xx and ��xz. The considered low-order models
(i.e., models with Nu¼ 1) represent accurately the pri-
mary bending stress �xx, see Figure 5(a). However,
Figure 5(b) shows that they yield only an estimate of
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Figure 3. Piezoelectric sensor plate in 31-mode: non-dimensional global electromechanical response at the plate center for different aspect
ratio S ¼ a=h (h¼ constant): (a) Normalized deflection �w(�¼ 0); (b) Normalized electric potential �� (�¼ 0).
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Figure 4. Thin (S¼ 1000) piezoelectric sensor plate in 31-mode: through-thickness distribution of the transverse deflection (left) and electro-
static potential (right) for selected low-order models: (a) Normalized deflection �w; (b) Normalized electric potential ��.



the average transverse shear deformation because the
linear assumption for the in-plane displacement
(Nu¼ 1) does not capture the quadratic distribution of
the transverse shear strain. It may be noted that a (weak)
quadratic dependency of the transverse shear deforma-
tion is introduced by taking Nw� 2 and/or N�� 2.
In the former case, the quadratic term is due to the def-
inition of the transverse shear strains �xz¼ u,z þw,x.
In the second case, the quadratic assumption for the
electric potential enters in the transverse shear stress
via the piezoelectric coefficient e15, as given in
Equation (4d). Nevertheless, both terms are of second-
order compared with the parabolic distribution obtained
by using a higher-order approximation for the in-plane
displacement.
Figure 6 reports the through-thickness distributions

of �w and �� for a thick sensor plate (S¼ 4) and selected
models with low-order (Nu¼ 1) and higher-order
(Nu> 1) kinematic approximations. The reference
solution obtained with N¼ 4 shows that the electrostatic
potential has still a parabolic distribution. Furthermore,
a certain asymmetry is introduced by the 3D effects and
the asymmetric loading. Hence, a non-zero value for �
is obtained at the top surface of the piezoceramic plate.
The results in Figure 6 indicate that the 3D effects in the
thick plate enhance the discrepancies between different
models. An accurate prediction of the response of a
thick plate demands the use of refined models with
higher-order kinematic assumptions. Figure 6(c) sug-
gests that the model {3, 2, 2} is capable of capturing
the principal deformation patterns over the cross-sec-
tion. This is attributed to the quadratic description of
the transverse shear strain as well as to the representa-
tion of transverse normal deformation. In particular, it
is worth to remark the inaccuracies introduced by the
use of the hypothesis �zz¼ 0 and the consequent reduced
constitutive law. Due to the plate thickness, transverse

normal deformation effects are important and affect the
piezoelectric coupling as well. Figure 6(d) shows that
models with Nw¼ 0 and employing the reduced consti-
tutive coefficients yield an inaccurate prediction of the
voltage level at the top electrode of the sensor. Finally,
note that the considerations made for the thin plate
case concerning Poisson locking hold for the thick
plate as well.

The stress response in the thick (S¼ 4) sensor plate in
31-mode is illustrated in Figure 7. The discrepancies
between low-order models (top of Figure 7) and
higher-order models (bottom of Figure 7) are negligible
as far as the primary bending stress �xx is concerned.
However, if an accurate evaluation of the transverse
shear stress is required, an at least cubic assumption
for the in-plane displacement should be employed.
Figure 7(b) and (d) shows that models with Nu< 3 can
only provide an estimate of the average transverse shear
deformation and that they violate the stress-free condi-
tion at the outer surfaces of the plate. It is finally
remarked that using the reduced constitutive law does
not degrade the accuracy of the calculated stress
components.

Actuator Configuration

The application of an electric field along the thickness
of transversely polarized piezoceramics has as primary
effect a membrane deformation. Frequently used piezo-
electric actuators are bender elements that are imple-
mented by combining two actuators with opposite
resulting in-plane deformation (see, e.g., Chao and
Shen (2007); Fernandes and Pouget (2003); Vel and
Batra (2001a)). With reference to the schematic of
Figure 2(b), the applied voltage produces a contrac-
tion of the plate (i.e., û ¼ v̂5 0) via the e31 and e32
coefficients given in Figure 2(c)). As a secondary
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Figure 5. Thin (S¼ 1000) piezoelectric sensor plate in 31-mode: through-thickness distribution of the non-dimensional in-plane and transverse
shear stresses for selected low-order models: (a) In-plane stress ��xx; (b) Transverse shear stress ��xz.



effect, a non-Poisson transverse deformation arises due
to the piezoelectric coefficient e33. For the considered
single actuator, the following non-dimensional response
parameters will be considered:

�u ¼
~C11

e31Ez0 a
ux; �w ¼

~C11

e31�0
w; ��xx ¼

1

e31 Ez0
�xx;

��xz ¼
a

e31 �0
�xz; �� ¼

1

�0
�:

ð22Þ

The reference value of the transverse electric field is
Ez0 ¼ �0=h and �0¼ 100V, see Figure 2(b). The stress
components are calculated through the constitutive
Equation (4).
Through-thickness distributions of the non-dimen-

sional response for a thin actuator (S¼ 1000) are
reported in Figures 8 and 9. The electrical and mechan-
ical response result to be decoupled since the distribu-
tion of the electrostatic potential is independent of the

employed kinematic model. A linear approximation for
the electrostatic potential is sufficient for correctly repre-
senting the actuating electric field, see Figure 8(c). The
actuation authority (i.e., the membrane deformation) is
well captured by a constant assumption for the in-plane
displacement components , i.e., by models with Nu¼ 0.
In this case, and if the full 3D constitutive law is
employed, an at least linear assumption for the trans-
verse deflection w is necessary to prevent the spurious
Poisson locking: the model {0, 0, 1} has a spuriously
increased stiffness and leads to errors in the actuation
authority as high as 70%. As shown by the results of the
model {0, 0, 1}R, the modified constitutive law is an
effective means for eliminating the Poisson locking and
for recovering the correct membrane deformation of the
piezoelectric actuator, see Figures 8(a),(b) and 9(a).
However, models with Nu¼ 0 prove useless for a predic-
tion of the transverse shear stress, see Figure 9(b).

The non-dimensional response in a thick (S¼ 4)
piezoelectric actuator in 31-mode is given in Figures 10
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Figure 6. Thick (S¼ 4) piezoelectric sensor plate working in 31-mode: through-thickness distribution of the non-dimensional transverse deflec-
tion (left) and electrostatic potential (right) for selected low-order (Nu¼1, top) and higher-order (Nu>1, bottom) models: (a) Normalized
deflection �w; (b) Normalized electric potential ��; (c) Normalized deflection �w; (d) Normalized electric potential ��.



and 11. Due to the thickness of the patch, the actuating
electric field is slightly non-uniform and the electrostatic
potential marginally deviates from the linear behavior.
The antisymmetric boundary conditions on the applied
voltage calls for an odd polynomial order for the elec-
trostatic potential. Hence a cubic approximation N�¼ 3
exactly represents the non-linear through-thickness dis-
tribution, but a linear assumption is an excellent approx-
imation, see Figure 10(c). Note that the kinematic
assumptions do not affect the distribution of the electro-
static potential.
The mechanical response of the thick actuator is

affected by 3D effects and is characterized by a warping
of the cross-section, see Figure 10(a). This comes
along with slightly non-uniform in-plane (membrane)
and transverse shear stresses, as illustrated in
Figure 11. Models with Nu> 1 are thus necessary.
However, models with Nu¼ 0 provide a good estimate
of the mean actuation. Table 3 compares the mean
non-dimensional displacement �u obtained with selected

models. The mean actuation authority for models
with a non-linear distribution has been evaluated
as the center of gravity of a parabolic distribution.
If the full 3D constitutive law is employed, an at
least linear assumption for the transverse deflection is
necessary to avoid Poisson locking. The model {2, 1, 1}
provides good results for the displacement field,
see Figure 10(a) and (b), but it predicts an incorrect
distribution of the membrane stress �xx, as shown in
Figure 11(a). If the assumption Nu¼ 2 is completed by
higher order (cubic) approximations only for the trans-
verse displacement w, only marginal improvements are
achieved for the membrane stress. In fact, Figure 11(a)
shows that a higher accuracy in the stress response
requires the use of higher order assumptions for
both the transverse displacement and the actuating
electric field. Since ezz¼w,z and Ez¼��,z introduce
into the definition of the membrane stress the same
dependency on the thickness coordinate z, the same
third-order approximation Nw¼N�¼ 3 can be used
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Figure 7. Thick (S¼ 4) piezoelectric sensor plate working in 31-mode: through-thickness distribution of the non-dimensional in-plane and
transverse shear stresses obtained with several low-order (Nu¼ 1, top) and higher-order (Nu> 1 bottom) models: (a) In-plane direct ��xx;
(b) Transverse shear stress ��xz; (c) In-plane direct stress ��xx; (d) Transverse shear stress ��xx.
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Figure 8. Thin (S¼ 1000) actuator working in 31-mode: through-thickness distribution of the membrane displacement (top left), transverse
deflection (top right) and electrostatic potential (bottom) for selected 2D models: (a) Normalized displacement �u; (b) Normalized diflection �w;
(c) Normalized electric potential ��.
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Figure 9. Thin (S¼ 1000) piezoelectric actuator in 31-mode: Through-thickness distributions of the non-dimensional in-plane and transverse
shear stresses: (a) In-plane stress ��xx; (b) Transverse shear stress ��xz.
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Figure 10. Thick (S¼4) piezoelectric actuator in 31-mode: through-thickness distribution of the in-plane displacement (top), the transverse
deflection (bottom left) and electrostatic potential (bottom right): (a) Normalized displacement �u: models with 3D constitutive law (left) and with
reduced constitutive coefficients (right); (b) Normalized deflection �w; (c) Normalized electric potential ��.
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Figure 11. Thick (S¼4) piezoelectric actuator in 31-mode: Through-thickness distributions of the non-dimensional in-plane and transverse
shear stresses: (a) In-plane stress ��xx; (b) Transverse shear stress ��xz.



for both field variables. Hence, higher order approxima-
tions for �(z) play an important role in the piezoelectric
coupling even if they are not necessary for the represen-
tation of the actuating electric field as illustrated in
Figure 10(c). As an alternative, models with Nw¼ 0
and based on the reduced constitutive law can be used
for estimating the mean actuation authority and the
membrane stress, see Table 3 and Figure 11(a).
Finally, the right-hand side of Figure 10(a) shows that
models with higher order in-plane kinematics and
reduced constitutive coefficients lead to inaccuracies of
the order of �10% in the representation of the warping.

PIEZOELECTRIC PLATE WORKING IN 15-MODE

The axiomatic assumptions are assessed for models of
simply supported piezoelectric plates exploiting the
shear actuation mechanism. Square piezoelectric sensor
and actuator plates of constant thickness h¼ 1mm and
with the poling direction aligned with the in-plane first
axis (i.e., the x-axis) are considered according to the
schematic in Figure 12. The material parameters of the
in-plane polarized PZT-4 are reported in Figure 12(c)
and have been obtained from those of the transversely
polarized piezoceramic upon a double tensorial transfor-
mation that rotates the polarization axes (Benjeddou
et al., 1997).

Results previously obtained for piezoelectric lami-
nates (D’Ottavio et al., 2008) indicate that the solution
of the most accurate model N¼ 4 can be considered as
the reference solution.

Sensor Configuration

The bending response for the piezoelectric sensor of
Figure 12(a) and subjected to a lateral pressure load is
made non-dimensional according to

�u ¼
~C55

p0a S2
u; �w ¼

100 ~C55

p0a S3
w; �� ¼

e35
p0 a

�;

��xx ¼
1

p0 S2
�xx; ��xz ¼

1

p0 S
�xz:

ð23Þ

The non-dimensional response of a thin (S¼ 1000)
sensor working in shear mode is reported in Figures 13
and 14. One observes the typical bending response, in
which a linear in-plane displacement and direct stress are
accompanied by a quadratic transverse deflection and
shear stress (Figures 13(a), (b) and 14). The presence
of Poisson locking is confirmed whenever Nw< 2 is
used in conjunction with the full 3D constitutive law:
Figures 13(a) and 14(a) show that the model {1, 0, 1}
underestimates the plate deformation being excessively
stiff due to Poisson locking. Observing the results of the
model {1, 0, 1} in Figure 13(c), one notes that Poisson
locking yields a larger value of the sensed voltage at the
top electrode. Hence, in contrast to the piezoelectric
plate working in 31 mode, in shear-actuated plates the
underestimated deflection due to Poisson locking comes
along with a larger value of the sensed potential.

The response of thick (S¼ 4) sensors working in shear
mode, Figures 15 and 16, is affected by the 3D effects
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Figure 12. Piezoelectric plate working in 15-mode (shear mode): schematic of sensor and actuator configurations (top) and employed material
data for PZT-4 (bottom). The polarization vector P is taken parallel to the x-axis: (a) Sensor configuration; (b) Actuator configuration; (c) Material
data for PZT-4 poled along x-axis (e0¼ 8.854 10�12 C/Vm).

Table 3. Actuation authority of a thick (S¼4) piezoelec-
tric actuator: mean non-dimensional in-plane displace-
ment for different 2D models.

{Nu, Nw, N�} {4, 4, 4} {0, 0, 1} {2, 1, 3} {3, 1, 1}
mean ū �0.708 �0.159 �0.707 �0.708

{Nu, Nw, N�} {2, 3, 3} {0, 0, 1}R {2, 0, 3}R {3, 0, 3}R

mean ū �0.707 �0.696 �0.716 �0.716
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Figure 13. Thin (S¼ 1000) sensor working in 15-mode: through-thickness distribution of the non-dimensional electromechanical response for
selected 2D models: (a) In-plane displacement �u (b) Transverse deflection �w (c) Electrostatic potential ��.
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Figure 14. Thin (S¼ 1000) sensor working in 15-mode: through-thickness distributions of the non-dimensional in-plane and transverse shear
stresses for selected 2D models: (a) In-plane stress ��xx; (b) Transverse shear stress ��xz.



and asymmetric loading. The model {3, 2, 3} captures
considerably well the distributions of the displacements,
electrostatic potential, and transverse shear stress.
However, it slightly overestimates the maximum

bending stresses �xx, see Figure 16(a). Since Nu>Nw,
the in-plane strains exx, eyy, and the transverse strain
ezz define inconsistent contributions to the stress �xx.
These inconsistencies become visible in thick 3D
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Figure 15. Thick (S¼ 4) sensor working in 15-mode: through-thickness distribution of the non-dimensional electromechanical response for
selected 2D models: (a) In-plane displacement �u; (b) Transverse deflection �w; (c) Electrostatic potential ��.
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Figure 16. Thick (S¼ 4) sensor working in 15-mode: through-thickness distributions of the non-dimensional in-plane and transverse shear
stresses for selected 2D models: (a) In-plane stress ��xx; (b) Transverse shear stress ��xz.



structures, for which the transverse direct strain ezz gains
relevance with respect to the in-plane direct (‘bending’)
strains exx and eyy. The same behavior may have been
noticed in Figure 7(c) for the thick sensor in 31-mode as
well. This issue can be overcome by employing models
with Nw>Nu or by using Nw¼ 0 along with the reduced
constitutive law. However, the use of reduced constitu-
tive relations entails errors in the sensed voltage that are
of the same order of magnitude of those produced by
Poisson locking, see Figure 15(c).
By comparing Figures 13(c) and 15(c), it can be seen

that the behavior of �(z) is identical for thin and thick
plates. A non-linear (cubic) distribution along the thick-
ness is obtained in either case, which confirms the valid-
ity of the hypotheses formulated by Trindade and
Benjeddou (2006, 2008) for the construction of accurate
models of shear-actuated piezoelectric sandwich beams.
Indeed, the piezoelectric coupling via the e35 coefficient
induces a quadratic distribution of Ez¼E3 as a
consequence of the quadratic distribution of the trans-
verse shear strain exz¼ e5. Therefore, a quadratic

approximation of the transverse shear strain (i.e.,
Nu� 3) is necessary to correctly resolve the piezoelectric
interactions, even in presence of a classical bending
response with a linear distribution of u. If the condition
Nw>Nu is retained, the model {3, 4, 3} thus appears to
be a consistent higher order model for thick sensors
working in shear mode. As far as thin sensors are con-
cerned, models with Nw¼ 0 and reduced constitutive
equations can effectively capture the coupled piezoelec-
tric response. Except for the direct computation of the
transverse shear stress from the constitutive equations,
the classical Reissner�Mindlin-based model {1, 0, 1}R is
shown to provide satisfactory results.

Actuator Configuration

The piezoelectric response of a thin and thick
piezoelectric actuator working in shear mode (see
Figure 12(b)) is reported in Figures 17 and 18, respec-
tively. The illustration of the through-thickness distribu-
tion of the electrostatic potential has been omitted for
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Figure 17. Thin (S¼ 1000) piezoelectric shear actuator: through-thickness distributions of the mechanical in-plane and transverse response for
selected 2D models: (a) In-plane displacement �u; (b) Transverse deflection �w; (c) In-plane stress ��xx; (d) Transverse shear stress ��xz.



brevity, identical considerations previously made for
the actuator in 31-mode hold for the shear actuator.
The results are reported in terms of the following
non-dimensional parameters (Vel and Batra, 2001b):

�u ¼
~C55

e35�0
ux; �w ¼

~C55

e35�0 S
w; ��xx ¼

hS

e35�0
�xx;

��xz ¼
hS2

e35�0
�xz; �� ¼

1

�0
�: ð22Þ

Thanks to the employed non-dimensional factors, the
electromechanical response of the shear actuator is
invariant with respect to the aspect ratio S¼ a/h of the
plate.
The mechanical response to the symmetrically applied

actuating field can be well described by a linear approx-
imation for the in-plane displacement u. As already seen,
the resulting linear distribution of in-plane direct strains
requires an at least quadratic assumption for the trans-
verse deflection in order to prevent Poisson locking.

Note that the spurious stiffening due to Poisson locking
(see the behavior of the model {1, 0, 1}) reduces the in-
plane displacement and increases the active deflection w
as well as the stress components. Introduction of the
hypothesis �zz¼ 0 and use of the reduced constitutive
law is shown to prevent Poisson locking without sub-
stantially affecting the accuracy of the response even in a
thick actuator. The model {3, 0, 1}R proves particularly
suitable for a refined representation of the transverse
shear deformation.

CONCLUSIONS AND OUTLOOK

This article discussed a number of axiomatic plate
theories for homogeneous piezoelectric actuators and
sensors working either in extension mode (transverse
polarization) or in shear mode (in-plane polarization).
Various models have been assessed thanks to a unique
software based on a GUF that permits to construct plate
models with different polynomial approximations for
the independent field variables. With reference to
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Figure 18. Thick (S¼ 4) piezoelectric shear actuator: through-thickness distributions of the mechanical in-plane and transverse response for
selected 2D models: (a) In-plane displacement �u; (b) Transverse deflection �w; (c) In-plane stress ��xx; (d) Transverse shear stress ��xz.



Hamilton’s principle for piezoelectric media, models
have been formulated with different polynomial orders
Nu for the in-plane displacement, Nw for the transverse
displacement and N� for the electrostatic potential.
According to the presented results, the following piezo-
electric models {Nu,Nw,N�} can be recommended
depending on the considered configuration:

. Actuator in 31-mode (extension actuation): accurate
results can be obtained by the models {0, 1, 1} and
{2, 3, 3} for thin and thick plates, respectively.

. Actuator in 15-mode (shear actuation): the global
response can be well modeled with the assumptions
{3, 2, 1}, but more refined models (e.g., {3, 2, 3}) are
necessary for capturing the local transverse stress
distribution.

. Sensor in 31-mode: the models {1, 2, 2} and {3, 2, 2}
capture well the bending response and the induced
electrostatic potential in thin and thick plates, respec-
tively. The need for having N�� 2 has been
confirmed.

. Sensor in 15-mode: the model {3, 2, 1} yields satisfac-
torily results irrespective of the aspect ratio of the
plate.

While all above models employ the full 3D constitutive
law, lower-order models can be used that are based on
the hypothesis �zz¼ 0 and the assumption Nw¼ 0.
Present results indicate, however, that these models
should not be used for thick sensor applications. The
above recommendations are complemented with the
following considerations:

. An accurate determination of transverse shear
stresses directly from the constitutive law requires
Nu� 3; lower-order models may be employed in con-
junction with a post-processing step which calculates
transverse stresses from, e.g., the equilibrium
equations.

. The calculation of in-plane direct stresses from the
constitutive law indicates that models with Nw>Nu

should be employed in case of thick structures.
. In actuator applications (i.e., prescribed voltage), the

kinematics assumptions Nu, Nw do not influence the
distribution �(z) of the electrostatic potential. While
a linear approximation for �(z) proves sufficient for
the global response, higher-order terms of this
approximation affect the distribution of the actuating
stress component (e.g., the in-plane stress �xx for the
extension mode and the transverse shear stress �xz for
the shear mode).

The presented results can serve as a useful guide for a
consistent choice of axiomatic assumptions for the static
analysis of piezoelectric plates. Further studies should
extend the present methodology to different boundary

conditions (e.g., clamped and free edges), to the analysis
of dynamic problems and to multilayered structures. For
this, it appears convenient to extend the promising GUF
modeling so to account for electromechanical interfaces
and an accurate local response analysis. The theoretical
framework for this application being already available
(Ballhause et al., 2005; D’Ottavio et al., 2008; D’Ottavio
and Kröplin, 2006), these issues will be addressed in a
forthcoming work.
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