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1. Introduction

The ability to accurately predict complex stress distributions,
both in terms of normal and transverse stress components, is a
crucial aspect to assist the design of modern composite structures.
Particularly relevant is the development of analysis tools that can
efficiently combine the accuracy of the predictions with a reason-
able computational effort, so that the effect of different stacking
sequences, material properties or structural configurations, can
be assessed since the preliminary design steps.

Several modeling strategies have been developed in the years,
including Equivalent Single Layer (ESL) and Layer-Wise (LW) theo-
ries [1]. In ESL models, the displacement field is approximated
starting from the description of one single reference surface; the
number of degrees of freedom is thus independent of the number
of layers. However, the in-plane displacement components are
approximated with functions that are, at least, C1 continuous along
the thickness, which can be unable to capture the kinematics
between layers with drastically different mechanical properties.
One approach aiming at overcoming this restriction consists in
the adoption of Zig-Zag functions, whose idea is to enrich the kine-
matics of ESL models by means of shape functions with discontin-
uous slope at the interface between layers. A comprehensive
review of Zig-Zag theories, which is not the subject of the present
work, is provided in [2].

Layerwise models are another class of theories directed toward
the possibility of capturing complex responses along the through-
the-thickness direction. In this case, the displacement field is C0

continuous along the thickness direction and is described with
independent degrees of freedom for each of the plies composing
the laminate. It follows that abrupt changes of strains between
the layers can be properly detected. However, the number of
theory-related degrees of freedom can be high, in particular for
multilayered structures composed of a large number of plies.

Observing that the most important variations of elastic proper-
ties are generally confined to a subset of layer interfaces – for
instance, between the core and the facesheet in the case of a
sandwich – an effective idea is to group the plies into smaller sets,
sometimes denoted as sublaminates, sharing the same kinematic
description. An example is found in [3], where sandwich
beams are analyzed using beam theory for the skins and a
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two-dimensional elasticity theory for the core. Refined plate and
beam theories where the laminate is represented as an assemblage
of sublaminates are discussed in [4–6]. In these formulations, first-
order zig-zag kinematics are postulated within each sublaminate.
It follows that the in-plane displacement components vary in a
piecewise fashion along the thickness, while the normal displace-
ment component varies linearly. The extension to high-order
zig-zag kinematics is discussed in [7]. Another approach based
on the sublaminate description is found in [8,9], where the dis-
placement field is expanded with a third-order theory, and shear
warping and shear coupling functions are used to ensure continu-
ity of in-plane displacements, inter-laminar shear stresses and
transverse normal stresses. An idealization of the sandwich into
three sublaminates, each of them modeled with FSDT, is proposed
in Ref. [10] with regard to the finite element implementation.

While the idea of sublaminate has been adopted by several
authors, the formulations in the literature are commonly devel-
oped for specific kinematic theories. A theoretical framework that
employs a general sublaminate approach in conjunction with gen-
eral kinematics assumptions has been presented in [11], where a
strong form analysis of the governing equations has been
employed. The development of a sublaminate model in the context
of a variationally consistent variable-kinematic approach has been
recently performed by one of the authors [12]: the sublaminate
description is coupled with a variable-kinematic theory expressed
in a unified formulation, and the governing equations are obtained
through the use of displacement-based or mixed variational state-
ments. A vast amount of literature is available regarding unified
theories [13,14] and their implementation in the context of numer-
ical procedures based on the finite element method [15–19], radial
basis functions [20], quadrature techniques [21,22] and Ritz
method [23–25], or of exact solutions based on Navier [26–28]
and Levy methods [29–31]. The original idea of unified formulation
– due to Carrera and often referred to as CUF (Carrera’s Unified For-
mulation) –, offers the advantage of providing a systematic
approach for developing formulations based on ESL and LW theo-
ries, of various order, in the context of the same framework. An
interesting extension of CUF is due to Demasi [32–37] and is rep-
resented by the so-called Generalized Unified Formulation (GUF),
the main distinction with CUF being the possibility of expanding
each displacement field component by means of different theories
and different orders. In the work of Ref. [12], the subdivision of the
laminate into sublaminates has been proposed in conjunction with
GUF thus leading to the Sublaminate-GUF (S-GUF) approach, and
benchmark results are derived from the Navier solutions of the
strong-form governing equations. In the present paper, the imple-
mentation of the S-GUF approach is discussed in the context of a
displacement-based formulation, where the Ritz method is
employed as solution technique. The main advantage of the Ritz
approach consists in permitting the analysis of any combination
of boundary conditions. Furthermore, no restrictions on the stack-
ing sequences exist, so that realistic configurations characterized
by the presence of membrane and/or flexural anisotropy can be
accounted for. An overview of the S-GUF theoretical framework
is provided in Section 2, while a description of the approximate
solution approach based on the method of Ritz, together with the
assembly and the expansion of the governing equations, is dis-
cussed in Section 3. A comprehensive set of test cases is discussed
in Section 4, where results from literature are taken for validation
purposes and novel benchmark results proposed.
2. The Sublaminate Generalized Unified Formulation

The formulation here presented provides a unified and versatile
framework capable of generating multiple-kinematic models of
increasing complexity (from classical FSDT models to higher-
order full LW models) such that the desired balance of accuracy
and computational cost can be obtained for the solution of a wide
range of multilayered plate problems. This goal is achieved through
the concept of selective ply grouping, or sublaminate, and the
variable-kinematic capabilities of the generalized unified formula-
tion (GUF) [32,33]. For this reason, the theoretical framework here
proposed will be denoted as Sublaminate Generalized Unified
Formulation (S-GUF). The fundamental element of S-GUF is the sub-
laminate, which is defined as a specific group of adjacent material
plies with a specific 2D kinematic description, i.e., the theory
adopted to approximate the displacement field across the thickness
of the sublaminate. Accordingly, each sublaminate is associated
with the following parameters: the number of plies of the sublam-
inate, the first and last ply constituting the sublaminate, and the
local kinematic description, i.e. the Equivalent Single Layer (ESL)
or Layerwise (LW) model to approximate the displacement field
within the sublaminate. It is important to remark that plate
descriptions combining both ESL and LW theories can be accounted
for. For instance, a group of plies belonging to a sublaminate could
be represented with a ESL description, while those belonging to
another sublaminate could be modeled in a LW manner. Similarly,
the order of the theory can be chosen independently from sublam-
inate to sublaminate. One example could be represented by a sand-
wich panel, whose facesheets are modeled with a low-order ESL
theory, while a higher-order theory is adopted for the core. When
the laminate is modeled by using one single sublaminate, the
classical ESL and LW models are directly recovered.

2.1. Geometric description

The idealization of the multilayered structure as an assembly of
perfectly bonded physical plies and mathematical sublaminates is
illustrated in Fig. 1. As seen, the laminate is composed of Np plies of
homogeneous, orthotropic material, that are numbered from the
bottom to the top of the panel. The thickness of each single ply is
denoted as hp, so that the total thickness of the laminate is

h ¼ PNp
p¼1hp. Following the S-GUF approach, the laminate is

subdivided into k ¼ 1;2; . . . ;Nk sublaminates, numbered from the
bottom to the top, each of them characterized by thickness hk.

The number of plies of the kth sublaminate is denoted as Nk
p,

thus
PNk

k¼1N
k
p ¼ Np. A local numbering of plies p ¼ 1; . . . ;Nk

p is also
introduced at sublaminate level (see Fig. 2), where the first ply of

the sublaminate is p ¼ 1, and the last ply is Nk
p. Accordingly, all

the relevant quantities belonging to ply p of sublaminate k will

be, hereinafter, explicitly indicated with the superscript ðÞp;k.
Note that z 2 ½�h=2; h=2� defines the global thickness coordi-

nate, whereas zp 2 ½�hp=2;hp=2� and zk 2 ½�hk=2;hk=2� are the local
ply and sublaminate coordinates, respectively. Corresponding
nondimensional coordinates are introduced as

fp ¼
zp

hp=2
and fk ¼

zk
hk=2

ð1Þ

and are linked through the following relation:

fp ¼
hk

hp
fk þ

2
hp

z0k � z0p
� � ð2Þ

where z0p and z0k are the midplane coordinates of the pth ply and
kth laminate, respectively.

2.2. Kinematic approximation at sublaminate level

In the context of the S-GUF formulation, each sublaminate is
associated with a specific kinematic assumption that is defined



Fig. 1. S-GUF: geometric description.

Fig. 2. First and last physical ply inside the sublaminate k.
in terms of theory and order of the expansion. The displacement
field associated with the generic ply p of the sublaminate k is
denoted as:

up;k ¼ up;k
x up;k

y up;k
z

n oT
ð3Þ

Following the compact notation of GUF, the components of the dis-
placement field defined by Eq. (3) are approximated as:

up;k
x ðx; y; zpÞ ¼ Faux ðzpÞup;k

xaux ðx; yÞ aux ¼ 0;1; . . . ;Nk
ux

up;k
y ðx; y; zpÞ ¼ Fauy ðzpÞup;k

yauy ðx; yÞ auy ¼ 0;1; . . . ;Nk
uy

up;k
z ðx; y; zpÞ ¼ Fauz ðzpÞup;k

zauz ðx; yÞ auz ¼ 0;1; . . . ;Nk
uz

8>><
>>: ð4Þ

where the summation is implied over the repeated indexes aux ;auy

and auz . The terms Faur define the thickness functions and approxi-
mate the displacement field along the normal-to-the-plane

direction, while up;k
iaur

are the kinematic variables of the 2D approxi-

mation of the generic ply p of the sublaminate k.
The theory-related degrees of freedom associated with each

sublaminate are then given by ðNk
ux þ 1Þ þ ðNk

uy þ 1Þ þ ðNk
uz þ 1Þ. It

is important to highlight that both the theory and the order of
the expansion can be, in general, different from sublaminate to
sublaminate. On the other hand, the S-GUF is developed under
the assumption that all the plies belonging to the same sublami-
nate are approximated with the same theory and the same order.
It can be noted that the description of Eq. (4) covers both ESL
and LW kinematic descriptions of the sublaminate. Indeed, a LW

representation of the kth sublaminate made of Nk
p physical plies

can be reduced to an ESL model by setting zp ¼ zk and

up;k
r ¼ uk

r

up;k
raur ¼ uk

raur

8p 2 ½1;Nk
p� ðr ¼ x; y; zÞ ð5Þ

where the index r denotes the generic coordinate x; y or z. From
Eq. (5), it can be seen that an ESL model can be considered as a
particular case of a LW model where the displacement unknowns
of different plies are forced to be the same.

The thickness functions of Eq. (4) are expressed in terms of the
non-dimensional coordinate f as:

if Nk
ur ¼ 0 : F0ðfÞ ¼ 1

if Nk
ur > 0 : F0ðfÞ ¼ 1þf

2

F1ðfÞ ¼ 1�f
2

FlðfÞ ¼ PlðfÞ � Pl�2ðfÞ l ¼ 2;3; . . . ;Nk
ur

ð6Þ

where f ¼ fk for an ESL description, and f ¼ fp for a LW description.
The term PlðfÞ is the Legendre’s polynomial of order l which is
defined recursively as:

P0 ¼ 1; P1 ¼ f; Plþ1 ¼ ð2lþ 1ÞfPl � lPl�1

lþ 1
ð7Þ

It is worth noting that, for f ¼ 1, all the thickness functions Fa
are equal to zero except F0, i.e.,

at f ¼ 1
F0 ¼ 1
Fa ¼ 0 a ¼ 1; . . . ;N

�
ð8Þ

Furthermore, when f ¼ �1, all Fa ¼ 0 except for F1, i.e.,

at f ¼ �1
F1 ¼ 1
Fa ¼ 0 a ¼ 0;2; . . . ;N

�
ð9Þ



The above properties imply that, for each displacement compo-
nent (r ¼ x; y; z), the displacement at the top and the bottom is
equal to one single kinematic variable, i.e., for an ESL description
of the kth sublaminate:

uk
r ðfk ¼ þ1Þ ¼ uk�top

r ¼ uk
r0

uk
r ðfk ¼ �1Þ ¼ uk�bot

r ¼ uk
r1

ð10Þ

and for an LW description of the kth sublaminate:

up;k
r ðfp ¼ þ1Þ ¼ up;k�top

r ¼ up;k
r0

up;k
r ðfp ¼ �1Þ ¼ up;k�bot

r ¼ up;k
r1

ð11Þ

where ‘top’ and ‘bot’ denote the top and bottom face of the sublam-
inate or the ply where the displacement is defined. In other words,
the kinematic variables associated with the expansion indexes
a ¼ 0;1 identify the displacement at the top and the bottom of
the sublaminate or ply, respectively. This property is particularly
useful during the assembly procedure since the continuity of the
displacement field between adjacent plies or sublaminates can be
easily imposed.

2.3. Strain-displacement relation and Hooke’s law

Based on the assumption of infinitesimal displacements, the
relation between strains and displacements reads:

ep;kX ¼ DXup;k ep;kn ¼ Dnup;k þ Dzup;k ð12Þ
where, using the standard approach of CUF, the in-plane and the
normal components are split into two vectors as:

ep;kX ¼ ep;kxx ep;kyy cp;kxy

n oT
; ep;kn ¼ cp;kyz cp;kxz ep;kzz

n oT
ð13Þ

and the differential matrices of Eq. (12) are:

DX ¼
@
@x 0 0
0 @

@y 0
@
@y

@
@x 0

2
64

3
75; Dn ¼

0 0 @
@x

0 0 @
@y

0 0 0

2
64

3
75; Dz ¼

@
@z 0 0
0 @

@z 0
0 0 @

@z

2
64

3
75

ð14Þ
By adopting the same partitioning into in-plane and normal

components of Eq. (12) and assuming linear orthotropic behaviour,
the constitutive 3D law of the generic ply p is written as:

rp;k
X ¼ ~Cp;k

XXe
p;k
X þ ~Cp;k

Xne
p;k
n ; rp;k

n ¼ ~Cp;k
nXe

p;k
X þ ~Cp;k

nn e
p;k
n

where

~Cp;k
XX ¼

eCp;k
11

eCp;k
12

eCp;k
16eCp;k

12
eCp;k
22

eCp;k
26eCp;k

16
eCp;k
26

eCp;k
66

2
6664

3
7775; ~Cp;k

Xn ¼
0 0 eCp;k

13

0 0 eCp;k
23

0 0 eCp;k
36

2
6664

3
7775;

~Cp;k
nn ¼

eCp;k
44

eCp;k
45 0

eCp;k
45

eCp;k
55 0

0 0 eCp;k
33

2
6664

3
7775 ð16Þ
2.4. Variational formulation

The formulation is developed within a variational
displacement-based approach. More specifically, the weak form
of the equilibrium equations is here expressed by means of the
Principle of Virtual Displacements (PVD), which is written as:Z
X

Z h=2

�h=2
deTrdzdX ¼

Z
X
dutop

z f topz dXþ
Z
X
dubot

z f botz dX ð17Þ
where X is the reference surface, r and e are the vectors collecting
the stress and strain components, respectively, and the superscripts
‘top’ and ‘bot’ denote quantities referred to the top and the bottom
of the laminate. The right-hand side of Eq. (17) is the external vir-
tual work due to a set of normal pressure loads applied at the top
and the bottom of the laminate. For simplicity the applied load is
here restricted to the case of a normal pressure, but the formulation
can be easily extended to account for more general loading, includ-
ing forces per unit length or volume, as well as concentrated loads.

According to the subdivision of the plate into Nk sublaminates,

each one including Nk
p physical plies with local kinematic field up;k,

stress field rp;k and strain field ep;k, the PVD can be written in the
following form

XNk

k¼1

XNk
p

p¼1

Z
X

Z ztopp

zbotp

dep;k
T

X rp;k
X þ dep;k

T

n rp;k
n

� �
dzdX

¼
Z
X
dutop

z f topz dXþ
Z
X
dubot

z f botz dX ð18Þ

After substitution of Eqs. (12) and (15) into Eq. (18), the two contri-
butions to the internal virtual work are expressed as a function of
the displacement variables as:

dep;k
T

X rp;k
X ¼ dep;k

T

X ð~Cp;k
XXe

p;k
X þ ~Cp;k

Xne
p;k
n Þ

¼ dðDXup;kÞT~Cp;k
XXDXup;k þ dðDXup;kÞT~Cp;k

XnDnup;k

þ dðDXup;kÞT~Cp;k
XnDzup;k ð19Þ

dep;k
T

n rp;k
n ¼ dðDnup;k þ Dzup;kÞTð~Cp;k

nXe
p;k
X þ ~Cp;k

nn e
p;k
n Þ

¼ dðDnup;kÞT~Cp;k
nXDXup;k þ dðDnup;kÞT~Cp;k

nnDnup;k

þ dðDnup;kÞT~Cp;k
nnDzup;k þ dðDzup;kÞT~Cp;k

nXDXup;k

þ dðDzup;kÞT~Cp;k
nnDnup;k þ dðDzup;kÞT~Cp;k

nnDzup;k ð20Þ
The PVD can be finally expressed as function of the kinematic

variables up;k
raur by substitution of the expansion of Eq. (4) into

Eqs. (19) and (20).

2.5. Ritz approximation

Once a specific plate theory is postulated with regard to the
through-the-thickness direction, the original 3D problem is trans-
formed into a 2D problem in the x� y plane. It follows that the
equations expressing the equilibrium are partial differential
equations, and the unknowns of the problem are the generalized
displacement components, which are functions of the x and y coor-
dinates. An exact solution of the governing PDE can be hardly
found for any set of boundary conditions and stacking sequences,
thus an approximate solution based on the method of Ritz is here
proposed. In particular, the 2D variables of the assumed kinematic
model are expressed as follows

up;k
xaux ðx; yÞ ¼ Nuxiðx; yÞup;k

xaux i

up;k
yauy ðx; yÞ ¼ Nuyiðx; yÞup;k

yauy i

up;k
zauz ðx; yÞ ¼ Nuziðx; yÞup;k

zauz i

8>>><
>>>: i ¼ 1;2; . . . ;M ð21Þ

where Nur1;Nur2; . . . ;NurM is the complete set of global, admissible
and linearly independent functions selected to represent each kine-
matic unknown related to the expansion of the generic displace-
ment component ur . Note also that the admissible functions have
no dependency on the ply index p or the sublaminate index k, i.e.,
the boundary conditions of the plate are considered to be homoge-
neous through the height of the same section, so the same functions
are adopted in each ply/sublaminate for the in-plane solution of the



problem. The combination of the Ritz approximation in Eq. (21)
within the framework of the S-GUF will be denoted hereinafter as
S-GUF-Ritz.

By referring to a computational domain ðn;gÞ of the plate, with
n 2 ½�1;1� and g 2 ½�1;1�, the ith Ritz function is taken as

Nuriðn;gÞ ¼ /urmðnÞwurnðgÞ m ¼ 1; . . . ;R; n ¼ 1; . . . ; S ð22Þ
where R and S are the number of functions to approximate the dis-
placement field along the direction n and g, respectively, and the
following arrangement is chosen for defining the ith Ritz function
in terms of the mth and nth one-dimensional functions:

i ¼ Sðm� 1Þ þ n ð23Þ
The one-dimensional functions /urmðnÞ and wurnðgÞ are

expressed, in turn, as the product between a complete set of func-
tions and proper boundary functions:

/urmðnÞ ¼ f ur ðnÞpmðnÞ
wurnðgÞ ¼ gur ðgÞpnðgÞ

ð24Þ

where the boundary functions are:

f ur ðnÞ ¼ ð1þ nÞe1r ð1� nÞe2r
gur ðgÞ ¼ ð1þ gÞe1r ð1� gÞe2r ð25Þ

and the coefficients e1r and e2r can be either 0 or 1 and are chosen
depending on the boundary conditions [23].

The functions pm and pn are here expressed using Legendre
polynomials, so:

p0 ¼ 1; p1 ¼ f; plþ1 ¼ ð2lþ 1Þfpl � lpl�1

lþ 1
ðl ¼ m;nÞ ð26Þ

The expansion of Eq. (26) guarantees the completeness of the
series, and is particularly advantageous thanks to the orthogonality
properties of the Legendre polynomials.

2.5.1. Principle of Virtual Displacements
After substitution of Eqs. (4) and (22) into Eq. (18), the discrete

expression of the Principle of Virtual Displacements is obtained as:

XNk

k¼1

XNk
p

p¼1

dup;k
raur i

eCp;k
RS Z

paur bus
ð@Þurð@ÞusI

defg
urusij

up;k
sbusi

¼ du
Nk
p ;Nk

z0i I top
uzf zi

þ du1;1
z1iIbot

uzf zi
ð27Þ

where:

I top
uzf zi

¼
Z
X
Nuzif

top
z ðx; yÞdX; Ibot

uzf zi
¼

Z
X
Nuzif

bot
z ðx; yÞdX ð28Þ

The left-hand side of Eq. (27) is the internal virtual work, and
the right-hand side is the virtual work due to the applied forces.
For clarity purposes, the internal virtual work is here reported in
a compact form. The full expression is provided in the Appendix

A1. In the expression of Eq. (27), the term eCp;k
RS defines the generic

RS coefficient of the ply constitutive equation in the laminate

reference system, while the term Zpaur bus
ð@Þur ð@Þus specifies the generic

integral of the thickness functions according to:

Z
paur bus
urus ¼

Z ztopp

zbotp

Faur Fbus
dzZpaur bus

@urus ¼
Z ztopp

zbotp

Faur ;zFbus
dz

Z
paur bus
ur@us ¼

Z ztopp

zbotp

Faur Fbus ;z
dzZpaur bus

@ur@us ¼
Z ztopp

zbotp

Faur ;zFbus ;z
dz

ð29Þ

It can be noted that, according to Eq. (27), the expression of the
internal virtual work is expressed by means of a self-repeating
block, here denoted as kernel of the formulation, i.e., the term that
is pre- and post-multiplied by the virtual and actual generalized
displacement, respectively. As discussed next, the assembly of
the governing equations is simply performed by properly expand-
ing this kernel.

The Ritz integrals, denoted in Eq. (27) as Idefg
urusij

, are defined as:

Idefg
urusij

¼
Z 1

�1

Z 1

�1

@dþeNuri

@xd@ye
@fþgNusj

@x f@yg
dgdn ðd; e; f ; g ¼ 0;1Þ ð30Þ

It is here remarked that, for efficiency, all the integrals defined by
Eq. (30) are calculated in a closed-formmanner. The advantage of an
analytical integration over a numerical one is twofold: firstly, the
number of operations is much smaller; secondly, the resulting stiff-
nessmatrix is filtered from the presence of spurious not-null contri-
butions, which has a beneficial effect on the sparsity of the matrix.

It is worth noting that in Eq. (27) the dependence on the

thickness coordinate is confined to the term Z
paur bus
ð@Þurð@Þus , while the

dependence on the in-plane coordinates is part of the Ritz integrals

Idefg
urusij

. It follows that the two terms can be computed indepen-
dently – thus reducing the number of nested summatories and
the time needed to build-up the stiffness matrix – and their contri-
bution is successively assembled.

3. Expansion and assembly

The discrete equations governing the equilibrium of the panel
are obtained after expanding Eq. (27) over the theory-related
indexes, and subsequently assembling the contributions at ply
level first, and at sublaminate level next.

The theory expansion is performed by expanding the summa-
tions over the indexes aur and bus . In the context of the Generalized

Unified Formulation, these two indexes can vary between Nk
r and

Nk
s as far as the displacement components ur and us can be, in prin-

ciple, expanded up to a different order. By collecting the expanded
terms into matrices and vectors, it is possible to re-write the PVD
of Eq. (27) as:

XNk

k¼1

XNk
p

p¼1

dup;kT

ri
eCp;k
RS Z

p;k
ð@Þurð@ÞusI

defg
urusij

up;k
sj ¼ du

Nk
p ;Nk

z0i I top
uzf zi

þ du1;1
z1iIbot

uzf zi
ð31Þ

where the vectors up;k
ri and up;k

sj are those collecting the kinematic
variables for each ply p of the generic sublaminate k, and have

dimensions ðNk
r þ 1Þ and ðNk

s þ 1Þ, while the matrix of the thickness

integrals, Zp;k
ð@Þur ð@Þus , has dimensions ðNk

r þ 1Þ � ðNk
s þ 1Þ. To facilitate

the assembly procedure and the imposition of the continuity of
the displacements at ply interfaces, the vectors are organized such
that the first entry corresponds to the displacement at the top,
while the last entry is associated with the displacement at the bot-
tom, viz.

up;k
ri ¼ up;k

r0i up;k
r2i . . . up;k

rNk
ur i

up;k
r1i

� �T

ð32Þ

The second step of the assembly procedure is given by the sum-
mation over all plies constituting the kth sublaminate, which is
performed by cycling over the index p of Eq. (31). The resulting
expression of the PVD is then:

XNk

k¼1

dukT

ri Z
k
ð@Þurð@ÞusRSIdefg

urusij
uk
sj ¼ du

Nk
p ;Nk

z0i I top
uzf zi

þ du1;1
z1iIbot

uzf zi
ð33Þ

where the dependence on the elastic coefficients eCp;k
RS is now

included in the thickness matrix, Zk
ð@Þur ð@ÞusRS, as highlighted by the

indexes RS.
The way the assembly process is performed, and consequently

the dimensions of the vectors and matrices of Eq. (33), depends
on the theory that is adopted for the kinematic description of the



Table 1
Assembly at sublaminate level: size of Zk matrices.

Kinematic description Size of Zk
ð@Þur ð@ÞusRS

ur=us

Rows ðNk
DOFur Þ Columns ðNk

DOFus Þ
ESL/ESL Nk

ur þ 1 Nk
us þ 1

ESL/LW Nk
ur þ 1 ðNk

us þ 1ÞNk
p � ðNk

p � 1Þ
LW/ESL ðNk

ur
þ 1ÞNk

p � ðNk
p � 1Þ Nk

us þ 1
LW/LW ðNk

ur
þ 1ÞNk

p � ðNk
p � 1Þ ðNk

us þ 1ÞNk
p � ðNk

p � 1Þ
sublaminate k. A sketch of the various possibilities is summarized

in Table 1, where the dimensions of the matrix Zk
ð@Þur ð@ÞusRS are

reported depending on whether the displacement components ur

and us are represented with an ESL or a LW approach. In the first
case, the vector collecting the unknowns of the sublaminate reads

uk
ri ¼ up;k

ri ¼ upþ1;k
ri ð34Þ

meaning that the contributions associated with the various plies are
directly superposed. In the case of a LW approach, the vector of the
unknowns is organized as

uk
ri ¼ u

Nk;k
p

r0i . . . up;k
r0i ¼ upþ1;k

r1i . . . u1;k
r0i ¼ u2;k

r1i . . .u1;k
r1i

� �T

ð35Þ

where the first and the last terms correspond to the displacement at
the top- and the bottom-most plies of the sublaminate k. The inter-

mediate entries of Eq. (35) express the ðNk
p � 1Þ continuity condi-

tions between the various plies composing the sublaminate.
The third step of the assembly procedure is given by the expan-

sion over the various sublaminates composing the laminate. Refer-
ring to the expression of Eq. (33), the PVD becomes:

duT
riZð@Þurð@ÞusRSIdefg

urusij
usj ¼ duT

ziL
top
zi I top

uzf zi
þ duT

ziL
bot
zi Ibot

uzf zi
ð36Þ

where

uri ¼ uNk
ri . . . u1

ri

n oT
ð37Þ

and:

Ltop
zi ¼ 1 0 . . . 0f gT; Lbot

zi ¼ 0 . . . 0 1f gT ð38Þ
where the two vectors of Eq. (38) are column-vectors of dimension
NDOFuz . The assembly of the various sublaminates is performed in a
LW manner. Since the displacement field along the thickness coor-
dinate is approximated using Legendre polynomials irrespective of
the ESL or LW description inside the sublaminates, the continuity
between the displacement at the top of the sublaminate k and the
bottom of the sublaminate kþ 1 is easily imposed by enforcing

the condition u
Nk
p ;k

r0i ¼ u1;kþ1
r1i .

Once the assembly over the through-the-thickness direction is
carried out, the expansion is performed over the Ritz coefficients.
The expression of the PVD is finally obtained as:

duTKu ¼ duTL ð39Þ
where the vector of unknowns is:

uT ¼ ux1 uy1 uz1 . . . uxM uyM uzM
� 	 ð40Þ

and the stiffness matrix reads:

K ¼
Kuxux Kuxuy Kuxuz

KT
uxuy Kuyuy Kuyuz

KT
uxuz KT

uyuz Kuzuz

2
664

3
775 ð41Þ
The explicit expression of all submatrices composing Eq. (41)
and of the external loads vector L is provided in the Appendix
(see Eqs. (68) and (71)).

Due to the arbitrariness of the virtual displacements du, the sca-
lar equation of Eq. (39) leads to the solution of a linear system,
whose unknowns are the amplitudes of the kinematic variables.
Thanks to the sparsity of the stiffness matrix, the solution of the
problem is generally performed with a restricted computational
effort. Once the amplitudes u are available, the displacement field,
as well as the strain and the in-plane stress field are directly avail-
able. Due to the displacement-based approach, further post-
processing is needed to recover the continuity of the transverse
stress components. In particular, the indefinite 3D equilibrium
equations are integrated along the thickness direction [1,38–40]:

rp;k
xz ðzpÞ ¼ rp;k

xz ðzbotÞ �
Z zp

zbot

rp;k
xx;x þ rp;k

xy;y

� �
ds

rp;k
yz ðzpÞ ¼ rp;k

yz ðzbotÞ �
Z zp

zbot

rp;k
xy;x þ rp;k

yy;y

� �
ds

rp;k
zz ðzpÞ ¼ rp;k

zz ðzbotÞ �
Z zp

zbot

Z s

0
rp;k

xx;xx þ 2rp;k
xy;xy þ rp;k

yy;yy

� �
ds


 �
ds

ð42Þ
The stress derivatives of the components rxx;rxy and ryy in the

integrals of Eq. (42) are determined referring to Hooke’s law. The
integration starts from the bottom-most ply of the composite stack
and accounts for the stress boundary conditions applied at the cor-
responding surface. A good tradeoff between computational cost
and accuracy of results is achieved by integrating Eq. (42) with a
4th order Newton-Cotes rule.

4. Results

With the aim of illustrating the potentialities offered by the S-
GUF-Ritz approach, four test cases from the literature are taken
for benchmarking purposes. The first example deals with a lami-
nated cross-ply plate, while the three remaining examples focus
on sandwich configurations.

A sketch of a sandwich panel is provided in Fig. 3. The longitu-
dinal and transverse dimensions are a and b, the thickness of the
single facesheet is hf , and the total panel thickness is h. The same
sketch holds for the case of a monolithic or laminated plate, where
the relevant dimensions are only a; b and h. The boundary condi-
tions are specified, from case to case, assuming that the edges of
the panel are numbered in the counterclockwise direction, starting
from the edge at x = 0, and C stands for clamped, S for simply-
supported and F for free.

The sublaminate model is denoted by a sequence of acronyms,
corresponding to the theory adopted for each of the sublaminates
composing the panel. For instance, the sequence ED332/LD110
Fig. 3. Sandwich plate.



indicates that the first sublaminate is modeled according to an
Equivalent Single Layer theory ED332, while a layerwise theory
LD110 is used for the second sublaminate. The capital ‘D’ in the
acronyms indicates that the models are obtained within a
displacement-based approach. The three numbers reported as sub-
scripts define the order of the theory for the displacement compo-
nents ux;uy and uz.

The number of plies composing each of the sublaminates cannot
be recovered from the acronyms, but will be explicitly described in
the text. It is worth emphasizing that throughout this work, the

order Nk
uz used for the expansion of the transverse displacement

is taken to be one less than the order Nk
ux ¼ Nk

uy ¼ Nk
ua (a ¼ x; y).

This choice allows to obtain a consistent polynomial approxima-

tion of the transverse shear strains ckaz of order N
k
ua � 1 ¼ Nk

uz . This
choice is motivated by the fact that the proposed case studies con-
cern basically the bending response of composite plates, for which
transverse shear strains are known to play a relevant role.

The results are checked against reference solutions in terms of
displacements and stresses, and different sets of boundary and
loading conditions are accounted for. Finally, a set of novel results
is proposed for a composite plate under various boundary
conditions.

4.1. Laminated plate with bisinusoidal load

The first assessment regards the composite plate studied by Vel
and Batra [41], where the generalized Eshelby-Stroh formalism is
applied to derive 3D solutions. Despite the potentialities of the S-
GUF formulation can be fully appreciated in the case of sandwich
configurations, it is interesting to present a preliminary set of
results where the accuracy of the prediction can be demonstrated
in detail. In this sense, the benchmarks proposed by Vel and Batra
are particularly meaningful, as the 3D results are reported by the
authors up to the third/fourth digit, and are available for different
set of boundary conditions.
Table 2
Convergence analysis for a square CSCS plate with a=h=5 subjected to bisinusoidal loading

Theory R uxðh=2Þ uzð0þÞ rxxð�h=2Þ
LD332

5 �1.0513 1.2117 �4.5476
10 �1.0474 1.2154 �4.6515
15 �1.0470 1.2155 �4.6515
20 �1.0470 1.2155 �4.6514
25 �1.0470 1.2155 �4.6515
30 �1.0470 1.2155 �4.6515

3D Ref. [41] �1.0468 1.2175 �4.6300

LD554

5 �1.0515 1.2125 �4.4689
10 �1.0478 1.2169 �4.6377
15 �1.0470 1.2171 �4.6304
20 �1.0467 1.2171 �4.6310
25 �1.0468 1.2171 �4.6312
30 �1.0468 1.2171 �4.6312
40 �1.0468 1.2171 �4.6312
50 �1.0468 1.2171 �4.6312

3D Ref. [41]. �1.0468 1.2175 �4.6300

LD776

5 �1.0515 1.2125 �4.4667
10 �1.0478 1.2170 �4.6523
15 �1.0472 1.2173 �4.6338
20 �1.0467 1.2173 �4.6307
25 �1.0468 1.2173 �4.6311
30 �1.0468 1.2173 �4.6309
40 �1.0468 1.2173 �4.6306
50 �1.0468 1.2173 �4.6307
60 �1.0468 1.2173 �4.6307

3D Ref. [41] �1.0468 1.2175 �4.6300
The structure under investigation is a thick square cross-ply
plate with a width-to-thickness ratio a=h equal to 5. The plate is
made of a unidirectional composite material with elastic properties
E11=E22 = 25, G12 ¼ G12 ¼ 0:5E22; G23 ¼ 0:2E22; mik = 0.25; the stack-
ing sequence is [0/90]. The panel is simply-supported at the two
parallel edges at y = const, and is clamped at the two remaining
edges. A bisinusoidal load is applied on the top-most ply, i.e., the
one oriented at 90, along the positive direction of the axis z.

The results are presented in terms of the nondimensional dis-
placement and stress components at the upper and lower surfaces,
as well as at the interface between the two laminae. These values
are normalized following Ref. [41] as:

ux zð Þ;uy zð Þ�  ¼ 100E22h
2

qa3 ux
a
4
;
b
2
; z

� �
;uy

a
4
;
b
2
; z

� �
 �

uz zð Þ ¼ 100E22h
3

qa4
uz

a
2
;
b
2
; z

� � ð43Þ

rxx zð Þ;ryy zð Þ;rxy zð Þ� ¼ 10h2

qa2
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;z
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� �
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The results of the convergence analysis are reported in Table 2,
and three distinct layerwise theories, LD332, LD554 and LD776, are
considered. To demonstrate the ability of the proposed approach
to obtain highly-accurate results, the number of the shape func-
tions is progressively increased with a step of 5 or 10 terms until
convergence is achieved up to the fourth digit for all the quantities.
As seen from the table, higher-order theories demand for an
increased number of Ritz functions to reach the desired conver-
gence. Indeed, an expansion of 30 � 30 terms is required in the
applied at the top surface (Ref. [41]) using different theories and R� R functions.

ryyðh=2Þ rzzð0þÞ rxyð�h=2Þ ryzð0þÞ rxzð0þÞ

5.6293 0.5736 0.3124 1.0726 1.5283
5.7295 0.5790 0.3119 0.8744 1.5514
5.7244 0.5797 0.3120 0.8743 1.5560
5.7246 0.5790 0.3120 0.8742 1.5539
5.7248 0.5791 0.3120 0.8742 1.5541
5.7248 0.5790 0.3120 0.8742 1.5540
5.7232 0.5788 0.3132 0.8749 1.5503

5.6282 0.5733 0.3141 1.0727 1.5287
5.7295 0.5779 0.3131 0.8748 1.5517
5.7201 0.5790 0.3132 0.8747 1.5527
5.7205 0.5789 0.3133 0.8747 1.5519
5.7226 0.5794 0.3132 0.8748 1.5521
5.7223 0.5788 0.3132 0.8747 1.5518
5.7219 0.5788 0.3132 0.8747 1.5520
5.7220 0.5788 0.3132 0.8747 1.5520
5.7232 0.5788 0.3132 0.8749 1.5503

5.6286 0.5733 0.3141 1.0727 1.5287
5.7306 0.5773 0.3130 0.8748 1.5508
5.7197 0.5801 0.3132 0.8748 1.5522
5.7199 0.5789 0.3132 0.8748 1.5518
5.7239 0.5799 0.3132 0.8748 1.5511
5.7236 0.5788 0.3132 0.8748 1.5515
5.7222 0.5788 0.3132 0.8748 1.5514
5.7227 0.5788 0.3132 0.8748 1.5515
5.7226 0.5788 0.3132 0.8748 1.5515
5.7232 0.5788 0.3132 0.8749 1.5503



Table 3
Comparison with the plate of Ref. [41] using 30 � 30 functions and different boundary conditions and plate theories.

BCs Theory uxðh=2Þ uyð�h=2Þ uzð0þÞ rxxð�h=2Þ ryyðh=2Þ rzzð0þÞ rxyð�h=2Þ ryzð0þÞ rxzð0þÞ
CSCS

ED110 �0.765 1.230 1.257 �3.911 5.153 0.595 0.278 0.898 1.254
ED332 �1.026 1.306 1.182 �4.345 5.551 0.587 0.300 0.839 1.452
ED776 �1.051 1.341 1.209 �4.600 5.684 0.578 0.313 0.880 1.588
LD332 �1.047 1.339 1.215 �4.651 5.725 0.579 0.312 0.874 1.554
LD554 �1.047 1.341 1.217 �4.631 5.722 0.579 0.313 0.875 1.552
LD776 �1.047 1.341 1.217 �4.631 5.724 0.579 0.313 0.875 1.552
3D Ref. [41] �1.047 1.341 1.217 �4.630 5.723 0.579 0.313 0.875 1.550

SSSS
ED110 �1.737 1.737 1.758 �7.157 7.157 0.500 0.485 1.220 1.128
ED332 �1.845 1.869 1.680 �7.510 7.721 0.495 0.518 1.175 1.188
ED776 �1.875 1.902 1.703 �7.634 7.856 0.495 0.527 1.219 1.225
LD332 �1.870 1.898 1.712 �7.681 7.905 0.495 0.527 1.211 1.216
LD554 �1.870 1.899 1.712 �7.671 7.894 0.495 0.527 1.211 1.216
LD776 �1.870 1.899 1.712 �7.671 7.894 0.495 0.527 1.211 1.216
3D Ref. [41] �1.870 1.899 1.712 �7.671 7.894 0.495 0.527 1.211 1.216

FSFS
ED110 �0.538 2.899 2.777 �2.469 11.907 0.363 0.111 1.487 0.334
ED332 �0.558 3.202 2.690 �2.570 12.501 0.356 0.108 1.475 0.429
ED776 �0.566 3.297 2.743 �2.642 12.837 0.358 0.108 1.549 0.424
LD332 �0.564 3.291 2.753 �2.666 12.889 0.358 0.108 1.541 0.416
LD445 �0.565 3.291 2.753 �2.661 12.878 0.358 0.108 1.541 0.415
LD776 �0.565 3.291 2.753 �2.661 12.877 0.358 0.108 1.541 0.415
3D Ref. [41] �0.565 3.291 2.753 �2.660 12.877 0.359 0.108 1.541 0.416
case of the LD332 theory, while 60 � 60 are needed when consider-
ing the LD776 theory. Thanks to the efficient implementation of the
method, the S-GUF-Ritz can be easily adopted to perform high-
fidelity analyses, where high-order theories are used in conjunc-
tion with several Ritz functions. For practical purposes, the conver-
gence can be established by checking the percent change with
respect the results obtained in the previous iterations. In this case,
15 � 15 functions would suffice to obtain a maximum difference of
0.5% with respect to the results obtained with R = 10.

The accuracy of the S-GUF-Ritz results can be noticed from the
comparison with the 3D results obtained by Vel and Batra. A very
close agreement is observed for the three considered LW theories,
i.e., LD332, LD554 and LD776, with maximum percent differences
equal to 0.50%, 0.11% and 0.07%, respectively.

Additional results are presented in Table 3 to verify the ability
of the S-GUF-Ritz method to properly handle different boundary
conditions and to illustrate their effect on the plate response. The
geometric and elastic properties of the plate, as well as the loading
condition, are unchanged with respect to the previous set of
results. In this case, the number of shape functions is taken equal
to 30 � 30, a number of terms sufficient to guarantee a percent dif-
ference below 0.2% with respect to the solution obtained using
R = S = 25. The results are now reported by considering both ESL
and LW theories. A shear correction of 5/6 is used for the ED110 the-
ory (FSDT), while it is set equal to one in the remaining cases.

Overall, it is clear that the adoption of the ED110 theory determi-
nes a significant discrepancy with 3D predictions, and even the
adoption of ED332 leads to percent differences as high as 6%. The
quality of the prediction is improved when ED776 is used, but it
can be observed that the results relative to the normal stress rzz

are still 2% higher than 3D predictions. On the other hand, layer-
wise results are extremely accurate even for the lowest order here
considered, i.e. LD332. The improvement associated with the adop-
tion of theories LD445 and LD776 is restricted to the third digits. As
already highlighted for the results of Table 2, the predictions
obtained using LD776 are almost identical to 3D results: all but
six of the results in Table 3 are identical to the 3D solution of
Ref. [41] up to the third digit.

The through-the-thickness distribution of the transverse shear
stresses rxz and ryz is reported in Fig. 4, where the comparison is
presented against the results of Ref. [41]. The curves of Fig. 4 are
relative to the in-plane position x ¼ a=20; y ¼ b=2, while the
curves of Fig. 4 describe the plate response at the position
x ¼ a=20; y ¼ 0. The results are computed by using 30 � 30 func-
tions and LD776 theory. Boundary conditions of CSCS and FSFS are
assessed in Fig. 4, while CSCS and SSSS conditions are considered
in Fig. 4. The S-GUF-Ritz results are again in excellent agreement
with the 3D predictions reported by Vel and Batra. As seen from
Fig. 4, the transverse stress distribution, for all the boundary con-
ditions here considered, is not parabolic, but is characterized by
a discontinuity of the first derivative at the interface between the
first and the second ply. It can be observed that, depending on
the specific boundary condition, the shape of the stress distribution
changes accordingly. For instance, a stress reversal effect, which is
correctly captured by the present approach, can be observed at the
bottom of the CSCS ply in Fig. 4.

4.2. Sandwich plates with bisinusoidal load

The second set of test cases regards the sandwich panels stud-
ied by Cho and Averill [5], denoted in the next as S1 and S2 panels.
In both cases the structure is a composite sandwich construction
subjected to a bisinusoidally distributed pressure of magnitude q
at the top surface, and simply supported at the four edges. The
panel S1 is a standard sandwich configuration with a 5-ply face-
sheet and a relatively weak core, while the panel S2 is a complex
multilayered panel with 55 plies made of 5 different materials.

4.2.1. Panel S1
Panel S1 is a thick square plate, characterized by a ratio a=h

equal to 4, and hf=h equal to 0.1. The elastic properties of the mate-
rials are summarized in Table 4, where M1 to M3 identify the
materials of the facesheets, and C1 is the material used for the core.
The stacking sequence, in terms of materials used for the eleven
plies and their relative thickness, is presented in Table 5. Note that
the material properties are reported in the laminate reference sys-
tem, thus all the plies are assumed to be oriented at 0.

The S-GUF-Ritz results are computed by using two models with
a similar number of Theory-related Degrees Of Freedom (T-DOF).
Goal of this assessment is to highlight the advantages related to



(a) (b)

Fig. 4. Transverse shear stresses versus nondimensional thickness coordinate for square [0/90] laminate with different boundary conditions: (a) rxz=rmax
xz at

x ¼ a=20; y ¼ b=2, (b) ryz=rmax
yz at x ¼ a=20; y ¼ 0.

Table 4
Material elastic properties for sandwich panel S1 (Ref. [5]).

M1 M2 M3 C1

E11 (MPa) 6900 224800 172400 345
E22 (MPa) 172400 69000 69000 1034
E33 (MPa) 6900 69000 69000 345
G12 (MPa) 3450 56600 3450 150
G13 (MPa) 1380 56000 3450 150
G23 (MPa) 3450 3450 1380 290
m12 0.01 0.10 0.25 0.01
m13 0.25 0.10 0.25 0.15
m23 0.25 0.25 0.25 0.15
the subdivision of the panel into sublaminates, and the improved
accuracy of the results in comparison to an equivalent single the-
ory with a similar number of degrees of freedom.
Table 5
Lay-up of sandwich panel S1 of Ref. [5].

hp/h 0.01 0.025 0.015 0.020 0.030

Material M1 M2 M3 M1 M3

(a)

Fig. 5. Nondimensional in-plane stresses versus nondimensional thickness coordinate fo
The first model to be considered is FSDT/ED332/FSDT and is
based upon the definition of three sublaminates: the first-order
shear deformation theory is assumed for the two facesheets, while
the core is modeled according to an ED332 theory. The second
model employs one single sublaminate for which the high-order
ESL theory ED554 is adopted. Note that the two approaches have a
comparable number of T-DOF, 15 and 17, respectively, thus yield-
ing a similar total size of the problem. In both cases, the results
were found to be converged with a number of 50 � 50 shape
functions.

The through-the-thickness distribution of the in-plane stress
components rxx and rxy is plotted in Fig. 5, where the 3D elasticity
solution taken from Ref. [5] is reported. For clarity purposes, the
region relative to the facesheet is shaded in light gray. A very good
matching can be appreciated between the elasticity solution and
0.800 0.03 0.02 0.015 0.025 0.01

C1 M3 M1 M3 M2 M1

(b)

r sandwich panel S1: (a) rxx=q at x ¼ a=2 and y ¼ b=2, (b) rxy=q at x ¼ 0 and y ¼ 0.



(a) (b)

Fig. 6. Nondimensional transverse stresses versus nondimensional thickness coordinate for sandwich panel S1: (a) rxz=q at x=0 and y=b/2, (b) rzz=q at x ¼ a=2 and y ¼ b=2.

Fig. 7. Stacking sequence and sublaminate representation of the sandwich panel S2.
the FSDT/ED332/FSDT, for both the direct and the shear stress com-
ponents rxx and rxy. On the contrary, the results computed with
the pure ESL approach display significant deviations from the ref-
erence solution and an underestimation of the minimum stress
rxx as high as a 50%, see Fig. 5. Fig. 6 presents the plot of the trans-
verse stress components rxz and rzz. Close matching can be
observed for both stress components between the exact solution
and the distributions obtained with the FSDT/ED332/FSDT model.
On the contrary, the ED554 model overestimates rxz in the lower
facesheet and the core and underestimates it in the upper face-
sheet. The advantage of adopting a sublaminate description is thus
clear.

4.2.2. Panel S2
The configuration of Panel S2 is taken from the work of Cho and

Averill [5] and is inspired from the panels of the US Army
Composite Armored Vehicle (CAV). The panel is square and has a
width-to-thickness ratio equal to 4 (a ¼ b ¼ 172 mm, total thick-
ness h ¼ 43 mm). The laminate is obtained by stacking 55 plies
made of five different materials, whose elastic properties are
summarized in Table 6. The elastic properties of the three glass
fiber materials are quite similar. On the other hand, the ceramic
has good in-plane properties but relatively weak transverse mod-
uli, while the rubber is characterized by weak mechanical proper-
ties in all the directions. Based on this observation, the panel can be
subdivided into three distinct regions: the inner shell, consisting in
the first 41 plies, the armor core, composed of the rubber and cera-
mic layer, and the outer shell, composed of the remaining 12 plies.

A sketch of the panel is provided in Fig. 7. The figure illustrates
the distribution of the materials along the thickness direction, the
Table 6
Material elastic properties for the sandwich panel S2 (composite armored vehicle
CAV) of Ref. [5].

Glass fabric
A (GFA)

Glass
tow (GT)

Glass fabric
B (GFB)

Rubber Ceramic

E11 (MPa) 20700 42700 20700 21 34500
E22 (MPa) 20700 6900 20700 21 34500
E33 (MPa) 8270 6900 7580 21 860
G12 (MPa) 6900 2070 6900 6.90 17240
G13 (MPa) 3170 2070 2690 6.90 59
G23 (MPa) 3170 2070 2690 6.90 59
m12 0.13 0.29 0.13 0.45 0.15
m13 0.18 0.29 0.18 0.45 0.15
m23 0.18 0.37 0.18 0.45 0.15
angles of orientations, and the thicknesses of the various regions.
Furthermore, the figure reports the idealization of the structure
into three sublaminates, which is successively used for the analy-
sis: the first and the third sublaminates correspond to the inner
and the outer shells, respectively, while the second sublaminate
is representative of the core region.

Two models are considered for the analysis: ED554 is a high
order ESL theory, while FSDT/LD332/FSDT is a typical S-GUF model,
through which a simple FSDT kinematics is used for the outer and
inner shells and a high order LW model is adopted for the armor
core. The choice of a layerwise description for the core is motivated
by the large difference between the elastic properties of the
ceramic and rubber plies constituting the armor. The number of
T-DOF is 17 for the former model and 23 for the latter one. The
number of shape functions is 50 � 50.

The in-plane stresses are reported in Fig. 8, where the light gray
area is relative to the glass-fiber facesheets, while the diagonal
cross pattern highlights the thin rubber layer region. The results
are compared to the exact solution reported by Cho and Averill
(note that all the plies are oriented at 0 and 90, thus an exact solu-
tion of the 3D problem can be derived). As seen from the plot of rxx

in Fig. 8, the ED554 model, despite the relatively high-order of the
expansion, cannot properly capture the trend. Even the maximum
and the minimum stresses, which can be interesting parameters
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Fig. 8. Nondimensional in-plane stresses versus nondimensional thickness coordinate for sandwich panel S2: (a) rxx=q at x ¼ a=2 and y ¼ b=2, (b) rxy=q at x ¼ 0 and y ¼ 0.

(a) (b)

Fig. 9. Comparison between different theories for shear stress rxy=q at x ¼ 0 and y ¼ 0 (sandwich panel S2).
for design purposes, are poorly predicted. On the other hand, the
proposed sublaminate description FSDT/LD332/FSDT allows for a
refined stress analysis, and the results are almost identical to the
exact ones. The same considerations hold for the shear stress at
the plate corner, whose plot is presented in Fig. 8. In this case, a
slight discrepancy between FSDT/LD332/FSDT and exact solution
can be observed in the armor core region. While the quality of
these predictions is still retained satisfactory, it is interesting to
investigate the possibility of achieving even more detailed predic-
tions by improving the order of the plate theories of the S-GUF
model. More specifically, the effect increasing the order of the core
is made clear in Fig. 9. In this case, additional results are reported
referring to the model FSDT/LD554/FSDT. As seen, they are in close
agreement with the exact solution, and the oscillating behavior
observed with the FSDT/LD332/FSDT model is substantially
reduced. In the topmost part of the zoom area, a small difference
can be observed between the refined and the exact solution, due
to the inability of the FSDT/LD554/FSDT model to capture the abrupt
change of slope between the core and the upper facesheet. This
minor discrepancy can be removed, as highlighted in Fig. 9, by
increasing the order of the theory in the facesheet region. In fact,
the results obtained with the ED332/LD554/ED332 theory are almost
indistinguishable from the exact ones. This latter model is charac-
terized by a relatively high number of T-DOF, that is equal to 47,
but, at same time, the accuracy of the predictions is comparable
to a more expensive 3D solution. Indeed one of the advantages of
the proposed S-GUF-Ritz method is the possibility of deriving
quasi-3D predictions even in the case of stacking sequence or
boundary conditions for which 3D exact solutions cannot be
derived.

The response in terms of transverse stresses is presented in
Fig. 10, where both the shear and the normal components rxz

and rzz are reported. Despite the recovery of the transverse stres-
ses is performed by integration of the 3D equations – which has
the effect of improving the quality of the prediciton even in the
case of relatively low-order models – the quality of the results
obtained with the ED554 model is rather poor. On the contrary,
the adoption of the sublaminate description FSDT/LD332/FSDT pro-
vides high-quality results, in good agreement with the 3D exact
solution. For completeness, the results are presented also in terms
of normal deformation ezz in Fig. 11. In this case, the facesheets
cannot be modeled using FSDT, as far as the zero order description
of the transverse displacement is associated with a null transverse
deformation. For this reason, the results are reported with a
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Fig. 10. Nondimensional transverse stresses versus nondimensional thickness coordinate for sandwich panel S2: (a) rxz=q at x ¼ 0 and y ¼ b=2, (b) rzz=q at x ¼ a=2 and
y ¼ b=2.

Table 7
Material elastic properties for sandwich panel S3 (Ref. [39]).

Carbon/Epoxy Honeycomb PVC foam

E11 (MPa) 157890 0.3067 103
E22 (MPa) 9584 0.2779 103
E33 (MPa) 9584 3833 103
G12 (MPa) 5957 23 40
G13 (MPa) 5957 757 40
G23 (MPa) 2537 633 40
m12 0.32 0.99 0.30
m13 0.32 3 � 10�5 0.30
m23 0.48 3 � 10�5 0.30

Fig. 11. Transverse normal strain ezz=ezz;max versus nondimensional thickness
coordinate at x ¼ a=2 and y ¼ b=2 (sandwich panel S2).
sublaminate model ED332/LD332/ED332. As expected, the highest
values of ezz are experienced by the panel in correspondence of
the rubber layer, i.e. the material with the weakest elastic proper-
ties. Noticeable transverse deformation is observed also in the
ceramic part of the armor core, where the transverse elastic mod-
ulus is approximately one order of magnitude smaller in compar-
ison to the glass fiber plies of the outer facesheets. Even in this
case, the results are very close to the reference solution, demon-
strating the quality of the results obtained with the S-GUF-Ritz
method.

4.3. Sandwich plate with localized load

4.3.1. Panel S3
The challenging test case proposed by Barut et al. [39] is next

investigated, which permits to further highlight the capabilities
offered by the S-GUF-Ritz method. In this case, the sources of com-
plexity are, on the one hand the abrupt change of mechanical prop-
erties along the thickness direction, on the other hand the presence
of a localized loading condition. This latter aspect can be particu-
larly difficult to be handled in the context of a formulation based
on the use of global shape functions. However, as demonstrated
next, the efficiency of the implementation allows to easily consider
a high number of functions, thus making it possible to capture even
local effects.

The panel under investigation is square and characterized by a
width-to-thickness ratio of 10. Simply-supported boundary condi-
tions are considered at the four edges, while the load is a localized
pressure of intensity q = �1000 lb/in2, applied at the top surface of
the panel and acting opposed to the positive direction of the z-axis.
The loaded area is a square of dimension a=10� a=10 located at the
plate center. The thickness of each facesheet is equal to 10% of the
total panel thickness, i.e. hf=h = 0.1, thus the core corresponds to
80% of the total thickness. The facesheets are cross-ply laminates
made of carbon/epoxy plies stacked as [0/90]5 (outer plies oriented
at 0). Two distinct materials are considered for the core, namely a
soft PVC foam and a honeycomb. The elastic properties of all mate-
rials are taken from [39] and summarized in Table 7.

The results are computed with a number of 60 � 60 shape func-
tions, chosen on the basis of a preliminary convergence analysis.
Two kinematic formulations are considered for this example,
ED554 and FSDT/ED332/FSDT, where in the latter model the sublam-
inates represent the two facesheets and the core.

All results are compared against the exact 3D results reported
by Barut et al. [39] which, in turn, are obtained by implementing
the exact solution of Anderson et al. [42]. The deformed configura-
tion is illustrated in Fig. 12 with regard to the panel cross-section
at y ¼ b=2 for the two core materials. It can be seen that the dis-
placement of the honeycomb-core panel is smaller than that of
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Fig. 12. Transverse displacement of upper and lower facesheets at y=b/2 for sandwich panel S3 with: (a) PVC core, (b) honeycomb core.

(a) (b)

Fig. 13. Normal stresses rxx=q versus nondimensional thickness coordinate at x ¼ a=2, y ¼ b=2 for sandwich panel S3 with: (a) PVC core, (b) honeycomb core.
the panel with the PVC core. The local indentation due to the local
load introduction is clearly visible in both cases, with a more pro-
nounced effect on the top facesheets. The results of the FSDT/
ED332/FSDT model are in close agreement with the exact solution,
except from a negligibly small overestimation of the transverse
displacement of the bottom facesheet of the honeycomb core
panel. The results obtained with the ED554 model are very close
to exact solution in the case of the honeycomb core, but the predic-
tions are not accurate for the PVC-core configuration. As seen from
Fig. 12, the underestimation of the transverse displacement at the
upper and lower facesheets is noticeable.

The through-the-thickness behavior of rxx at the center of the
panel is reported in Fig. 13. The plots are restricted to the facesheet
region, and the comparison is illustrated against the 3D exact solu-
tion. Overall, the quality of the FSDT/ED332/FSDT results is higher in
comparison to the ED554 model. In particular, the comparison with
the exact solution reveals nearly coincident results for the panel
with the PVC core, while close agreement – although not identical
results – can be seen in the case of the honeycomb core. It is inter-
esting to observe a significantly different mechanical response
between the panel with honeycomb core and that with PVC core.
In the former case, the top and bottom facesheets are entirely sub-
jected to a compressive and tensile stress state, respectively, see
Fig. 13. This behavior is significantly different from what is
observed in Fig. 13 for the case of the PVC core: here, the core is
responsible for a poor load transfer between the facesheets, that
are thus subjected to a localized bending as testified by the co-
existence of tensile and compressive stresses in both the
facesheets.

The transverse stresses rxz, evaluated at x = a/2 and y = b, are
presented in Fig. 14. In this case, the two theories lead to similar
predictions, which are in substantial agreement with the reference
solution. On the contrary, some differences between the two theo-
ries can be seen in terms of the transverse normal stress, as
reported in Fig. 15. The discrepancy between FSDT/ED332/FSDT
and ED554 results is more evident for the PVC core. In this case,
the weakest transverse elastic moduli is responsible for noticeable
kinks at the face/core interface. While these sudden changes of
slope are properly predicted by the three-sublaminate model, the
ESL model tends to smooth the effect and provides less accurate
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Fig. 14. Transverse stresses ryz=q versus nondimensional thickness coordinate at x ¼ a=2, y ¼ b for sandwich panel S3 with: (a) PVC core, (b) honeycomb core.

(a) (b)

Fig. 15. Transverse normal stresses rzz=q versus nondimensional thickness coordinate at x ¼ a=2, y ¼ b=2 for sandwich panel S3 with: (a) PVC core, (b) honeycomb core.
results. This behavior is less evident for the honeycomb-core panel,
where the change of elastic properties along the thickness
direction is milder. It follows that the normal stress is character-
ized by a smoother response, which can be correctly predicted
even in the context of a single sublaminate model.

4.4. Additional benchmark results

In the previous sections, close agreement between S-GUF-Ritz
and 3D results has been demonstrated in those cases for which
the elasticity problem can be solved in exact manner. In order to
exploit the potentialities of the formulation here proposed, a set
of novel results is now presented for a panel, here denoted as S4,
subjected to different sets of boundary and loading conditions.
These results should prove to be useful for future benchmarking
purposes. The stacking sequence of the panel is presented in
Fig. 16, while the materials are those reported in Table 6. Note that
the ply angles are no longer restricted to 0 and 90, but a more real-
istic stacking sequence is now considered that includes plies at
�45. Two distinct loading conditions are assumed, as sketched in
Fig. 16: a bisinusoidal and a uniformly distributed pressure,
applied at the top of the plate.

The results are presented by considering four different
sublaminate models of increasing complexity. The first one,
FSDT/ED332/FSDT, has 15 T-DOF and employs a FSDT description
of the inner and the outer shell, while the two-layer core is repre-
sented with an equivalent single layer approach. To highlight the
potential benefits of an improved core description, the second
model is chosen to be FSDT/LD332/FSDT, in which a layerwise
approach is adopted for the core, while the facesheets are still
modeled referring to FSDT. The third set of results is computed
by refining the description of the inner shell, i.e., the thicker one,
by replacing the FSDT model with a ED332 theory. Finally, in the
fourth configuration both the inner and the outer shell are
modeled using ED332 theory. The results obtained with this
latter model, although not exact, are here taken as reference. The
number of T-DOF of the latter three models are 23, 29 and 35,
respectively.
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Fig. 16. Sandwich panel S4: (a) stacking sequence and sublaminate representation, (b) loading conditions.

Table 8
Panel S4 subjected to bisinusoidal pressure.

Theory Boundary conditions

SSSS SCSC CCCC

uz (mm) rxx=q ryy=q uz (mm) rxx=q ryy=q uz (mm) rxx=q ryy=q
FSDT/ED332/FSDT SL3 (top) 0.1684 3.3805 3.3790 0.1291 2.7376 2.6474 0.1069 2.2402 2.2406

SL1 (top) 0.1453 15.9007 3.1813 0.1057 11.3650 2.5381 0.0833 9.9997 2.0219
SL1 (bot) �9.4014 �9.4632 �6.8882 �7.4708 �5.7842 �5.8800

FSDT/LD332/FSDT SL3 (top) 0.1975 4.6254 4.6252 0.1504 3.6555 3.6458 0.1254 3.0540 3.0597
SL1 (top) 0.1599 18.8871 3.7877 0.1120 13.0617 2.9262 0.0866 11.2964 2.2889
SL1 (bot) �10.1896 �10.2340 �7.1706 �8.0346 �6.1001 �6.1967

ED332/LD332/FSDT SL3 (top) 0.1960 4.5906 4.5904 0.1494 3.6298 3.6177 0.1246 3.0327 3.0351
SL1 (top) 0.1584 19.7585 4.3221 0.1110 13.7348 3.5163 0.0858 12.3554 2.8573
SL1 (bot) 0.1574 �10.4511 �10.4792 0.1099 �7.4304 �8.4450 0.0847 �6.4779 �6.5414

ED332/LD332/ED332 SL3 (top) 0.1962 4.7535 4.7533 0.1496 3.7841 3.8045 0.1249 3.2164 3.2188
SL1 (top) 0.1583 19.7462 4.3194 0.1109 13.7260 3.5142 0.0857 12.3491 2.8558
SL1 (bot) 0.1573 �10.4444 �10.4725 0.1098 �7.4254 �8.4402 0.0846 �6.4745 �6.5380

Table 9
Panel S4 subjected to uniformly distributed pressure.

Theory Boundary conditions

SSSS SCSC CCCC

uz (mm) rxx=q ryy=q uz (mm) rxx=q ryy=q uz (mm) rxx=q ryy=q
FSDT/ED332/FSDT SL3 (top) 0.2474 4.0666 4.0587 0.1797 2.9530 2.8201 0.1417 2.1264 2.1236

SL1 (top) 0.2248 22.8195 4.5491 0.1565 15.0284 3.4502 0.1181 12.7588 2.5732
SL1 (bot) �13.5526 �13.5938 �9.2324 �10.1966 �7.3887 �7.4914

FSDT/LD332/FSDT SL3 (top) 0.2857 5.4657 5.4562 0.2050 3.7981 3.7867 0.1624 2.7852 2.7882
SL1 (top) 0.2487 27.5404 5.5051 0.1666 17.5677 4.0408 0.1234 14.6625 2.9634
SL1 (bot) �14.8438 �14.8545 �9.6834 �11.1078 �7.8966 �7.9998

ED332/LD332/FSDT SL3 (top) 0.2833 5.4101 5.3987 0.2033 3.7589 3.7415 0.1612 2.7539 2.7499
SL1 (top) 0.2463 28.4188 6.0458 0.1649 18.1087 4.6803 0.1221 15.8877 3.5689
SL1 (bot) 0.2453 �15.0150 �14.9969 0.1639 �9.8610 �11.5261 0.1210 �8.2630 �8.3124

ED332/LD332/ED332 SL3 (top) 0.2833 5.5735 5.5620 0.2035 3.9049 3.9565 0.1614 2.9646 2.9606
SL1 (top) 0.2461 28.4039 6.0427 0.1648 18.0996 4.6783 0.1220 15.8838 3.5681
SL1 (bot) 0.2451 �15.0070 �14.9889 0.1637 �9.8554 �11.5222 0.1210 �8.2616 �8.3111
Numerical results are reported in Tables 8 and 9 for the bisinu-
soidal and the uniform loading, respectively. In order to ensure the
convergence up to the third digit, results are calculated using
60 � 60 Ritz functions. Three sets of boundary conditions are con-
sidered, namely simply-supported panel (SSSS), fully clamped
(CCCC), and an intermediate condition with two parallel sides
simply-supported and the other two clamped (SCSC). The trans-
verse displacement uz and the stresses rxx and ryy are reported
at the center of the panel, at three locations along the thickness
direction: the top of the outer shell, and the top and bottom of
the inner shell.

As seen from Tables 8 and 9, the predictions obtained using
FSDT/ED332/FSDT display a noticeable discrepancy with the results
obtained with the more refined models. The stress components at
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Fig. 17. Nondimensional in-plane stresses versus nondimensional thickness coordinate for sandwich panel S4 subjected to bisinusoidal loading: (a) rxx=q at x ¼ a=2 and
y ¼ b=2, (b) rxy=q at x ¼ 0 and y ¼ 0.

(a) (b)

Fig. 18. Nondimensional transverse stresses versus nondimensional thickness coordinate for sandwich panel S4 subjected to bisinusoidal loading: (a) rxz=q at x ¼ a=8 and
y ¼ b=2, (b) rzz=q at x ¼ a=2 and y ¼ b=2.
the outer shell (SL3) are underestimated by more than 25% in all
the cases, and even the out of plane displacement, which is in fact
a global quantity, differs of more than 10% with respect to the ref-
erence solution. It is clear that the composite core, made out of two
materials with a drastic variation of the elastic properties along the
z direction, calls for a layerwise description.

Adopting the FSDT/LD332/FSDT theory provides a significant
improvement of the quality of the results, thus demonstrating
the need for a properly refined core modeling. The results can be
considered satisfactory especially for the third sublaminate, SL3,
representing the outer shell. It can be observed that the transverse
displacements are predicted with a maximum difference that is
below 1% with respect to the reference solution. On the contrary,
the prediction of the stresses is less accurate, especially in corre-
spondence of the inner shell (SL1), where the differences can be
higher than 10%. As seen from Fig. 16, the inner shell is approxi-
mately seven times thicker than the outer shell. It follows that
FSDT can be appropriate for modeling SL3, while the adoption of
a higher-order theory is beneficial to improve the stress prediction
inside SL1. As expected, the trend of the results is similar for the
bisinusoidal and the uniform load.

The plots of the through-the-thickness stress distributions for
the bisinusoidal loading condition is provided in Figs. 17 and 18.
The results are obtained with the ED332/LD332/FSDT theory. The
normalized in-plane stresses are reported in Fig. 17. Fig. 17 shows
that the intensity of the bending stresses increases as the con-
straints are removed from the panel. The fully clamped panel is
the one associated with the lower magnitude of bending
deflections, thus the stress level is the smallest among the three
configurations. On the contrary, the SSSS panel is the one undergo-
ing the highest amount of in-plane stress rxx. Fig. 17 reports the
distribution of the in-plane shear stress rxy evaluated at one of
the four corners. The shear stress is obviously nil in the CCCC case,
whereas it is of the same order of magnitude of the bending stress



for the SSSS and the SCSC configurations. The role played by the
boundary conditions is thus relevant and the magnitude of the
stresses changes in the three cases here examined.

The normalized transverse stress response in presented in
Fig. 18. Fig. 18 reveals a similar trend of the transverse shear stress
rxz for the three cases, where the CCCC panel appears to build the
highest stress level. The normal stress components rzz is finally
reported in Fig. 18, where the response can be seen as almost
insensitive to the boundary conditions.

5. Conclusions

The paper has illustrated the development of a numerical tool,
here denoted as S-GUF-Ritz, for the bending analysis of
multilayered structures. The method combines the idealization of
the structure based on the S-GUF theory and the method of Ritz
for the approximate solution of the problem.

Main advantage of the proposed approach is the possibility of
combining any sort of axiomatic theories, ELS or LW, while divid-
ing the plate into an arbitrary set of sublaminates. This strategy
has the effect of providing great flexibility of analysis, and can be
exploited to refine the kinematic description only in those regions
where refinement is effectively needed. As a consequence, the
number of degrees of freedom can be kept at minimum, while
guaranteeing high fidelity of the results. Despite the generality of
the approach, the theoretical formulation is achieved in a simple
manner, and relies on the expansion and assembly of theory-
independent expression, denoted kernels.

Sandwich panels are typical configurations that can benefit
from the capabilities offered by the S-GUF-Ritz approach, where
the two facesheets and the core can be modeled with three distinct
sublaminates. However, any other combination can be defined,
without any sort of restriction. The importance of allowing the
choice between different theories has been demonstrated in the
examples discussed in the paper. For instance, the sandwich panels
S1 and S3, whose core is made of one single material, are properly
modeled with a FSDT/ED332/FSDT model. On the other hand, the
configurations S2 and S4, where the core is composed of two dis-
tinct materials, demand the adoption of a layerwise core modeling.
At least, a FSDT/LD332/FSDT model is needed in these cases. As
discussed in the paper, the quality of the predictions obtained by
means of a sublaminate modeling is much higher in comparison
to purely ESL models with comparable number of degrees of
freedom. Thanks to the efficient implementation of the method, a
relatively high number of shape functions can be considered, and
refined results can be obtained both in terms of global and local
quantities, such as the stress field arising from localized loads.
The comparison with 3D exact solutions from the literature reveals
very close matching with S-GUF-Ritz results, both in terms of
in-plane and transverse stress components. In addition, the Ritz
solution offers the possibility of accounting for any combination
of boundary conditions along the four panel edges, and no
restrictions are introduced with regard to stacking sequences.
The S-GUF-Ritz method is then an interesting method to perform
the stress analysis of a wide range of configurations that go beyond
the academic benchmark ones and for which no exact elasticity
solution is available.

The effectiveness of the proposed approach suggests its exten-
sion to other kinds of solution procedures, such as buckling, free
vibration, dynamic transient analyses. These topics are being cur-
rently investigated and are the subjects of ongoing research
activities.
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A.1. Principle of Virtual Displacements
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i

¼ du
Nk
p ;Nk

z0i

Z
X
Nuzif

top
z dXþ du1;1

z1i

Z
X
Nuzif

bot
z dX ð45Þ
A.2. Stiffness matrix

Define the matrices Idefg
urus such that:

Idefg
urus

� �
ij
¼ Idefg

urusij
ð46Þ

where Idefg
urusij

is defined by Eq. (30). The sub-blocks composing the
stiffness matrix of Eq. (41) are:



Kuxux ¼ I1010
uxux � Zuxux11 þ ðI1001

uxux þ I0110
uxux Þ � Zuxux16 þ I0101

uxux � Zuxux66

þ I0000
uxux � Z@ux@ux55

Kuxuy ¼ I1001
uxuy � Zuxuy12 þ I1010

uxuy � Zuxuy16 þ I0101
uxuy � Zuxuy26

þ I0110
uxuy � Zuxuy66 þ I0000

uxuy � Z@ux@uy45

Kuxuz ¼ I0010
uxuz � Z@uxuz55 þ I0001

uxuz � Z@uxuz45 þ I1000
uxuz � Zux@uz13

þ I0100
uxuz � Zux@uz36

Kuyuy ¼ I0101
uyuy � Zuyuy22 þ ðI0110

uyuy þ I1001
uyuy Þ � Zuyuy26 þ I1010

uyuy � Zuyuy66

þ I0000
uyuy � Z@uy@uy44

Kuyuz ¼ I0010
uyuz � Z@uyuz45 þ I0001

uyuz � Z@uyuz44 þ I0100
uyuz � Zuy@uz23

þ I1000
uyuz � Zuy@uz36

Kuzuz ¼ I1010
uzuz � Zuzuz55 þ ðI1001

uzuz þ I0110
uzuz Þ � Zuzuz45 þ I0101

uzuz � Zuzuz44

þ I0000
uzuz � Z@uz@uz33

ð47Þ
where the symbol � denotes the Kronecker product, which is
defined as:

A� B ¼
A11B . . . A1NB

..

. ..
.

AM1B . . . AMNB

2
664

3
775 ð48Þ

Note that the matrix resulting from the product A� B has dimen-
sion ðM � PÞ � ðN � QÞ if M � N and P � Q are the dimensions of
the matrices A and B, respectively.

A.3. Vector of loads

Define the vectors Ibot
uzf z

and I top
uzf z

such that:

I top
uzf z

� �
i
¼ I top

uzf zi
Ibot
uzf z

� �
i
¼ Ibot

uzf zi
ð49Þ

where Ibot
uzf z i

and I top
uzf z i

are defined by Eq. (28).

The vectors of the external loads are defined as:

L ¼ I top
uzf z

� Ltop
i þ Ibot

uzf z
� Lbot

i ð50Þ
with:

Ltop
i ¼ 0 0 Ltop

zi

� 	T
Lbot
i ¼ 0 0 Lbot

zi

n oT
ð51Þ

where the vectors Ltop
i and Lbot

i are defined by Eq. (38).
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