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Michele D’Ottavio · Olivier Polit

Linearized global and local buckling analysis of sandwich
struts with a refined quasi-3D model

1 Introduction

Sandwich panels are fundamental structural elements of many industrial applications with sharp weight con-
straints, in particular for aerospace and naval components [1]. They basically consist of two thin and stiff 
load carrying face sheets (the skins) that are separated by a thick and relatively weak core made of low-
density material. The core enhances the bending rigidity of the panel, transfers the load between the face 
sheets essen-tially by transverse shear and normal stresses and may additionally act as thermal insulator, 
vibration damper or sound absorber [2]. Due to the very different mechanical properties and geometrical 
dimensions of skins and core, the failure behavior of sandwich panels can be very different from that of other 
composite structures [3,4]. Common failure modes of sandwich panels can be classified into face sheet 
fracture (e.g., impact in compos-ite skins), core shear failure or failure modes due to compressive stress. The 
latter are principally related to instability phenomena and can involve the whole sandwich panel (overall 
buckling), mainly the core (shear crimping) or mainly the face sheets (local buckling). In laminated 
composite face sheets, microbuckling may additionally appear [5–7]. Overall buckling and shear crimping 
are usually referred to as global instabilities, even if the wavelength of the crimping mode is very small because 
the transverse shear modulus of the core is very low [8,9]. On the other hand, the length scale of the local 
buckling pattern is of the order of the panel thickness or even smaller: In honeycomb cores, the compressed 
face sheet may locally buckle inside the core’s cells (dimpling), whereas in homogeneous core materials 
(e.g., foams or balsa wood), the compressed face sheet typically forms “wrinkles” whose wavelength may be 
comparable to a fraction of the core thickness [10]. Besides the characteristic stiffness loss of buckled 
configurations, wrinkling can promote localized skin–core
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debonding (delamination buckling) or local core crushing (crippling) [11,12]. In practice, these various failure
modes do often interact. For instance, when the overall buckling and wrinkling loads are of the same order of
magnitude, the compressed face sheet in the overall buckled configuration may additionally wrinkle inside the
core, which may lead to a localized failure [13–16]. The analysis of both global and local buckling behavior
of sandwich panels appears thus as a necessary design step. The difference between the length scales of these
failure modes represents a major issue for their computational prediction [17,18].

Compression instability problems are classically treated by linearized bifurcation buckling analysis, which
reduces the computation of the critical load to the solution of an eigenvalue problem, see e.g., [19]. This sim-
plified approach is only valid if the panel remains flat under the action of the initial in-plane loading. Therefore,
it disregards the effects of small perturbations (imperfections) of the nominal initial configuration, which can
drastically reduce the critical loads. The imperfection sensitivity of compressed sandwich structures has been
early recognized in [20] and taken into account in a number of works by referring to the nonlinear equilibrium
and stability equations, e.g., in [21–25]. Nevertheless, in order to circumvent complex and expensive solutions
of the nonlinear equations, practical design methods cut down the bifurcation loads by pertinent knockdown
factors, see e.g. [9]. The present work follows this approach and focuses on the linearized bifurcation buckling
analysis of perfectly straight sandwich panels under uniaxial compression (struts).

This paper is organized as follows: Sect. 1.1 proposes a detailed review of the models employed for capturing
overall buckling and wrinkling before discussing the scope of the present work in Sect. 1.2. The theoretical
development of the present model is presented in Sect. 2 with due details concerning the proposed application
to the linearized bifurcation analysis of flat and symmetric sandwich structures. Numerical solutions for various
case studies are discussed in Sect. 3, and the main conclusions are finally summarized in Sect. 4.

1.1 Models for overall buckling and wrinkling of sandwich struts

For the literature review of this section, the most popular notation is adopted as illustrated in Fig. 1. The
sandwich strut is a flat rectangular panel of length a along x , thickness h along z, width b along y, that is
compressed along the x direction. Symmetric sandwich sections will be considered, which consist of a core
of thickness hc as well as top and bottom face sheets of equal thickness hf and made of the same material
(throughout the paper, subscript or superscript f and c stay for face sheet and core, respectively).

Due to the very different length scales of the buckled configuration, two separated approaches are classically
employed to predict overall and local buckling, see, for instance, the comprehensive monograph of Allen [26]
or the more recent book by Carlsson and Kardomateas [3]. In the following, several models are reviewed
according to this classification, where special attention is paid to the underlying hypotheses.
Overall buckling The classical Euler formula for a narrow strut (plane stress in xz plane) whose cross-section
is symmetric and composed as in Fig. 1 by two materials with axial Young’s moduli E f

x and Ec
x reads

PE = π2b
a2

[

E f
x hf

(
h2

f

6
+ (hf + hc)

2

2

)

+ Ec
x

h3
c

12

]

. (1)

This equation fails to provide a conservative estimate of the bifurcation buckling load because it neglects the
relevant transverse shear deformation of the core. Classical overall buckling formulas for sandwich struts are
associated with Engesser’s formula, which reduces the classical Euler load by retaining the transverse shear
deformation in the soft core [27,28]. Under the hypotheses of a soft core (Ec

x << E f
x ) and thin face beams

(hf/hc < 0.2), Allen suggests the following expression for the overall buckling stress [26]:

σ A1
cr = PA1

2bhf
= 1

2bhf

[
1

PE1
+ 1

Pc

]−1

, (2.1)

Fig. 1 Geometric parameters and axis notation for the sandwich plate with symmetric cross-section



Fig. 2 The three wrinkling modes of a sandwich panel

where PE1 is an approximation of Eq. (1) which includes the soft core and thin face beam hypotheses:

PE1 = π2 b
2a2 E f

x hf (hc + hf)
2, (2.2)

and Pc is the shear crimping load that depends on the transverse shear modulus Gxz and is defined by

Pc = Gc
xz b

(hc + hf)
2

hc
≈ Gc

xz b hc. (2.3)

Note that Euler’s loads PE and PE1 have been written for a simply supported beam and are the only terms that
depend on the boundary conditions. If the face beams are thick, their second area moment should be retained,
which leads to the following overall buckling stress formulated by Allen [26]:

σA2
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= PE2
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(3.1)

where Pc is the shear crimping load given in Eq. (2.3), and
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and PEf = π2 b
a2 E f

x
h3

f

6
. (3.2)

Note that PEf corresponds to Euler’s load of the simply supported face beams behaving as independent struts
(i.e., without the presence of the core). If the sandwich strut is wide, the axial Young’s moduli in the above
formulas should account for the plane strain assumption in order to reproduce the cylindrical bending state.
Local buckling (wrinkling) Due to the transverse deformability of the soft core, the thin face sheets may
locally buckle into the core, thus forming short-wavelength wrinkles while the whole sandwich strut remains
stable. The standard classification of antisymmetric and symmetric wrinkling modes, illustrated in Fig. 2, is
based on the local deformation pattern of the wrinkled configuration [26]. In antisymmetric wrinkling, the
top and bottom face sheets buckle in-phase, which produces a wrinkled mid-surface of the core; in symmetric
wrinkling, the top and bottom face sheets buckle out-of-phase, and the core undergoes essentially a transverse
normal deformation while its mid-surface remains straight; the single-sided wrinkling mode concerns the local
instability of only one face sheet, no interaction occurs with the other face sheet which may remain flat. The two
former modes can appear in sandwich panels whose face sheets are equally compressed, single-sided wrinkling
may occur in the compressed face of a bent panel or in the thinner face sheet of an unsymmetric sandwich strut.

The classical analysis of wrinkling addresses the instability of a strut (the face sheet) that is elastically
supported by the core. By supposing the wrinkling wavelength to be very short, the actual dimension of the
panel as well as its end conditions is disregarded: Wrinkling is thus treated as a material instability of the
sandwich structure rather than a structural instability. The face sheets are usually modeled as thin beams by
referring to Euler–Bernoulli’s theory in which transverse shear is neglected, see e.g., [29,30]. Due to their
much higher stiffness compared with the core, the compressive load is assumed to be carried only by the face
sheets. Since the face sheets are supposed to deform only in bending, that is, no axial rigidity is accounted for,
this modeling approach is not applicable to the global buckling.

A large variety of models for the elastic support provided by the core has been proposed. The simplest
model is that associated with Winkler’s elastic foundation, according to which the core is modeled as closely
spaced compression springs whose stiffness depends on the core’s transverse normal Young’s modulus Ec

z and
its thickness hc. For symmetric wrinkling, the critical stress according to Winkler’s model reads

σcr W =
√

2hf

3hc

√
E f

x Ec
z . (4)



Winkler’s model is not suitable to predict antisymmetric wrinkling because the in-phase waves of the face sheets
do not stretch nor compress the core but essentially shear it. The absence of transverse shear limits the range
of applicability of this simple model to rather long wavelengths and, equivalently, thin cores. Enhanced elastic
foundation models have been employed by referring to two-parameter models which include the transverse
shear deformation and are hence applicable to local bending and short-wavelength wrinkling problems [31–34].

Other models have been proposed in which the core is considered as a continuous isotropic or orthotropic
medium. Among them, one may identify anti-plane core models, in which the core has only transverse stiffness
Ec

z and Gc
xz and the in-plane stiffness is neglected (Ec

x = 0) [35,36], and models including a finite value for
the in-plane stiffness [20,26,29,30]. Furthermore, several models are limited to isotropic cores [26,29,36],
while others include material orthotropy [20,30,35]. Finally, one may identify core models that account for
the interaction between the top and bottom face sheets (finite thickness) [20,29,35] from those representing
a core of infinite thickness, in which the interaction between the face sheets is disregarded [30,36]. A widely
accepted expression for the wrinkling stress obtained from these models can be written as

σcr = C 3
√

E f
x Ec

z Gc
xz . (5)

In practical design, knockdown factors are usually employed which let C take a value of 0.5 [8] or 0.44 [37]. In
general, C depends on the face-to-core thickness ratio as well as on the material properties of both materials.
As the thickness of the core increases, the function C admits an asymptotic value that depends on the model but
is independent of the wrinkling mode, see e.g., [20,26,29]; in fact, if the core is “sufficiently thick”, there is no
interaction between the face sheets, and hence, the wrinkling mode separation disappears [23]. Note that the
interaction between top and bottom faces is not only a matter of “geometric distance” but it is actually related
to the wavelength of the wrinkling response, which in turns depends on geometric and material properties:
The interaction is more pronounced for long wavelengths, whereas short wavelengths damp out more rapidly
inside the core. These relations appear explicitly in the formulations of “decay” models, see e.g., [26,35,36].

For completeness, the problem of wrinkling due to biaxial loading is briefly addressed. It requires some
more involved analyses because the critical stress depends not only on the wavelength but also on the direction
of the wrinkles, which in general are not aligned with principal material or geometrical directions [38,39].
General models for overall and local buckling Several “unified” models have been proposed that are capable
of representing both the overall buckling and wrinkling instabilities [40]. In these models, the core is an
elastic medium of finite thickness which links the face sheets by some continuity conditions that depend on
the modeling technique and take into account the symmetry or antisymmetry of the buckling mode. Most
of these models employ Euler–Bernoulli’s thin beam theory for the face sheets. For the model to be capable
of representing both global buckling and wrinkling, it is essential that the face sheets have both axial and
bending stiffness. The initial load is supposed to be carried entirely by the stiff face sheets, and von Kàrmàn’s
assumption is often adopted for the nonlinear formulation of the beam kinematics. Different approaches have
been used for representing the core’s behavior, all of which retain the transverse normal deformation in order
to capture the wrinkling modes. A common assumption makes use of anti-plane cores, which disregards the
in-plane load carrying capability of the core [21,41–43]. This hypothesis has been shown to give misleading
results not only when the core is isotropic [44], but also when the core is highly orthotropic, e.g., for honeycomb
cores [30]. In [45], the core has been modeled as a 2D isotropic continuum (plane stress setting for narrow
beams), instead of resorting to a kinematic model as done in the previously cited works. A refined plate model
originally formulated for composite laminates has been shown to grasp both overall and local buckling modes
of sandwich struts [46]. Higher-order polynomials are used for describing the kinematics in each constituting
layer of both the skins and the core, and no simplifying assumptions concerning the core’s material or the
mode shape are introduced. While an excellent accuracy with respect to available elasticity solutions could be
demonstrated for the overall buckling loads, no 3D wrinkling results have been taken for comparison.
Elasticity solutions Reference elasticity solutions to some linear problems of sandwich panels, including
buckling, have been provided by Meyer-Piening [47,48]. More recently, several papers focused on overall
buckling and wrinkling of wide sandwich struts within an elasticity approach in the 2D plane strain setting [44,
49–51]. While the models in [44,51] are formulated for isotropic materials only, those in [49,50] are formulated
for orthotropic face and core materials. In these works, initial loads are introduced by an applied uniform axial
strain acting across the whole sandwich cross-section, which contrasts with most of the literature on wrinkling
analysis. The analysis in [50] has shown that, if the core does not carry the initial compressive load, a non-
periodic edge buckling instability is likely to occur at lower loads than the periodic wrinkling. Von Kàrmàn’s
small strains/large rotations assumption, as originally employed for the thin skins, has been used in the elasticity



approach proposed in [44,49] as well. However, the paper [51] demonstrated that a nonlinear strain definition
that neglects the axial shortening due to the initial stress can overestimate the buckling loads of short-wavelength
modes, for which the “thinness” assumption is no longer valid. This error is shown to increase if, additionally,
an inconsistent conjugated stress definition is employed, as it is actually done in [44,49] and even in commercial
finite element (FE) codes [51]. These issues are avoided by a consistent nonlinear formulation that employs
constant elastic moduli, the Green–Lagrange strains and Trefftz incremental stresses [51]. Such a formulation
has been recently used for a 2D plane strain elasticity approach to a linearized stability analysis of sandwich
structures that was, however, limited to the overall buckling [28].

1.2 Scope of the present work

The present paper employs an established higher-order composite plate model to analyze both overall buckling
and wrinkling of sandwich panels under uniaxial compression. The model is based on a partially mixed varia-
tional equation proposed by Reissner that permits to introduce independent assumptions for the displacement
and the transverse stress fields [52,53]. This approach can, hence, easily and exactly satisfy the interface con-
tinuity conditions of a perfect bond. The six unknown functions (three displacements ui and three transverse
stresses σi3) are then interpolated by a fourth-order polynomial inside each layer. The layer-wise description
permits to further refine the model by simply increasing the number of numerical layers the composite cross-
section is divided into. This model, first proposed by Carrera, is commonly referred to as LM4 (Layer-wise,
Mixed, 4th order polynomial) and has proved to yield quasi-3D solutions for various problems of composite
and sandwich panels involving global and local response [54–58]. The model has been successfully extended
and applied to the linearized buckling analysis of laminated composite shells [59]. Both von Kàrmàn and
Green–Lagrange finite strain definitions have been included, and the pre-buckling loading has been defined
in terms of either an initial stress or an initial strain field. The initial load can be further applied to the whole
sandwich cross-section or to the face sheets only. Navier’s closed-form solution is used to solve the resulting
2D governing equations in a strong form.

Due to the intrinsic limitations of the adopted 2D modeling and solution approach, this paper limits the
scope to periodic buckling modes with buckle wavelengths that are parallel to the plate and orthotropy axes
and constant for the whole cross-section. Therefore, several relevant aspects of practical applications are
disregarded, such as non-periodic patterns, wrinkling under biaxial load, single-sided wrinkling, global/local
buckling interaction or the role of initial imperfections. Finally, since the aim is to provide some reference
solutions that may be useful for validating approximated models, the results of the linearized buckling analysis
will not be modified by knockdown factors. The influence of several parameters will be addressed: plate
slenderness, face-to-core thickness ratio, face and core stiffness, material orthotropy, von Kàrmàn nonlinearities
and initial load definition.

2 Problem definition and modeling

We consider a symmetric sandwich plate composed of Nl homogeneous, orthotropic and perfectly bonded
layers. The central layer is the core of thickness hc, and the outer face sheets of thickness hf may be composite
laminates. In the following, Cartesian coordinates will be denoted (xα, x3 = z), where α = 1, 2 refers to
the in-plane directions. This index notation is more convenient for the formulation of the computational plate
model, in which the transverse direction x3 = z is treated differently from the in-plane directions xα . The
plate is hence defined as the volume V = Ω ×

[
− h

2 , h
2

]
, where Ω = [0, a] × [0, b] is the reference surface in

the xα plane and h = hc + 2hf the constant thickness along the transverse direction x3 = z, see also Fig. 1.
Each layer k = 1, 2, . . . Nl of the sandwich structure is identified by the location along the coordinate z of its
reference surface Ωk and its thickness hk .

2.1 Governing equations for the linearized stability analysis

The buckling equations are obtained in the framework of the linearized stability analysis of a body subjected
to initial stresses [60]. A variational formulation is used in order to derive a reduced 2D model by introducing
assumptions for the through-thickness distribution of the field variables. The critical load is then given by the
scalar parameter λ that multiplies the initial stress state σ 0

i j and that satisfies the variational equation



∫

V

δεi j σi j + (δum, j ) λσ 0
i j um,i dV = 0, (6)

where δ denotes virtual variation, and Einstein’s summation convention is employed with i, j, m = 1, 2, 3. By
introducing the Green–Lagrange strains

Ei j = εi j + ei j (7.1)

as the sum of the linear contribution

εi j = 1
2

(
ui , j +u j ,i

)
, (7.2)

and of the nonlinear terms

ei j = 1
2

um,i um, j , (7.3)

the variational equation can be reformulated as

∫

V

δεi jσi j + δei j λ σ 0
i j dV = 0. (8)

The displacement-based functional Eq. (8) is next augmented as suggested by Reissner [52] in order to
construct a 2D model that accounts in a natural manner for the transverse stress continuity conditions at the
interfaces of a heterogeneous plate. Reissner’s partially mixed formulation is hence extended to include the
initial stress field for the buckling analysis:

∫

V

δεG
αβ σC

αβ + δεG
i3 σ M

i3 + δσ M
i3

(
εG

i3 − εC
i3

)
+ δeG

i j λ σ 0
i j dxi = 0, (9)

with α, β = 1, 2. The superscript G indicates that the strain is defined from the geometric relations Eq. (7),
superscript M that the transverse stress field is independently assumed (modeled)—see Sect. 2.2, and super-
script C that the field variable is obtained from the mixed form of the constitutive equation

[
σC

αβ

εC
i3

]

=
[

C̃αβ αβ C̃αβ i3

C̃i3 αβ C̃i3 i3

][
εG
αβ

σ M
i3

]

. (10)

The Euler equations associated with Eq. (9) are the three equilibrium equations of the perturbed configuration
(Trefftz formulation)

δui : ∂

∂x j

[
σi j + σ 0

mj ui ,m

]
= 0, (11.1)

and the three compatibility conditions for the transverse strains

δσi3 : εG
i3 − εC

i3 = εG
i3 −

(
C̃i3αβ εG

αβ + C̃i3i3 σ M
i3

)
= 0. (11.2)

It is emphasized that this formulation, based on Green–Lagrange nonlinear strains and elastic coefficients
that are constant throughout the perturbation process, is a consistent incremental formulation for sandwich
structures with shear-compliant cores [27,51].

In view of the subsequent introduction of the 2D approximation for the multilayered plate, see Sect. 2.2,
the volume integral in Eq. (9) is split in a surface integral over Ω and the integral over the cross-section h, that
is in turn decomposed in Nl integrals over each layer’s thickness hk , viz.

∫

V

(. . .) dxi =
∫

Ω






Nl⋃

k=1

∫

hk

(. . .) dz





dxα. (12)



2.1.1 Initial stress fields

The above general formulation is next specialized to the examined cases for which the initial stress in each
layer k is limited to direct stress components, i.e., σ 0 k

i j = 0 for i $= j . Furthermore, only a membrane preload
will be considered, i.e., σ 0 k

33 = 0. Note that this condition respects the stress-free condition on the outer faces
of the sandwich plate. Under these circumstances, Eq. (9) reduces to

∫

Ω






Nl⋃

k=1

∫

hk

δεG k
αβ σC k

αβ + δεG k
i3 σ M k

i3 + δσ M k
i3

(
εG k

i3 − εC k
i3

)
+ δeG k

αα λσ 0 k
αα dz





dxα = 0, (13.1)

with the virtual nonlinear strains defined according to Eq. (7) as

δeG k
αα =

(
uk

1,α δuk
1,α

)
+

(
uk

2,α δuk
2,α

)
+

(
uk

3,α δuk
3,α

)
. (13.2)

In this work, only uniaxial compression shall be considered, and the initial stress field σ 0 k
11 in the kth layer will

be defined in two alternate manners:

– Uniform stress in the face sheets: σ 0 k
11 = σ 0

11 if the kth layer belongs to a face sheet, while σ 0 k
11 = 0 if the

kth layer belongs to the core (i.e., the core carries no initial load).
– Uniform strain: The whole cross-section is uniformly strained by ε0

11. The initial stress state is hence
uniform in each layer and proportional to the elastic stiffness of the layer: σ 0k

11 = Ck
11 ε0

11, where Ck
11 is

the stiffness coefficient of the kth layer.

2.1.2 Von Kàrmàn’s approximation

Instead of employing the finite Green–Lagrange strains defined in Eq. (7), geometrically nonlinear plate models
often refer to von Kàrmàn’s approximation, which takes into account large deflections but still within a small
material strain range [61]. Hence, von Kàrmàn’s nonlinear strains retain only the nonlinear terms associated
with the transverse displacement u3, which reduces the in-plane contributions of Eq. (7.3) to

eαα (vK ) = (u3,α )2

2
. (14)

Since in classical plate kinematics the term u3,α corresponds to the rotation of the cross-section about the axis
xα , the von Kàrmàn approximation can be interpreted as a theory retaining only moderate rotations and small
strains [61].

2.2 Refined LM4 model and Navier’s solution

The procedure for constructing the approximate 2D model is straightforward and is here just briefly recalled
with reference to already published papers, e.g., [55,58,62]. Invoking variables’ separation, the virtual and
actual displacement and transverse stress variables are expanded along the thickness coordinate z in each layer
k with a fourth-order polynomial:

δuk
i (xα, z) =

4∑
τ=0

Fτ (z) δU k
i τ (xα); uk

i (xα, z) =
4∑

s=0
Fs(z) U k

i s(xα); (15.1)

δσ k
i3(xα, z) =

4∑
τ=0

Fτ (z) δT k
i3 τ (xα); σ k

i3(xα, z) =
4∑

s=0
Fs(z) T k

i3 s(xα). (15.2)

The expansion along z is defined in terms of Legendre’s polynomials and can be found in the quoted references.
The model in Eq. (15) is referred to as LM4, an acronym indicating that the model is a layer-wise mixed one and
that it has an expansion of fourth order. This approximation can be enhanced upon subdividing each physical
ply into several numerical layers. This may be of particular relevance for the short-wavelength response of
the wrinkling instability, for which the rather thick core may be subdivided in a number of numerical layers
N c

l > 1.



As far as the solution in the 2D domain Ω is concerned, the class of problems addressed in this work
permits to find a closed-form solution according to Navier’s method [61]. The in-plane distribution of the
displacement and transverse stress variables is defined for each layer k in terms of trigonometric functions,
which exactly satisfy the simple support conditions at the plate boundaries:

{
U k

1 (xα), T k
13(xα)

}
=

{
Û k

1 , T̂ k
13

}

(m,n)
cos

(mπ x1

a

)
sin

(nπ x2

b

)
;

{
U k

2 (xα), T k
23(xα)

}
=

{
Û k

2 , T̂ k
23

}

(m,n)
sin

(mπ x1

a

)
cos

(nπ x2

b

)
;

{
U k

3 (xα), T k
33(xα)

}
=

{
Û k

3 , T̂ k
33

}

(m,n)
sin

(mπ x1

a

)
sin

(nπ x2

b

)
.

(16)

The integer m (resp. n) denotes the number of halfwaves of the periodic response along x1 (resp. x2) and
defines, hence, its half-wavelength Lx = a/m (resp. L y = b/n).

The assumed solution obtained from the combination of Eqs. (15) and (16) is substituted into the governing
equation (13). Those terms whose virtual variation is differentiated with respect to the in-plane variables xα

are integrated-by-parts, which leads to the strong-form formulation of the 2D governing equations. Upon
explicitly carrying out the derivations as well as the integrations over the thickness hk of each layer, the
governing equation (13) can be written in terms of different 3 × 3 kernels, each of which is related to a couple
of variables (virtual variation and actual unknown), a couple of τ, s (associated with the polynomial expansion
along z) and to the kth layer; the eigenvalue problem of Eq. (13) can thus be written as follows:

δÛ
k
τ : Kkτ s

UU (m,n) Ûk
s + Kkτ s

U T (m,n)T̂
k
s + λ(m,n)Kkτ s

g (m,n)Û
k
s = 0, (17.1)

δT̂k
τ : Kkτ s

T U (m,n) Ûk
s + Kkτ s

T T (m,n)T̂
k
s = 0 (17.2)

where Ûk =
[
Û k

1 Û k
2 Û k

3

]t
and T̂k =

[
T̂ k

13 T̂ k
23 T̂ k

33

]t
are the vectors of unknown displacements and trans-

verse stresses, respectively, and superscript t denotes transposition. The kernels Kkτ s
UU (m,n), Kkτ s

U T (m,n) =
(

Kkτ s
T U (m,n)

)t
and Kkτ s

T T (m,n) constitute the linear stiffness matrix related to the perturbed configuration. The

kernel of the geometric stiffness matrix Kkτ s
g(m,n) is constructed from the work done by the (virtual) nonlin-

ear strains with the (actual) initial stress field σ 0k
11 ; from the definition in Eq. (13.1), it is evident that this

matrix depends on the initial stress field and is only related to the displacement unknowns. “Appendix” reports
explicitly the terms constituting the kernels appearing in Eq. (17).

The 15 × 15 matrices for the kth layer are obtained by expansion over the 5 terms τ, s = 0, 1, . . . 4.
The construction of the arrays for the multilayered cross-section follows a standard assembly procedure that
enforces exactly the continuity of displacements and transverse stresses between adjacent layers. The governing
equation for the bifurcation buckling of the whole sandwich strut is finally given by the following classical
eigenvalue problem:

([
KUU (m,n) KU T (m,n)

Kt
U T (m,n) KT T (m,n)

]
+ λ(m,n)

[
Kg(m,n) 0

0 0

]) [
Û(m,n)

T̂(m,n)

]
=

[
0
0

]
. (18)

2.3 Solution of the eigenvalue problem

Symmetric and antisymmetric modes The eigenvalue analysis of Eq. (18) provides for a given pair (m, n) a
number of eigenvalues that is equal to the number of degrees of freedom. Each eigenvalue corresponds thus
to a mode that is characterized by (a) the half-wavelengths Lx = a/m, L y = b/n in the plane Ω , and (b)
by the modal shapes of the displacements and transverse stresses across the thickness, which is given by the
eigenvector. Throughout this article, we will conventionally refer to a global mode whenever Lx = a (i.e.,
m = 1) and to a local mode (wrinkling) whenever the half-wavelength along the x1 direction is shorter than the
panel’s dimension (i.e., m > 1). Inspection of the through-thickness modal distributions permits to identify
symmetric and antisymmetric modes according to the following definitions:

equation.13.1


Antisymmetric modes: The transverse deflection u3 is an even function of the thickness coordinate z while
the in-plane displacements uα(z) are odd functions:

u3(xα, −z) = u3(xα, z); uα(xα, −z) = −uα(xα, z). (19)

Global buckling modes are always antisymmetric since the perturbed configuration is
characterized by a transverse deflection of the reference surface.

Symmetric modes: The transverse displacement u3(z) is an odd function, while in-plane displacements
uα(z) are even functions:

u3(xα, −z) = −u3(xα, z); uα(xα, −z) = uα(xα, z). (20)

Since the mid-surface of the sandwich panel does not experience any deflection, the
symmetric mode is only a local buckling mode (wrinkling).

Critical loads and buckling loads For a given half-wavelength Lx = a/m, L y = b/n, each eigenvalue λ(m,n)

corresponds to a critical load Ncr that is defined for a prescribed initial stress acting in the face sheets as

Nσ
cr = 2hf

(
λ(m,n) σ 0

11
)
, (21)

or for a uniformly strained cross-section as

N ε
cr =

Nl∑

k=1

∫

hk

Ck
11dz

(
λ(m,n) ε0

11
)

= λ(m,n) A11ε
0
11. (22)

For simplicity, the preload is a unit compressive stretch or a unit compressive stress.
The lowest critical load obtained for all possible pairs (m, n) defines the buckling load of the plate, which

will be indicated by Pσ or Pε depending on the definition of the initial stress state:

{Pσ , Pε} = min
m,n

{Nσ
cr, N ε

cr}. (23)

The buckling wavelength is thus defined by the pair (m, n) that is associated with the buckling load.

3 Numerical results and discussion

This section presents extensive numerical results for global and local buckling of sandwich panels. All sandwich
cross-sections are symmetric and subjected to uniaxial compression along the longitudinal x1 direction. The
case studies discussed in Sects. 3.1–3.4 refer to wide sandwich struts: These are analyzed in a plane strain
setting in the x1z plane, which is imposed within the present solution by prescribing n = 0. The case study
discussed in Sect. 3.5 concerns the uniaxial compression of a square sandwich plate with simply supported
edges: in this case n = 1 is set. Cellular materials (e.g., honeycomb cores) are represented as equivalent
continua characterized by homogenized elastic properties.

3.1 Convergence analysis

A preliminary analysis is performed to establish the convergence behavior of the present LM4 model. In
particular, we shall investigate the effect of the number of computational layers N c

l employed for the core.
Convergence with respect to N c

l is considered for both the buckling load and the instability mode, which is
identified by the number of halfwaves m and by specifying whether the mode is symmetric (S) or antisymmetric
(A). The wide strut (plane strain in x1z plane) has a total thickness of h and a length a = 5h. The face sheets
are isotropic with Young’s modulus Ef . The core’s moduli are parametrically defined as follows: Ec

3 = k Ef ,
Ec

1 = Ec
2 = χ Ec

3, Gc
13 = Gc

23 = 0.5Ec
3, Gc

12 = Ec
1/(2(1 + νc

12)). The initial stress field is prescribed by
uniformly straining the whole cross-section. Several face thickness ratios Rf = hf/h, face-to-core stiffness
ratios k = Ec

3/Ef and core’s orthotropic ratios χ = Ec
1/Ec

3 are considered. These parameters are known to
influence the buckling wavelength and may hence affect the accuracy of the LM4 model. Comparison is made
with respect to converged FEM results obtained with the commercial software packages Abaqus and Ansys.



Table 1 Convergence of buckling loads Pε(N/mm) of LM4 models with different number of mathematical layers used in the
core (N c

l ) for different sandwich configurations

N c
l Rf k χ

(k = 0.002, χ = 1) (Rf = 0.02, χ = 1) (Rf = 0.02, k = 0.02)

0.01 0.1 10−3 10−1 10−3 10−1

1 838.99 3,528.0 948.46 19,791 2,758.0 6,688.9
(31,A) (1,A) (12,A) (1,A) (24,S) (30,S)

2 816.81 3,528.0 945.13 19,791 2,758.0 6,435.0
(32,A/S) (1,A) (13,A) (1,A) (24,S) (33,S)

3 813.47 3,528.0 945.02 19,791 2,758.0 6,426.9
(32,A/S) (1,A) (13,A) (1,A) (24,S) (33,A/S)

5 812.78 3,528.0 945.02 19,791 2,758.0 6,426.0
(32,A/S) (1,A) (13,A) (1,A) (24,S) (33,A/S)

10 812.72 3,528.0 945.02 19,791 2,758.0 6,425.9
(32,A/S) (1,A) (13,A) (1,A) (24,S) (33,A/S)

Ansys 818.8 3,528.0 945.93 19,792 2,767.6 6,464.9
(31,A/S) (1,A) (13,A) (1,A) (23,S) (33,A/S)

Abaqus 807.85 3,533.4 950.95 21,468 2,752.4 6,546.0
(31,A/S) (1,A) (13,A) (1,A) (23,S) (33,A/S)

The parentheses identify the buckling mode: number of halfwaves m and modal shape (antisymmetric or symmetric). Entries in
bold denote converged solutions

All FE models employ linear (four node) plane strain elements. The FE mesh consists of 256 elements along
the x1 axis for both face sheets and the core, while along the thickness 60 elements are used for the core and 4
elements are used for each face sheet. For the numerical evaluation, h = 50 mm and Ef = 70 GPa have been
used; moreover, all Poisson’s ratios are set to zero to facilitate the imposition of a uniaxial initial stress σ 0k

11 in
FEM solutions.

The results are listed in Table 1, where entries in bold indicate converged solutions, i.e., solutions providing
the correct mode and with errors in the buckling load that are less than 0.5 %. In many cases, critical loads
corresponding to symmetric and antisymmetric modes are practically coincident: The label A/S has been
thus used whenever the difference between these loads is less than 0.05 %. Convergence of the proposed
approach is clearly demonstrated. Moreover, an excellent agreement is found with respect to FEM results, in
particular those provided by Ansys. The somewhat larger discrepancies of Abaqus results are attributed to the
inconsistent stress measure employed in this software, as reported in [51]. In general, one computational layer
for the core is sufficient to determine accurately the overall buckling behavior and to identify the occurrence
of a short-wavelength wrinkling response. Depending on the configurations, several numerical layers N c

l may
be necessary in order to precisely determine the wrinkling mode. For all the considered cases, N c

l = 3 ensures
a converged solution.

3.2 Global buckling

The overall (single halfwave) buckling of a wide sandwich strut (m = 1, n = 0) is considered by referring to
the elasticity solution proposed by Kardomateas [28]. The strut has a slenderness ratio a/h = 30 (h = 30 mm
has been taken for the numerical evaluations). The face sheets are made of unidirectional carbon or glass fiber
reinforced plastics (CFRP or GFRP); the core may be an orthotropic honeycomb or an isotropic foam; the
corresponding material data are reported in Table 2. The initial load is prescribed by a uniform axial strain ε0

11
as in [28]. Based on the convergence results in Table 1, only one numerical layer will be employed for the core
(N c

l = 1).
Non-dimensional overall buckling loads Pε/PE, where PE is Euler’s load for a beam given in Eq. (1), are

reported in Table 3 for a CFRP/honeycomb sandwich with thickness ratios Rf = hf/h varying in the range
considered in [28]. It is seen that Pε of the present LM4 model recovers exactly the elasticity solution. No
substantial difference occurs if von Kàrmàn approximation is used, see Pε

vK , nor if the initial load is applied
by a uniform stress acting in the face sheets (not shown for conciseness). The behavior of the present LM4
solution, the elasticity solution of Kardomateas as well the approximated formulas proposed by Allen, denoted
PA1 and PA2 and defined in Eqs. (2) and (3), respectively, are graphically compared in Fig. 3. Allen’s load for



Table 2 Material data for the overall buckling analysis

Skin Core

CFRP GFRP Honeycomb PVC foam

E1 (MPa) 181 × 103 40 × 103 32.0 100.0
E2 (MPa) 10.3 × 103 10 × 103 32.0 100.0
E3 (MPa) 10.3 × 103 10 × 103 300.0 100.0
G23 (MPa) 5.96 × 103 3.5 × 103 48.0 38.46
G13 (MPa) 7.17 × 103 4.5 × 103 48.0 38.46
G12 (MPa) 7.17 × 103 4.5 × 103 13.0 38.46
ν23 (–) 0.400 0.400 0.25 0.30
ν13 (–) 0.277 0.26 0.25 0.30
ν12 (–) 0.277 0.065 0.25 0.30

Table 3 Non-dimensional overall buckling loads Pcr/PE for the CFRP/honeycomb sandwich

hf/h 0.02 0.04 0.08 0.12 0.16 0.20

Elasticity [28] 0.7173 0.5692 0.4205 0.3508 0.3161 0.3018
Pε 0.7172 0.5691 0.4205 0.3508 0.3161 0.3018
Pε

vK 0.7182 0.5696 0.4207 0.3509 0.3162 0.3018
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Fig. 3 Non-dimensional overall buckling loads Pcr/PE for different face sheet thickness ratios Rf = hf/h (CFRP/honeycomb
sandwich)

thin face sheets PA1 slightly deviates from the elasticity solution as the thickness of the face sheets increases,
whereas very good agreement is found with Allen’s formula for thick face sheets PA2 over the whole range of
Rf ratios. The modal distributions through the sandwich cross-section of the axial displacement u1(z) and the
transverse displacement u3(z) as well as of the transverse stresses σ13(z) and σ33(z) are displayed in Fig. 4 for
Rf = 0.04 and Rf = 0.2. These through-thickness distributions are the amplitudes of the periodic response
in xα described in Eq. (16). Displacement and transverse stress modes have been normalized with respect
to the maximum value of the transverse displacement wmax = u3(z = 0) and of the transverse shear stress
σ13 max = σ13(z = 0), respectively. Note that the present LM4 model is capable of capturing the characteristic
gradients at the bi-material skin–core interfaces.

Non-dimensional overall buckling loads Pcr/PE are reported in Fig. 5 for a CFRP/foam sandwich with
varying E f

1/Ec ratios and in Fig. 6 for a GFRP/foam sandwich with varying a/h ratios. In both cases, rather
thick face sheets have been considered with Rf = 0.1. Comparison with the elasticity solution, whose data
have been digitally extracted from the graphs reported in [28], shows again a perfect agreement of the present
quasi-3D LM4 model. Results referring to von Kàrmàn approximation (Pε

vK ) and to a uniform stress preload
(Pσ

vK ) have not been included in the figures because they practically coincide with the loads Pε .
Note that Fig. 6 reports global buckling loads of very short struts (a/h < 0.5), which permits to highlight

a substantial difference between Allen’s analytical formulas for PA1 (thin face sheets) and PA2 (thick face
sheets). As the slenderness tends to zero (a/h → 0), the bending stiffness and, hence, Euler’s load PE
increase to infinity. According to Engesser’s theory, Allen’s buckling load PA1 tends to the finite value of the
shear crimping load Pc, and the non-dimensional result PA1/PE does thus tend toward zero. On the contrary,
the non-dimensional Allen’s load PA2/PE is shown to tend to the finite value corresponding to PEf/PE, where
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Fig. 6 Non-dimensional global buckling loads Pcr/PE of wide struts for varying slenderness a/h: asymptotic behavior of present
LM4 model and Allen’s loads PA1 and PA2 for very thick struts (GFRP/foam sandwich with Rf = 0.1)

PEf is the critical load of the face sheets when they behave as independent struts, see Eq. (3.2). Results of the
present model exactly match the 3D solution.

3.3 Buckling of sandwich struts with isotropic skins and core

Overall, long wavelength buckling is the dominant failure mechanism of slender struts. If the strut is rather short
and the face-to-core thickness ratio hf/hc is sufficiently small, the short-wavelength wrinkling instability may
appear. Moreover, the instability wavelength is known to depend on the stiffness ratio between face sheet and
core materials. In order to consider the transition between these two instability modes, the buckling behavior
is analyzed for different geometrical ratios Rf = hf/h and a/h as well as for different stiffness ratios Ec/Ef .
Both skins and core materials are taken to be isotropic, and the following material parameters are used unless
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for the global buckling (m = 1) is hc/a = 0.196

otherwise stated: Ec = 1 MPa, νc = 0, Ef variable, νf = 0.35. Furthermore, N c
l = 1 will be used for all LM4

results by keeping in mind the results of the convergence analysis of Table 1.
The evolution of the buckling load with the slenderness a/h of the sandwich strut is displayed in Fig. 7

(h = 30 mm has been chosen for the numerical evaluations). The strut has rather thin face sheets with
Rf = hf/h = 0.02 and a face-to-core stiffness ratio of Ef/Ec = 750, which is a typical ratio for sandwich
panels. Figure 7 reports the critical global buckling loads (i.e., the critical load obtained with m = 1), denoted
N ε

crG , and the buckling load Pε , which may be associated with a higher number of halfwaves m. For comparison
purposes, Euler’s load PE as given by Eq. (1) and Allen’s load PA1 for thin face sheets, given in Eq. (2), are
displayed as well. Euler’s formula provides satisfactory results only for large slenderness ratios a/h. Transverse
shear effects, as accounted for by Allen’s formula PA1 and the present model, begin to play a relevant role
for shorter struts with a/h < 30 by substantially reducing the critical load. At a/h ≈ 12, the present LM4
model predicts an abrupt change in the buckling behavior: The buckling mode is no longer a global one with
m = 1, but switches to a local one characterized by a higher number of halfwaves m. For the considered
configuration, the switch between global and local instability occurs with m > 30 with a half-wavelength
Lx = a/m ≈ 11 mm, which is approximately one third of the thickness of the core. Therefore, this local
instability may be classified as wrinkling. Comparison with the shear crimping load Pc defined in Eq. (2.3)
shows that wrinkling is expected to occur at a lower load than the core shear failure. It is emphasized that the
present model cannot actually represent the shear crimping because this failure mode is an aperiodic response.

Figure 8 reports non-dimensional critical loads N ε
cr/PE versus the ratio hc/Lx = m(hc/a) for various

configurations of the wide sandwich strut. In these graphs, the global buckling with m = 1 is identified by
the smallest value of the abscissa hc/Lx = hc/a. The evolution of the critical loads associated with both the
symmetric and the antisymmetric modes is displayed in the figure: for the present case of isotropic core mate-
rials, antisymmetric wrinkling is shown to dominate with respect to symmetric wrinkling, which agrees with
precedent analyses, e.g., [26,29]. Furthermore, comparison with the elasticity solution of Kardomateas [49] as
well as with the FEM solution obtained by Ansys shows a good quantitative agreement. For “thick” face sheets
(Rf = 0.05), global buckling occurs at lower loads than wrinkling. For thin face sheets (Rf = 0.01), wrinkling
dominates with half-wavelengths Lx that are shorter than the core thickness hc. For a given stiffness ratio
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Ef/Ec, the thicker is the core the shorter is the buckling wavelength. The buckling wavelength is shown to
depend on the stiffness ratio Ef/Ec as well: for Rf = 0.04, the core is not “sufficiently thick” to allow wrinkling
if Ef/Ec = 1000, whereas for Ef/Ec = 500 the “thickness” of the core allows a wrinkling instability to occur
before the overall instability. In addition, the critical loads for symmetric and antisymmetric modes are shown
to coincide for sufficiently short wavelengths, which occurs when the core is sufficiently thick to prevent the
interaction between the top and bottom face sheets. The present LM4 model recovers thus the dependence of this
interaction on the geometrical and constitutive properties of the sandwich strut, with no need to refer to a decay
model. FEM results confirm this behavior since for short wavelengths the wrinkling loads of antisymmetric
and symmetric mode coincide, while in general the antisymmetric mode provides the lowest wrinkling load.

Figure 9 reports the buckling loads and the corresponding half-wavelength ratio hc/Lx = m(hc/a) obtained
by different formulations for varying core-to-face stiffness ratio Ec/Ef . The geometry of the sandwich strut
is defined by the ratios Rf = 0.01 and a/h = 5. Present results obtained by a uniform initial strain prescribed
over the whole cross-section (Pε formulation) and by an initial stress σ 0

11 prescribed only in the face sheets
(Pσ formulation) are compared with several analytical wrinkling models available in the literature and FE
results by Ansys (2D plane strain elements, mesh given in Sect. 3.1). FEM results obtained when the core
carries the initial axial load are in excellent agreement with the present Pε formulation. The FE analysis for
the case in which the core is free from the axial preload predicts an aperiodic response, where the out-of-plane
deflection is localized at the loaded edges (edge buckling), see also [50]. These results are not reported in
Fig. 9 because the present analysis is only concerned with a periodic response. All wrinkling models taken
from the literature assume the initial load entirely carried by the face sheets and should, therefore, be rather
compared with the present Pσ formulation. For low core stiffness, all formulations are in a rather good
agreement: The wrinkling load increases and the wrinkling wavelength decreases as the core gets stiffer.
For the considered configuration, half-wavelengths of less than 1/10 of the core thickness are obtained for
Ec > 0.01Ef . The differences between the various models appear as the core stiffness increases. An excellent
agreement is found with Niu and Talreja’s model [29], in which the core is modeled as an isotropic continuum
(i.e., the axial stiffness of the core is retained). Some differences are visible when Ec > 0.01Ef , where Niu
and Talreja’s model predicts lower critical loads with respect to the present Pσ model. The discrepancy is
attributed to the Euler–Bernoulli beam theory employed in Niu and Talreja’s model of the face sheets. In fact,
for Ec > 0.01Ef the half-wavelength decreases such that hc/Lx > 10 and, since Rf = hf/hc = 0.01, the
length-to-thickness ratio of the bent face sheet decreases to Lx/hf < 10, which is an aspect ratio for which the
“thin beam” assumptions for the face sheets may lead to some inaccuracies. Larger discrepancies are found for
the model of Lèotoing et al. [43], that discards the axial stiffness of the core (anti-plane core) and yields clearly
lower buckling loads. The simplest wrinkling model based on Winkler’s elastic foundation model additionally
discards the transverse shear deformability of the core and produces, hence, buckling loads that are even lower.
Allen [26] stated that Winkler’s approximation is actually valid only for large wavelengths, say hc/Lx < 3, a
result that is confirmed by the present investigation. Finally, if the Ec/Ef ratio is too high, the characteristic
sandwich heterogeneity is weakened and global buckling dominates instead of wrinkling. Since the global
buckling load is barely affected by the preload formulation (see Sect. 3.2), the transition from local to global
instability occurs at this global buckling load, which corresponds to different values of Ec/Ef depending on
whether the core carries the axial preload or not. FEM predictions for global buckling loads do perfectly agree
with present Pε and Pσ formulations.
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The role of von Kàrmàn’s nonlinearities is assessed in Fig. 10, where wrinkling loads per unit width
are reported for Ef/Ec ratios between 500 and 1,000, a usual range for sandwich structures, and for two
face sheet thickness ratios (Rf = 0.01 and 0.03). A short strut with a/h = 5 has been considered, with
Ef = 1 GPa, νf = 0.35 and νc = 0. Only marginal differences are found between the different models: Very
small differences can be observed between the initial load formulations only for the stiffest core (Ef/Ec = 500),
while von Kàrmàn’s nonlinearities appear to have no effects irrespective of the sandwich configurations. The
excellent agreement with the elasticity solution of Kardomateas [49] is confirmed.

In closure of this section, the shapes of the antisymmetric and symmetric wrinkling modes are illustrated
in order to highlight the quasi-3D accuracy of the present LM4 model. Through-thickness modal shapes for a
sandwich strut with thin faces (Rf = 0.01) are plotted in Fig. 11 for the antisymmetric wrinkling mode and
in Fig. 12 for the symmetric one. The figures highlight the exact verification of the interlaminar continuity of
displacements and transverse stresses. Very steep transverse stress gradients arise inside the thin face sheets,
where the maximum transverse shear stress σ13 max occurs at the mid-plane of the face: This aspect cannot be
considered if Euler–Bernoulli’s theory is used for the face sheets.

3.4 Wrinkling of sandwich struts with orthotropic core

This section discusses the buckling behavior of sandwich struts with cores having a transverse modulus Ec
3

that is higher than the axial one Ec
1. This case is representative for cellular cores like honeycombs. A wide strut

(plane strain in x1z plane) is considered that is composed of two isotropic face sheets (Ef = 70 GPa, νf = 0.3)
and an orthotropic core with the following properties: Ec

3 = 110 MPa, Gc
13 = Gc

23 = 27 MPa, Gc
12 = 10 MPa

and νc
i j = 0. The axial moduli of the core Ec

1 = Ec
2 are defined according to the orthotropy ratio χ = Ec

1/Ec
3

varying between χ = 1 (isotropic) and χ = 10−6. In order to set the main focus on the wrinkling behavior, the
strut is taken to be short (a/h = 5) and with a low face thickness ratio (Rf = hf/h = 0.01). A total thickness
of h = 30 mm has been taken for the numerical results.



Ef /E c =500
Ef /E c =1000

2z
/h

−1.0

−0.5

0

0.5

1.0

u1 /wmax u3 /wmax

Ef /E c =500
Ef /E c =1000

2z
/h

−1.0

−0.5

0

0.5

1.0

σ13 /σ13 max σ33 /σ13 max

−0.1 0 0.1 −1 0 1 −1 0 1 −0.2 −0.1 0

Fig. 12 Symmetric wrinkling modes of a sandwich strut with isotropic face sheets and core (Rf = 0.01) for two stiffness ratios
Ef/Ec: through-thickness modal shapes of the axial and transverse displacements u1 and u3 (left) and of the transverse shear and
normal stresses σ13 and σ33 (right)

X=1

X=10-5

Antisymmetric
Ansys (antisymm)
Symmetric
Ansys (symm)

N
ε cr

/P
E

0.02

0.05

0.1

0.2

0.5

hc /Lx

1 10

Fig. 13 Non-dimensional critical loads N ε
cr/PE versus normalized half-wavelength hc/Lx = m(hc/a) for two values of core’s

orthotropy ratio χ = Ec
1/Ec

3 (Rf = 0.01, a/h = 5)

Figure 13 illustrates the evolution of the non-dimensional critical loads N ε
cr/PE as a function of the half-

wavelength ratio hc/Lx for χ = 1 and χ = 10−5. In contrast to isotropic cores, symmetric wrinkling dominates
if the core’s axial stiffness is low. This is in accordance with the results discussed in [30]. Furthermore,
comparison with Ansys FEM results provides an excellent quantitative agreement for both symmetric and
antisymmetric buckling modes. According to the model discussed in [30], the decay rate inside the core
depends on the orthotropy ratio χ and diminishes as the core axial stiffness decreases. This means that the
interaction between the face sheets, which entails the separation between the wrinkling loads for symmetric
and antisymmetric modes, is promoted by the low axial stiffness of the core. The curves in Fig. 13 confirm
this tendency showing that the separation between symmetric and antisymmetric modes is more pronounced
for a low axial stiffness of the core.

Non-dimensional wrinkling loads Pε/PE for varying orthotropy ratio χ = Ec
1/Ec

3 are reported in Fig. 14
(left). An excellent agreement with FEM results obtained by Ansys is again found for the whole range of
configurations. If χ = 1 (isotropic core), the symmetric and antisymmetric wrinkling modes occur at the
same load, see also Sect. 3.3. As the axial modulus of the core gets smaller, the wrinkling load decreases
and the symmetric wrinkling mode dominates. Comparison with Winkler’s elastic foundation model reveals
that the simple formula in Eq. (4) does accurately predict the wrinkling load for cores with very low axial
stiffness. Physical insight for this finding can be caught by the analysis of the strain energy contributions for the
symmetric and antisymmetric modes illustrated in Fig. 14 (right). For isotropic cores (χ = 1), the total strain
energy is equally distributed between the axial (bending) contribution of the face sheets and the transverse
shear and normal contributions of the core. It may be interesting to note that this finding substantiates classical
wrinkling formulas such as Eq. (5). As the orthotropy ratio decreases, the contribution of the transverse shear
energy decreases up to a constant value of approximately 10 % for the antisymmetric mode, while it gets
negligible for the symmetric mode. The antisymmetric wrinkling mode is indeed always associated with a
transverse shear deformation of the core, whereas in a symmetric wrinkling mode the core may undergo only
extensional strains along its thickness. Winkler’s model, neglecting the transverse shear deformation of the
core, is thus shown to well predict the most critical buckling mode, i.e., symmetric wrinkling, of sandwich
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struts with low axial stiffness. The same conclusion is reached for nonzero Poisson’s ratios of the core (results
not reported for brevity).

A final comment for this section concerns the comparison between buckling loads obtained by the Pε

formulation, those relying on von Kàrmàn nonlinearities (Pε
vK ) and those referring to a preload that is entirely

carried by the face sheets (Pσ ). The result of this comparison is summarized in Fig. 15, which reports the
buckling loads obtained by these different formulations for the symmetric and antisymmetric modes. The Pσ

vK
formulation has been excluded from the comparison because it coincides with the Pσ one. It can be seen that
the only (small) difference is found for the isotropic core χ = 1, for which the Pσ load is lower than that
obtained by a preload carried by the entire sandwich cross-section. No difference can be appreciated between
von Kàrmàn’s and the full Green–Lagrange nonlinear formulation.

3.5 Buckling of sandwich plates with orthotropic face sheets

This section is concerned with the stability analysis of a flat sandwich panel made of composite face sheets
and an orthotropic (honeycomb) core. The plate is simply supported along its four edges and is uniaxially
compressed along the x1 axis. As a result, instability occurs with one halfwave along the y direction, i.e.,
n = 1, and a variable number m of halfwaves along the x1 direction. Two symmetric sandwich panels are
considered with different stacking sequences for the composite face sheets made of two CFRP plies: starting
from the outer surfaces, the sequences are 0◦/90◦ (cross-ply face sheets, panel 1) and 0◦/0◦ (unidirectional
face sheets with fibers aligned along x1 axis, panel 2). The panel is square with a = b = 228 mm, the core
thickness is hc = 25mm, and that of the face sheets is hf = 0.25 mm (each ply is 0.125 mm thick). The
material properties for the face sheets and for the core are given in Table 4, where it is noted that an anti-
plane model is used for the honeycomb core. Since the panel is rather thick (a/h ≈ 9), the faces rather thin
(hf/hc = 0.01) and the in-plane stiffness of the core is negligible, symmetric wrinkling is expected to be the
dominant instability.



Table 4 Material data for the wrinkling analysis of the sandwich panel

CFRP ply Honeycomb core

E1 (MPa) 142 × 103 0
E2 (MPa) 9.8 × 103 0
E3 (MPa) 9.8 × 103 109.0
G23 (MPa) 4.3 × 103 15.5
G13 (MPa) 4.3 × 103 26.6
G12 (MPa) 4.3 × 103 0
νi j (–) 0.34 0

Table 5 Wrinkling loads per unit width (N/mm) for the CFRP/honeycomb panel

P–WExpt [63] P–WAnlt [63] H–M [42] D–D–M [46] Y–D [64] LM4

Panel 1 137 77 77.43 76.23 (49) 76.16 (49) 76.24 (49)
w/adhesive 117 130.4 127.1 (38) 127.1 (38)
Panel 2 191 160 161.3 157.6 (35) 157.6 (34) 157.6 (34)
w/adhesive 183.8 179.0 (32) 179.0 (32)

Numbers in parentheses indicate the number of halfwaves m

Panel 1 [0/90/core/90/0]
Panel 2 [0/0/core/0/0]
Panel 2 w/ adhesive layer
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Fig. 16 Critical loads N ε
cr per unit width for two square panels (CFRP/honeycomb sandwich)

Experimental, analytical and numerical results for these configurations have been reported by a number
of authors. Predicted wrinkling loads per unit width obtained by the present LM4 model are compared in
Table 5 with the experimental results of Pearce and Webber (P–WExpt) [63], the analytical results of the
same authors (P–WAnlt), the numerical results by Hadi and Matthews (H–M) [42], those by Dafedar et al.
(D–D–M) [46], and those by Yuan and Dawe (Y–D) [64]. All predicted wrinkling loads are in close agreement
but underestimate the experimentally measured critical load. In order to increase the wrinkling load and thus
improve the correlation with the experiment, an adhesive layer between the face sheet and the core may be
included in the analysis [65]: This additional layer is 0.25 mm thick and is isotropic with Eadh = 3.05 GPa
and νadh = 0.3 [42,46].

The evolution of the critical load with respect to the normalized half-wavelength hc/Lx is displayed in
Fig. 16. For both panels, symmetric wrinkling with a half-wavelength smaller than the core thickness is the
dominant instability mode. The switch between antisymmetric and symmetric wrinkling mode occurs for
m = 15 at hc/Lx ≈ 1.5. The panel with cross-ply face sheets (panel 1) has a higher global buckling load
but a lower wrinkling load compared to the panel with unidirectional face sheets (panel 2). The presence of
the adhesive layer in panel 2 enhances its global buckling load up to the level of panel 1. In conclusion, this
example gives evidence of the usefulness of an accurate model capable to represent both global and local
instabilities independently of the number and nature of the plies constituting the sandwich panel.

4 Conclusions

This paper presented a unified plate model for the linearized analysis of periodic global and local buckling of
symmetric sandwich panels in the framework of Navier’s solution for simply supported struts. The plate model

Michele D'Ottavio



is based on a partially mixed approach and a layer-wise fourth polynomial expansion, irrespective of the nature
of the ply (thin or thick, isotropic or orthotropic). Comparison with elasticity results available in the literature
and obtained by accurate FEM analysis has shown the quasi-3D accuracy of the model for thick and thin face
sheets as well as isotropic and orthotropic materials (composite face sheets and honeycomb core). This model
allows a comprehensive discussion of geometrical and constitutive parameters influencing the stability limit
and the buckling wavelength as well as of the role of von Kàrmàn’s nonlinearities and of the way the initial
load is applied. The following conclusions can be summarized:
1. The model follows well Engesser’s theory for the global buckling of shear flexible struts even if the shear

crimping limit cannot be exactly recovered because of the non-periodic nature of this instability.
2. Short-wavelength buckling (wrinkling) is the dominating instability of rather short struts and is promoted

by low face sheet thickness and low core stiffness.
3. The dominating local instability of sandwich struts with isotropic cores is the antisymmetric wrinkling

mode, whereas symmetric wrinkling dominates when the cores are orthotropic (lower in-plane stiffness
compared to transverse normal stiffness).

4. The present model shows that symmetric and antisymmetric wrinkling coincide in the short-wavelength
regime, which is promoted by thick and stiff cores.

5. Energy considerations provided a sound justification of the classical wrinkling formula and of the applica-
bility of the simple Winkler model for anti-plane cores.

6. No differences have been noticed in the global buckling prediction when von Kàrmàn’s nonlinearities
are used or if the initial load is assumed to be carried only by the thin face sheets. On the contrary, the
wrinkling loads of sandwich struts with low Ef/Ec ratios are higher if the initial load is carried not only
by the face sheets but by the core as well.

Appendix

According to the compact formulation employed in this paper and extensively reported, e.g., in [55], the
eigenvalue problem related to the linearized bifurcation buckling analysis can be cast in terms of kernels as
reported in Eq. (17). These arrays of dimension 3 × 3 are the building blocks of the plate model in that they
represent the elementary contribution related to each layer (index k) and to each term of the through-thickness
expansion of the virtual variation (index τ ) and the actual unknown (index s), see Eq. (15). This Appendix
reports the nonzero entries of these kernels, where the subscript (mn) can be omitted without loss of clarity.
After introducing the integrals over the layer’s thickness hk as follows:

J kτ s =
∫

hk

Fτ (z) Fs(z) dz; J kτzs =
∫

hk

dFτ (z)
dz

Fs(z) dz, (A.1)

the nonzero entries of the 3 × 3 kernels Kkτ s
UU , Kkτ s

U T and Kkτ s
T T that constitute the linear stiffness matrix are:

K kτ s
UU 11 = J kτ s

(
m2 C̃k

11 + n2 C̃k
66

)
; K kτ s

UU 22 = J kτ s
(

m2 C̃k
66 + n2 C̃k

22

)
;

K kτ s
UU 12 = K kτ s

UU 21 = m n J kτ s
(

C̃k
12 + C̃k

66

)
;

(A.2)

K kτ s
U T 11 = K kτ s

U T 22 = K kτ s
U T 33 = J kτzs; K kτ s

U T 13 = −m C̃13 J kτ s;
K kτ s

U T 23 = −n C̃23 J kτ s; K kτ s
U T 31 = m J kτ s; K kτ s

U T 32 = n J kτ s .
(A.3)

K kτ s
T T 11 = −C̃kτ s

55 J kτ s; K kτ s
T T 22 = −C̃44 J kτ s; K kτ s

T T 33 = −C̃33 J kτ s . (A.4)

As far as the geometric stiffness matrix Kkτ s
g is concerned, a tracer δvK is used in order to introduce von

Kàrmàn’s approximation, through which some terms of the nonlinear strain field are set to zero. For a unit
compressive stress, uniform across the thickness of the kth layer, the nonzero terms of Kkτ s

g read

Kkτ s
g (1, 1) = Kkτ s

g (2, 2) = −δvK m2 J kτ s; Kkτ s
g (3, 3) = −m2 J kτ s . (A.5)

If the pre-buckling state is given by a unit compressive strain, uniform across the thickness of the kth layer,
the nonzero terms of Kkτ s

g have the following expressions:

Kkτ s
g (1, 1) = Kkτ s

g (2, 2) = −δvK m2 Ck
11 J kτ s; Kkτ s

g (3, 3) = −m2 Ck
11 J kτ s . (A.6)
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