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1. Introduction

Research and development concerning high-performance struc-
tures are very intense since some decades. Structural health mon-
itoring, active vibration damping, and energy harvesting are some
examples of possible applications of a multifunctional structural
component. Piezoelectric materials permit to convert mechanical
and electrical energy at frequency ranges that are most interesting
for technical applications such as vibration damping and rapid
shape adaptation [1]. Development of theoretical and numerical
models for this kind of structures is very important and active.
For this purpose and in the framework of two-dimensional plate/
shell models, different choices can be made for the mechanical
approximation and the following classification is classically admit-
ted for the variation in the thickness direction: (i) Equivalent Single
Layer (ESL) models, in which the number of unknowns is indepen-
dent of the layer number; (ii) Layer-Wise (LW) descriptions, for
which the number of unknowns and, thus, the computational cost
increases with the number of layers. While most developments
employ an ESL description for the mechanical behavior, and partic-
ularly the First order Shear Deformation Theory (FSDT), a Layer-
Wise description is necessary for the piezoelectric approximation
to impose electric boundary conditions at each piezoelectric layer
interfaces, i.e., the electrodes, within the stack. Inside each piezo-
electric layer, the electric potential can be linear, quadratic or
higher and a comparison has been proposed in [2].

A review of different approaches is available in [3,4] and in the
framework of the Carrera Unified Formulation (CUF) in [5]. For the
FE approximations, a recent review limited to shell models is also
given in [6].

The limitation of the FSDT model is related to the constant
transverse displacement hypothesis, inducing no thickness change
and the use of the reduced 2D constitutive law. The use of the full
3D constitutive law is an important feature for a consistent repre-
sentation of complex physical interactions like multi-field cou-
pling. Furthermore, accurate modeling of thick structures needs
the transverse normal stress and the 3D constitutive law.

Therefore, a high-order model is chosen with sinus function for
the in-plane displacements and quadratic assumption along the
thickness of the transverse deflection. Thus, the 3D constitutive
law is retained and a parabolic distribution of the transverse shear
strains and a non linear variation of the transverse normal strain
are recovered. In order to introduce transverse strain discontinu-
ities required to fulfill the interlaminar equilibrium, Murakami’s
Zig–Zag function (MZZF) [7] is superimposed to the high-order
ESL kinematics for the 3 displacement components. Note that
MZZF does not depend on the constitutive coefficients and is,
hence, attractively simple in conjunction with three-dimensional
constitutive laws including multi-field coupling. Based on this
kinematics, an 8-node plate finite element (FE) is proposed, free
of numerical illness such as transverse shear and Poisson lockings,
oscillation and spurious mechanics [8]. The approximation of the
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electric potential must be able to model piezoelectric patches, and
a constant value is considered on each elementary domain while a
cubic variation in each layer is used, based on the polynomial
expansion given in [9,10].

The paper is organized as follows: Section 2 describes the plate
problem and the FE approximations are given in Section 3. The
resulting FE are validated in Section 4 by referring to well-known
linear static piezoelectric and composite plate problems. Finally,
Section 5 summarizes the main findings.
2. Description of the plate problem

2.1. Governing equations

Let us consider a plate occupying the domain V¼X� � e
26 z6 e

2

� �
in a Cartesian coordinate system ðx1;x2;x3¼ zÞ. The plate is defined
by an arbitrary surface X in the ðx1;x2Þ plane, located at the
midplane for z¼0, and by a constant thickness e.

The displacement is denoted ~uðx1; x2; zÞ and the electric poten-

tial is /ðx1; x2; zÞ. eijðx1; x2; zÞ and ~Eðx1; x2; zÞ are the strain tensor
components and the electric field vector, respectively, deduced
from primal variables by the geometric relations. Furthermore,

rijðx1; x2; zÞ and ~Dðx1; x2; zÞ are the conjugated fluxes (stress tensor
components and dielectric displacement vector, respectively)
obtained from the constitutive equations given in the next
subsection.

2.1.1. Constitutive relation
The 3D constitutive equation for a linear piezoelectric material

is given by the following set of coupled equations [11] for a layer
ðkÞ:

½rðkÞ� ¼ ½CðkÞ� ½eðkÞ� � ½eðkÞ�T ½EðkÞ� ð1aÞ
½DðkÞ� ¼ ½eðkÞ� ½eðkÞ� þ ½�ðkÞ� ½EðkÞ� ð1bÞ

where we denote by ½C� the matrix of elastic stiffness coefficients
taken at constant electric field, by ½e� the matrix of piezoelectric
stress coefficients and by ½�� the matrix of electric permittivity coef-
ficients taken at constant strain. The explicit form of these matrices
can be found in [6] for an orthotropic piezoelectric layer polarized
along the thickness direction z. Eq. (1a) expresses the piezoelectric
converse effect for actuator applications, whereas Eq. (1b) repre-
sents the piezoelectric direct effect which is exploited in sensor
applications. Note that the constitutive law is expressed in the local
reference frame associated to each layer.

2.1.2. The weak form of the boundary value problem
The classical piezoelectric variational formulation of [12] is

employed in which the primary field variables are the ‘‘generalized
displacements”, i.e., the displacement field and the electrostatic
potential. Using a matrix notation and for admissible virtual dis-
placements ~u� and electric potential /� (virtual quantities are
denoted by an asterisk), the variational principle is given by:Z
V
q½u��T ½€u�dV ¼ �

Z
V
½eðu�Þ�T ½rðu;/Þ�dV þ

Z
V
½u��T ½f �dV

þ
Z
@VF

½u��T ½F�d@V þ
Z
V
½Eð/�Þ�T ½Dðu;/Þ�dV

�
Z
V
q /� dV �

Z
@VQ

Q /� d@V ð2Þ

where ½f � is the body force vector, ½F� the surface force vector applied
on @VF ; q the volume charge density, Q the surface charge density
supplied on @Cq and q is the mass density. Finally, eðu�Þ and Eð/�Þ
are the virtual strain and virtual electric field that satisfy the com-
patibility gradient equations. In the remainder of this article we will
refer only to static problems, for which the left-hand side term is set
to zero. Furthermore, body forces and volume charge densities will
be discarded (½f � ¼ ½0�; q ¼ 0).

2.2. The mechanical part

2.2.1. The displacement field
Based on the sinus model, see [13], a new plate model which

takes into account the transverse normal stress is presented in this
section. This extension is based on following developments:

� various models for beams, plates and shells based on the refined
sinus theory, see [13–20];

� our previous paper on a 7 parameter model for thermo-
mechanical analysis [8].

In the framework of ESL approach, the kinematics of our model
is assumed to have the following particular form

U1ðxa; zÞ ¼ u0
1ðxaÞ þ z u1

1ðxaÞ þ f ðzÞ uf
1ðxaÞ

U2ðxa; zÞ ¼ u0
2ðxaÞ þ z u1

2ðxaÞ þ f ðzÞ uf
2ðxaÞ

U3ðxa; zÞ ¼ u0
3ðxaÞ þ z u1

3ðxaÞ þ z2 u2
3ðxaÞ

8>>>>><
>>>>>:

ð3Þ

where a 2 f1;2g and i 2 f1;2;3g. In Eq. (3), the superscript is asso-
ciated to the expansion order in z while the subscript is related to
the component of the displacement. Thus, u0

i are the displacements

of a point of the reference surface while ðu1
a;u

f
aÞ are measures for

rotations of the normal transverse fiber about the axis ð0; xaÞ. The
functions ua3 permit to have a non-constant deflection for the trans-
verse fiber and allow to have non zero transverse normal stretch.
Furthermore, the quadratic assumption for the transverse displace-
ment avoids the occurrence of Poisson (or thickness) locking, see
[8].

In the context of the sinus model, we have

f ðzÞ ¼ e
p

sin
pz
e

ð4Þ

It must be noticed that the classical homogeneous sinus model [13]
can be recovered from Eq. (3) assuming u1

a ¼ �u0
3;a, and neglecting

the unknown functions ua3.
The choice of the sinus function can be justified from the three-

dimensional point of view, using the work [21]. As it can be seen in
[22], a sinus term appears in the solution of the shear equation (see
Eq. (7) in [22]). Therefore, the kinematics proposed can be seen as
an approximation of the exact three-dimensional solution. Fur-
thermore, the sinus function has an infinite radius of convergence
and its Taylor expansion includes not only the third order terms
but all the odd terms.

2.2.2. The Murakami’s Zig–Zag terms
In order to evaluate the influence of Zig–Zag terms [7] in a high-

order ESL model, the following displacement per layer ðkÞ are
added to Eq. (3):

UðkÞ
1 ðxa; zÞ ¼ ZðkÞðzÞ uz

1ðxaÞ
UðkÞ

2 ðxa; zÞ ¼ ZðkÞðzÞ uz
2ðxaÞ

UðkÞ
3 ðxa; zÞ ¼ ZðkÞðzÞ uz

3ðxaÞ

8>><
>>: ð5Þ

with

ZðkÞðzÞ ¼ ð�1Þk fkðzÞ and fkðzÞ ¼
2
ek

z� 1
2
ðzk þ zkþ1Þ

� �
ð6Þ



where ek is the thickness of the kth layer while ðzk; zkþ1Þ are the bot-

tom and top coordinates of this layer. It is obvious that ZðkÞðzÞ is a
piecewise linear function with bi-unit amplitude for all the layers

as we have fkðzÞ 2 ½�1;1�. Note that, despite the ZðkÞðzÞ function
depends on the layer index inside the stack, the amplitudes uz

i are
unique for the whole laminate, i.e., the ESL framework is still
preserved.

2.2.3. The strain field
The strain field in each layer ðkÞ is easily deduced from Eqs. (3)

and (5) and we have

eðkÞ11 ¼ u0
1;1 þ z u1

1;1 þ f ðzÞ uf
1;1 þ ZðkÞðzÞ uz

1;1

eðkÞ22 ¼ u0
2;2 þ z u1

2;2 þ f ðzÞ uf
2;2 þ ZðkÞðzÞ uz

2;2

eðkÞ33 ¼ u1
3 þ 2 z u2

3 þ ZðkÞ0ðzÞ uz
3

cðkÞ23 ¼ c023 þ f 0ðzÞ uf
2 þ z u1

3;2 þ z2 u2
3;2 þ ZðkÞðzÞ uz

3;2 þ ZðkÞ0ðzÞ uz
2

cðkÞ13 ¼ c013 þ f 0ðzÞ uf
1 þ z u1

3;1 þ z2 u2
3;1 þ ZðkÞðzÞ uz

3;1 þ ZðkÞ0ðzÞ uz
1

cðkÞ12 ¼ u0
1;2 þ u0

2;1 þ z ðu1
1;2 þ u1

2;1Þ þ f ðzÞ ðuf
1;2 þ uf

2;1Þ þ ZðkÞðzÞ ðuz
1;2 þ uz

2;1Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð7Þ

In Eq. (7), the functions c0a3 are introduced in order to control
the transverse shear locking as in [8]. These terms are constant
with respect to the thickness coordinate z and have the following
expressions

c023 ¼ u0
3;2 þ u1

2

c013 ¼ u0
3;1 þ u1

1

(
ð8Þ

The following matrix notation for the strain e½ � is used for its
introduction in Eqs. (1) and (2),

e½ � ¼ e11 e22 e33 c23 c13 c12½ �T ¼ Fe½ � Ee½ � ð9Þ

where the generalized strain vector Ee½ � is given by:
Ee½ �T ¼ u0
1;1 u0

1;2 u0
2;1 u0

2;2 j u1
1;1 u1

1;2 u1
2;1 u1

2;2 j c023 c013 uf
1 uf

1;1 uf
1;2 uf

2 uf
2;1 uf

2;2 j u1
3 u1

3;1 u1
3;2 j u2

3 u2
3;1 u2

3;2 uz
1 uz

1;1 uz
1;2 uz

2 uz
2;1 uz

2;2 uz
3 uz

3;1 uz
3;2

h i
ð10Þ
The matrix Fe½ � can easily be deduced from Eq. (7) and is not
detailed here.

2.3. The electric part

On each elementary domain Xe, the electric potential is
assumed to be constant. Therefore, no variation with respect to
xa is considered. A cubic Layer-Wise (LW) description is used
across the thickness, according to the approximation introduced
in [9] and used in [10]: In each layer ðkÞ, the electric potential dis-
tribution is described by the normal electric field components at
the bottom and top surfaces, denoted E3b and E3t , respectively,
and the potential difference D/ between top and bottom surface.
Using these dofs, the approximation of the electric potential can
be written as:

/ðkÞ
h i

¼ F/

� �
CstðkÞ/

h i
qeðkÞ
/

h i
ð11Þ

where the following definitions have been introduced:

F/

� � ¼ 1 z z2 z3
� �

; qeðkÞ
/

h iT
¼ EðkÞ

3b D/ðkÞ EðkÞ
3t

h i
ð12Þ
and CstðkÞ/

h i
is a ð4� 3Þ matrix containing constant coefficients. The

electric field vector in each layer EðkÞ
h i

is then obtained as:

EðkÞ
h i

¼
0
0

�/ðkÞ
;3

2
64

3
75 ¼ FE½ � CstðkÞE

h i
qeðkÞ
/

h i
with FE½ � ¼ 1 z z2

� �

ð13Þ

where CstðkÞE

h i
is a ð3� 3Þ matrix. So, the adopted approximation

yields a quadratic transverse electric field across the thickness of
each layer.

2.4. The bi-dimensional weak form

Starting from the weak form Eq. (2), integrations in the thick-
ness direction for each layer ðkÞ are conducted in order to define
the bi-dimensional problem on X. Introducing Eq. (1) and using
Eqs. (9) and (13), the following expression is deducedZ
X

E�
e

� �T kuu½ � Ee½ �dX�
Z
X

E�
e

� �T ku/
� �

CstE½ � qe
/

h i
dX

�
Z
X

qe�
/

h iT
CstE½ �T k/u

� � Ee½ �dX

�
Z
X

qe�
/

h iT
CstE½ �T k//

� �
CstE½ � qe

/

h i
dX

¼ PextðVÞ ð14Þ
In Eq. (14), the integration of the constitutive equations with
respect to the thickness has been done for each layer ðkÞ in the fol-
lowing matrices:
kðkÞuu

h i
¼

Z zkþ1

zk

Fe½ �T CðkÞ
h i

Fe½ �dz

kðkÞu/

h i
¼

Z zkþ1

zk

Fe½ �T eðkÞ
� �T

FE½ �dz and kðkÞ/u

h i
¼ kðkÞu/

h iT

kðkÞ//

h i
¼

Z zkþ1

zk

FE½ �T �ðkÞ
� �T

FE½ �dz

ð15Þ

In this expression, the layer ðkÞ is indicated for the matrices involv-
ing the LW approach used for the electric potential and the Zig–Zag
functions for the displacement. Therefore, a summation must be
done for all the layers during an assembling process to obtain
kuu½ �; ku/

� �
; k//
� �

of Eq. (14).

3. The finite element system

3.1. Finite element approximations

Eq. (14) is a good starting point for introducing the FE approx-
imations, whose details shall be here omitted for the sake of brev-
ity and can be found elsewhere [6,8]. The eight-node quadrilateral
finite element is used and classical FE approximation is used for



Fig. 1. Configurations of the piezoelectric bimorph with parallel poling direction
along z – Sensor: pðxÞ ¼ p0;V ¼ 0; Actuator: V ¼ D/0; pðxÞ ¼ 0.

Table 2
Parallel bimorph; S = 10; mesh convergence study.

Mesh Mech dof Elec dof U3 r11 / D3

Actuator configuration
2� 2 143 24 118.82 1.22 0.53 �22.01
4� 2 271 48 118.83 1.22 0.53 �22.01
8� 2 527 96 118.86 1.22 0.53 �22.01
16� 2 1039 192 118.89 1.22 0.53 �22.01
32� 2 2063 384 118.90 1.22 0.53 �22.01
Ansys 118.37 1.22 0.50 �21.96

Sensor configuration
2� 2 143 24 2360.1 80.91 0.69 �52.37
4� 2 271 48 2360.3 79.24 0.74 �55.75
8� 2 527 96 2362.3 78.80 0.75 �56.83
16� 2 1039 192 2366.7 78.68 0.75 �57.08
32� 2 2063 384 2370.3 78.64 0.75 �57.14
Ansys 2348.1 78.53 0.77 �52.28
the geometry. A special treatment is used to control the transverse

shear locking by using a dedicated interpolation for c0a3 according
to the methodology presented in [8]. Note that since the electric
potential is assumed to be constant on each elementary domain,
there is no need to introduce any FE approximation for this field.

3.2. The system to be solved

The elementary matrices are deduced from the bi-dimensional
weak form given in Eq. (14). Assembling each elementary contribu-
tion in the global reference frame, the following discrete form of
the coupled piezoelectric system is obtained:

½Kuu� ½Ku/�
½Ku/ �T ½K//�

" #
½qu�
½q/�

" #
¼ ½Lu�

½L/�
� �

ð16Þ

where ½Kuu�; ½K//� and ½Ku/� are the global stiffness, dielectric and
piezoelectric matrices of the plate, respectively. The mechanical
dofs are in the vector ½qu�, while the electrical dofs are in the vector
½q/� and we have at the elementary level
Table 1
Material properties employed in the considered problems.

Prop. PZT-4 PZT-5A Skin Core

E1 [GPa] 81.24 61.0 172.5 0.276
E2 [GPa] 81.24 61.0 6.9 0.276
E3[GPa] 64.07 53.2 6.9 3.45
m23 0.43 0.38 0.25 0.02
m13 0.43 0.38 0.25 0.02
m12 0.33 0.35 0.25 0.25
G23 [GPa] 25.6 21.1 1.38 .414
G13 [GPa] 25.6 21.1 3.45 .414
G12 [GPa] 30.6 22.6 3.45 0.1104

Table 3
Parallel bimorph in cylindrical bending (S = 10; 8� 2 mesh): influence of the Zig–Zag term

Model Mech dof Elec dof U3

Actuator configuration
Ansys 118.37
P9ZZ 527 96 118.86
P9ZZ w/o Du2

3
527 96 118.72

P9Z 458 96 112.66
P9 394 96 112.66
FSDT 394 96 118.16

Sensor configuration
Ansys 2348.1
P9ZZ 527 96 2362.3
P9ZZ w/o Du2

3
527 96 2350.4

P9Z 458 96 2345.5
P9 394 96 2345.5
FSDT 394 96 2351.6
qe
u

� �¼ u0
1 u0

2 u0
3 j u1

1 u1
2 u1

3 j uf
1 uf

2 u2
3 j uz

1 uz
2 uz

3

� 	
i¼1;8

� �

qe
/

h i
¼ EðkÞ

3b D/ðkÞ EðkÞ
3t

� 	
k¼1;Nl

� �
ð17Þ

with Nl the number of layers. From the mechanical point of view,
the Zig–Zag dofs can be activated or not and comparisons will be
presented in the next section dedicated to numerical evaluations
using no Zig–Zag dof (P9), using only in-plane Zig–Zag dof uz

a
(P9Z) and with all the Zig–Zag dof uz

i (P9ZZ). Finally, the three mod-
els use 9, 11 or 12 kinematical unknown functions and the associ-
ated FE has 72, 88, 96 mechanical dofs per element, respectively.

Since the electric potential is assumed constant on each FE, the
assembly involves only the approximation along the thickness. A
piezoelectric patch comprising several FEs can be defined through
the imposition of the equipotential condition between electrodes:
Prop. PZT-4 PZT-5A Skin Core

e15 [C/m2] 12.7 12.3 0 0
e24 [C/m2] 12.7 12.3 0 0
e31 [C/m2] �5.2 �7.2 0 0
e32 [C/m2] �5.2 �7.2 0 0
e33 [C/m2] 15.1 15.1 0 0
�11 [nF] 13.06 15.3 �0 �0
�22 [nF] 13.06 15.3 �0 �0
�33 [nF] 11.51 15.0 �0 �0

s.

r11 r11½ �½ �0 / D3 D3
� �� �

0

1.22 4.87 0.500 �21.96 43.92
1.22 4.88 0.534 �22.01 44.01
1.22 4.88 0.534 �22.01 44.01

0.47 1.90 0.567 �20.98 41.97
0.47 1.90 0.567 �20.98 41.97
1.22 4.88 0.534 �22.00 44.00

78.53 13.19 0.77 �52.28 104.53
78.80 12.61 0.75 �56.83 116.16
78.92 12.97 0.74 �56.74 115.92

76.92 5.00 0.84 �54.23 110.74
76.92 5.00 0.84 �54.23 110.74
78.45 13.03 0.76 �58.77 117.54
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Fig. 2. Parallel bimorph in actuator configuration (cylindrical bending; S = 10; 8� 2 mesh): influence of the Zig–Zag terms on the distributions across the thickness.
the same D/ is imposed on the piezoelectric layer for all elements
belonging to the same patch. From the numerical point of view,
this is accomplished through linear homogeneous and non-
homogeneous Multi-Point Constraints (MPC) using penalty func-
tion method.

In Eq. (16), the load vectors ½Lu� and ½L/� represent the external
loading from applied forces and prescribed charges, respectively.
Essential boundary conditions (i.e., prescribed displacements and
electric potentials) are imposed numerically by a penalty tech-
nique. The coupled system is then solved by the classical static
condensation procedure for the electrical dof:

½q/� ¼ ½K//��1ð½L/� � ½Ku/�T ½qu�Þ ð18aÞ

which yields the following purely mechanical system with a modi-
fied equivalent stiffness matrix:

½Kuu� � ½Ku/�½K//��1½Ku/�T
h i

½qu� ¼ ½Lu� � ½Ku/�½K//��1½L/� ð18bÞ

In the remainder of the paper, ½L/� ¼ ½0� will be considered.

4. Numerical results

This section is dedicated to the evaluation of the new FEs
denoted P9, P9Z and P9ZZ on piezoelectric plate problems.
The objectives are pointed towards (i) evaluation of the Zig–
Zag terms influence, regarding the length-to-thickness ratio
and the boundary conditions, (ii) introduction of equipotential
conditions for modeling not only piezoelectric layers but also
piezoelectric patches glued on the bottom or top surface of a
composite plate.
4.1. Parallel bimorph

The test is presented in Fig. 1 and defined as follows:

Geometry rectangular plate a� b with a ¼ 25 mm and
b ¼ 12:5 mm; thickness e is defined in order to propose differ-
ent values for S ¼ a

e ¼ 5;10;50.
Materials two layers of PZT-4 with parallel poling direction
along the z-axis; the material properties for PZT-4 are given in
Table 1.
Boundary conditions simply supported at opposite edges
x1 ¼ 0; a; two load cases are considered: (i) sensor with uniform
pressure load on the top surface p0ðz ¼ e=2Þ ¼ 1000 Nm�2 and
D/ ¼ 0 V for both layers; (ii) actuator with D/0 ¼ 50 V for both
layers.
Results and locations for sensor displacements and stresses are
made non-dimensional according to
ðU1;U3; �/Þ¼ C11

p0 e
U1ð0;b=2;e=2Þ;U3ða=2;b=2;0Þ; 1E0

/ða=2;b=2;e=4Þ
� �

ð�r11; �r13;D3Þ¼ 1
p0

r11ða=2;b=2;e=2Þ;r13ða=4;b=2;0Þ;E0D3ða=2;b=2;e=2Þð Þ:

Results and locations for actuator displacements and stresses are
made non-dimensional according to

ðU1 ;U3 ; �/Þ ¼ E0

D/0
U1ð0; b=2; e=2Þ;U3ða=2; b=2;0Þ; 1E0

/ða=2; b=2; e=4Þ
� �

ð�r11 ; �r13 ;D3Þ ¼ e E0

C11 D/0
r11ða=2; b=2; e=2Þ;r13ða=4; b=2; 0Þ; E0 D3ða=2; b=2; e=2Þð Þ:

Jump results at the interface z ¼ 0 between the PZT-4 layers, the
jump of r11 and D3 are given using notations r110 and D3

� �� �
0:
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Fig. 3. Parallel bimorph in sensor configuration (cylindrical bending; S = 10; 8� 2 mesh): influence of the Zig–Zag terms on the distributions across the thickness.

Table 4
Parallel bimorph in cylindrical bending (8� 2 mesh): results for different length-to-thickness ratios S.

S Model U1 U3 r11 r11½ �½ �0 r13 / D3 D3
� �� �

0

Actuator
5 Ansys �10.63 29.94 1.21 4.87 0.0 0.50 �21.96 43.92

P9ZZ �11.26 30.18 1.22 4.87 0.0 0.53 �21.96 43.93
10 Ansys �22.43 118.37 1.22 4.87 0.0 0.50 �21.96 43.92

P9ZZ �23.19 118.86 1.22 4.88 0.0 0.53 �22.01 44.01
50 Ansys �116.78 2948.0 1.22 4.87 0.0 0.50 �21.96 43.92

P9ZZ �118.53 2967.0 1.22 4.90 0.0 0.53 �22.10 44.18

bottom/top Sensor
5 Ansys 46.15/�44.27 159.66 19.83 3.40 1.79 0.198 �11.94 26.70

P9ZZ 46.10/�43.64 166.36 19.97 2.90 1.89 0.183 �12.73 27.81
10 Ansys 366.4/�362.1 2348.1 78.53 13.19 3.59 0.767 �52.28 104.53

P9ZZ 367.3/�362.4 2362.3 78.80 12.62 3.77 0.750 �56.83 116.16
50 Ansys 45.7E3/�45.6E3 1.43E6 1957. 326.7 17.96 18.99 �1471.0 2948.2

P9ZZ 46.0E3/�45.7E3 1.44E6 1966. 345.1 18.68 19.03 �1463.1 3132.9



Table 5
Parallel bimorph: cylindrical bending and plate bending models.

S Model U1 U3 r11 r11½ �½ �0 r13 / D3 D3
� �� �

0

Actuator configuration
5 P9ZZ Cyl. bend. �11.26 30.18 1.22 4.87 0.0 0.534 �21.97 43.93

F&P [23] – 27.65 – 4.93 – – – 44.44
P9ZZ Plate bend. �8.85 24.58 1.29 5.13 0.0 0.548 �23.15 46.29
K&K [24] – 24.01 – 5.12 – 0.547 – 46.15

10 P9ZZ Cyl. bend. �23.07 118.86 1.22 4.88 0.0 0.534 �22.01 44.01
F&P [23] – 116.00 – 4.90 – – – 44.20
P9ZZ Plate bend. �23.07 97.83 1.31 5.13 0.0 0.547 �23.13 46.25
K&K [24] – 97.68 – 5.10 – 0.547 – 46.05

Sensor configuration
5 P9ZZ Cyl. bend. �46.10 166.36 19.97 2.90 1.89 0.183 �12.73 27.81

F&P [23] – 161.47 – – 1.86 0.206 – –
P9ZZ Plate bend. �49.76 181.27 19.81 2.14 1.62 0.139 �9.05 21.01
K&K [24] – 176.10 – 2.69 – 0.156 – 24.28

10 P9ZZ Cyl. bend. �364.55 2362.28 78.80 12.62 3.77 0.750 �56.83 116.16
F&P [23] – 2358.40 – – 3.72 0.775 – –
P9ZZ Plate bend. �397.61 2579.17 77.59 9.83 3.05 0.590 �44.02 91.26
K&K [24] – 2568.00 – 10.58 – 0.614 – 95.40
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Fig. 4. Cylindrical vs plate bending of parallel bimorph in actuator configuration: through-thickness distributions for three length-to-thickness ratios S ¼ 5;10;50.
The reference electric field E0 ¼ 1010 Vm�1 is used in the above
non-dimensioning coefficients [23].

4.1.1. Convergence analysis
A mesh convergence study is first proposed using the FE based

on the 12 parameter model with the Zig–Zag functions, denoted
P9ZZ. The length to thickness ratio is S ¼ 10 and the results are pre-
sented in Table 2. The number of mechanical and electric dofs is
also given. The plate is subjected to a cylindrical bending and the
meshes use two elements along the y direction, and all the dofs
in this direction are set to zero. The convergence rate is higher
for the actuator case than for the sensor one and good agreement
is obtained with respect to Ansys results, which refer to a plane
strain model with a mesh using 76� 46 finite elements. The error
Table 6
Clamped composite plate with only one electric patch: convergence results for open
circuit (OC) and closed circuit (CC).

Elec BC Mesh 5� 2 10� 4 20� 8

OC u3 22.649 (�1.9) 22.967 (�0.5) 23.089
D/bottom �23.003 (�2.7) �23.408 (�1.0) �23.649

D/top 24.473 (�2.6) 24.886 (�1.0) 25.129

CC u3 23.370 (�1.9) 23.698 (�0.3) 23.833
/Max �3.307 �5.212 �7.295
on the maximum values is always less than 1% except for the elec-
tric displacement component which is around 8%. The mesh 8� 2
could be chosen for the subsequent numerical evaluations.

4.1.2. Influence of the Zig–Zag terms
The effect of the Zig–Zag terms is assessed in Table 3 for the

length to thickness ratio S ¼ 10, for actuator and sensor configura-
tions. This table presents results obtained using Ansys, different
versions of the present high-order model (P9ZZ, P9Z and P9) as
well as FSDT. Furthermore, the model (P9ZZ w/o Du2

3) is deduced
from P9ZZ neglecting the contribution of the derivative of u2

3 in
the transverse shear strain, see Eq. (7). The results in Table 3 show
that the introduction of the Zig–Zag term in the transverse compo-
nent of the displacement is necessary to recover results in good
agreement with reference solutions for mechanical and electric
values. The r11 jump at z ¼ 0 is the most impacted result. It must
be emphasized that P9 and P9Z give the same results, which means
that classical Zig–Zag terms acting only in the in-plane displace-
ments do not improve the results for the bimorph structure.

For the actuator configuration, distributions across the thick-
ness are presented in Fig. 2. Introduction of the Zig–Zag term in
the transverse displacement U3 is clearly visible and allows to
recover the correct jump of r11 at z ¼ 0. This is due to the slope dis-
continuity of the transverse displacement at layers’ interface
induced by the Zig–Zag function. On the contrary, P9 and P9Z give
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Table 7
Clamped composite plate in OC configuration: evaluations for different FE meshes and
equipotential surface sizes.

Patch Nb 10 40 160
Mesh 5� 2 10� 4 10� 4 20� 8
u3 22.230 22.533 22.510 22.609
D/bottom �62.776 �63.503 �80.004 �91.988

D/top 64.071 64.827 81.147 92.884
a smooth distribution across the thickness for U3. As expected,
FSDT gives a constant distribution for the transverse displacement
and accurate distribution for the in-plane stress is obtained thanks
to the bi-dimensional constitutive law. All models rely on the same
cubic LW approximation for the electric field and the electric
response of all models is sensibly the same. Note that the distribu-
tion of the electric potential is slightly non-linear across the thick-
ness in each layer.

Fig. 3 presents the sensor configuration results. Transverse dis-
placement distributions from different models are very close to
each other, with differences less than 1%, but the change of slope
at the layers’ interface (z ¼ 0) is recovered only by the P9ZZ-
based models that include the Zig–Zag effect in the transverse
direction. For this configuration, all the results are in good agree-
ment with Ansys reference solutions.

4.1.3. Results for varying length-to-thickness ratios
The influence of the length-to-thickness ratio on the parallel

bimorph configuration is investigated in Table 4, where the results
mesh 20x8; 1 electrd
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mesh 10x4; 40 electrd
mesh 20x8; 160 electrd
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meshes and electrode segmentation.
for thin to very thick plates obtained by the P9ZZ model are com-
pared against those obtained by Ansys. A very good accuracy is
recovered for displacement, in-plane and transverse shear stresses,
and electric potential, for both actuator and sensor configurations.
The maximum error is found for the jump of normal electric dis-
placement in the sensor configuration: for S ¼ 5;10 and 50 the
error is 4, 11 and 6 %, respectively. Note that for the sensor config-
uration, in-plane displacements at bottom and top surfaces are
very different for thick and semi-thick ratios and tend towards
the same value in the thin plate range S ¼ 50, i.e., the symmetry
with respect to z ¼ 0 is recovered when the plate becomes thin.

4.1.4. Plate bending vs cylindrical bending of bimorph
A last numerical study is proposed for the bimorph structure by

comparing the cylindrical bending approach considered so far with
the classical plate bending. Results are obtained using an 8� 2
mesh for cylindrical bending and an 8� 8 mesh for plate bending.
The results for actuator and sensor configurations and two length-
to-thickness ratios (S ¼ 5;10) are presented in Table 5. Results
from Fernandes and Pouget [23] and Kapuria and Kulkarni [24]
are added for comparison purpose, when they are available. In this
last paper, the value r11ðz ¼ 0Þ is reported instead of r11½ �½ �0; the
value indicated in Table 5 has been computed by multiplying the
reported value by 2. It is obvious that Kapuria and Kulkarni [24]
consider plate bending configuration while Fernandes and Pouget
[23] deal with a plane strain model (cylindrical bending). Note that
in the sensor case, displacements for cylindrical bending are lower
than for plate bending, whereas the opposite holds true for the
actuator case. In all cases, P9ZZ results are in good agreement with
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the different reported results. Finally, Fig. 4 presents for the actua-
tor configuration the distributions across the thickness of u3 and
r11 for different length-to-thickness ratios: the cylindrical and
plate bending cases yield similar distributions but the numerical
values are larger for the former case.
4.2. Clamped composite plate

This test is interesting to evaluate the segmentation of a piezo-
electric layer using different number of patches. It considers the
sensory response of a cantilever, rectangular, hybrid sandwich
plate with one edge clamped and other edges free subjected to a
uniform pressure load according to the following data [24]:

Geometry rectangular plate a� b with a ¼ 10 mm;a=b ¼ 2 and
total thickness e ¼ 1 mm (length-to-thickness ratio S ¼ 10).
Materials seven-layers plate ðpz;\0;\90; core;\90;\0; pzÞ; the
outer piezoelectric layers of thickness 0:1 e are made out of
PZT-5A material; each layer constituting the laminated skins
has a thickness 0:04 e and the core thickness equals 0:64 e.
The material properties for PZT-5A, skin layers and core are
given in Table 1.
Boundary conditions clamped at x1 ¼ 0; uniform pressure load
p0; piezoelectric layers can be in open circuit (D/ let free) or
in closed circuit (D/ ¼ 0).
Mesh three regular meshes 5� 2;10� 4 and 20� 8 are used.
Results and locations transverse displacement at the tip and
piezoelectric potential in the element close to the clamped
edge. They are made non-dimensional according to
u3 ¼ u3 102EðcoreÞ
2

� 	
= eS4 p0

� 	
/ ¼ / 104EðcoreÞ

2 d0

� 	
= eS2 p0

� 	 with d0 ¼ 374 10�12 CN�1:
This test can be used to compare the effect of the electrode seg-
mentation: using the proposed FE meshes, the electrode sensor
surface is subdivided in 1, 10, 40, 160 patches through the imposi-
tion of equipotential conditions.

Table 6 presents the convergence properties of the P9 FE when
only one patch is used for each piezoelectric layer. In the open cir-
cuit configuration, the equipotential condition enforces D/ in each
layer to be the same for all elements. In the closed circuit condi-
tion, D/ ¼ 0 for all elements (equipotential condition) and the
maximum electric potential value inside the piezoelectric layers
is reported. Note that the cubic approximation for / allows to
recover the electric potential induced by the local bending of the
piezoelectric layers.

The maximum displacement is located at the center of the tip
edge ða; b=2Þ while the maximum induced electric potential (/max

for closed circuit) is in the FE close to the clamped edge. For the
open circuit, the convergence is very fast for both displacement
and electric potential difference – the percentage of error with
respect to the 20� 8 mesh results is indicated in parentheses.
For the closed circuit, an asymptotic value is recovered for the dis-
placement whereas /max still increases with mesh refinement; this
is due to the decreasing size of the FE at the clamp, which increas-
ingly localizes the bending deformation of the piezoelectric layers.

The distribution of the electric potential across the thickness is
illustrated for the two electric boundary conditions in Fig. 5. The
non-linear variation across the bottom and top piezoelectric layers
is visible on both graphs and increases with mesh refinement. Due
to the equipotential condition, it has no influence on the DUmax for
the open circuit (left) but it is directly related to the Umax for the
closed circuit (right). This non-linear effect measures the local
bending deformation of the piezoelectric layers and is accordingly
larger at the clamped edge than at the free tip of the plate.

Finally, the effect of electrode segmentation is discussed in
Table 7 for the open circuit boundary condition. The corresponding
distribution along the length of the plate of the electric potential
difference is illustrated in Fig. 6 for all considered meshes and elec-
trode segmentations. The induced potential difference D/ reported
in Table 7 is taken at the electrode next to the clamped edge, i.e.,
where it has its maximum value. Comparing the results for 10
patches obtained with two different meshes allows to appreciate
the role of the mesh refinement: a finer mesh increases the tip dis-
placement and enhances the sensed voltage. The same mesh with
10� 4 elements is then used with two different number of electric
patches, i.e., with different sizes of the equipotential surfaces: a
very small influence on the tip deflection can be seen, with u3

slightly larger when the equipotential surfaces are larger; on the
contrary, the electric potential induced at the clamped edge is
clearly higher the smaller the electrode. Finally, considering the
20� 8 with 160 patches (i.e., one electrode per FE), the tip dis-
placement is slightly higher due to the refined mesh and the
sensed voltage is further increased due to both, the larger deflec-
tion and the reduced electrode’s size at the clamp.

5. Conclusion

This paper has presented a new family of FE for piezoelectric
composite plates. A high-order ESL kinematic model is considered
that includes the sinus function for the in-plane displacements, a
quadratic polynomial expansion for the transverse displacement
and Zig–Zag functions for introducing slope discontinuities at lay-
ers’ interfaces for both, the in-plane and the transverse displace-
ments. A LW cubic approximation is used for the electric
potential in order to capture its non-linear distribution induced
by the local bending of the piezoelectric layer; the elementary
domain is considered as an equipotential surface (constant electric
potential).

The element has been validated through linear static case stud-
ies for both sensor and actuator configurations as well as homoge-
neous and laminated plates. New reference solutions have been
provided by means of 2D FEM computations with a commercial
software. It turned out that the Zig–Zag term along the transverse
direction is essential for recovering accurate results when dealing
with piezoelectric bimorph structures. The role of electrode seg-
mentation, i.e., the size of equipotential surfaces, on the electro-
mechanical response has been also evaluated. The results are in
good agreement for actuator and sensor configurations for thin to
very thick cases. The proposed P9ZZ FE, using only 12 mechanical
dof per node, is very accurate, simple to use, without any numeri-
cal problem and could be used for a large range of plate problems
involving piezoelectric patches or layers. Future works are pointed
towards the extension of this model to piezoelectric shell
structures.
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