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1. Introduction into. This results in an overall number of unknowns that depends
The ongoing transition of composite structures from secondary
structural applications to primary load-bearing structures
demands dedicated models that are capable of an accurate deter-
mination of both gross and local response. The great interest in
theoretical and computational models for multilayered panels is
witnessed by the large number of reviews appraising the develop-
ments in this field, e.g., [1–6]. The very large majority of models
has been constructed following the axiomatic approach, in which
some constraining hypotheses are postulated about the behavior
along the panel’s thickness of the displacement field (displacement
approach), the stress field (stress approach) or both displacement
and stress fields (mixed approach) [5]. The present contribution
also focuses on this axiomatic approach.

A convenient classification of axiomatic models for composite
multilayered panels identifies Equivalent Single Layer (ESL) and
Layer-Wise (LW) models [7]. In an ESL approach, the heteroge-
neous layup is homogenized to represent an anisotropic material
that includes membrane-bending as well as extension-shear
coupling. The resulting computational models have a number of
unknowns that is independent of the number of plies constituting
the panel. In a LW approach, the constraining hypotheses are for-
mulated in each layer the composite layup has been subdivided
on the number of layers. In-between ESL and LW theories,
Zig–Zag theories allow to represent to a certain extent the charac-
teristic heterogeneity of composite structures while still retaining
a number of unknowns that is independent of the number of plies
constituting the multilayered panel [8].

A direct implementation of the LW approach consists in
assuming the same behavior for all physical plies constituting
the multilayered structure. This model has the evident drawback
of involving a very large number of unknowns when the composite
structure is made of a large number of plies. The total number of
unknowns of a LW model may be optimized in two manners. On
the one hand, the number of layers can be minimized, i.e., several
physical plies can be regrouped into one sublaminate whenever it
appears convenient. On the other hand, the number of unknown
parameters of the models of each sublaminate may be minimized
by introducing dedicated assumptions that account for its geomet-
rical and/or physical properties. This is a natural approach for
sandwich panels, in which different hypotheses are formulated
for the thin and stiff faces and the relatively thick and soft core,
see, e.g. [9,4]. Reddy’s LW model [10,11] implements these aspects
by subdividing the layup into an arbitrary number of sublaminates
and giving the possibility of defining the through-thickness behav-
ior of the displacement field in each sublaminate independently.

A very flexible modeling tool for composite structures has been
introduced by Carrera [12,13] in terms of a Unified Formulation,
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Fig. 1. The proposed Sublaminate-GUF (S-GUF) broadens the flexibility of CUF/GUF by allowing to formulate different GUF-type models for separate sublaminates.
i.e., a compact index notation that permits to write the governing
equations of different models within a unique computer program.
The advantages of such an approach are multiple: it is possible to
directly assess with the same computer code several models for
establishing their range of applicability [14–16]; to determine
the optimal model for a given problem in terms of accuracy versus
computational cost [17,18]; or to implement a global–local sub-
modeling approach by coupling less accurate models with low
computational cost with more accurate and computationally
expensive models [19,20].

In the original Carrera’s Unified Formulation (CUF), the con-
straining hypotheses for the displacement field can be introduced
within the weak forms expressed by the Principle of Virtual Dis-
placements (PVD) or Reissner’s Mixed Variational Theorem (RMVT)
[21]. RMVT allows to additionally introduce independent approxi-
mations for the transverse stress field, for instance for a priori
fulfilling the interlayer equilibrium. In CUF, the displacement field
can be described in either LW or ESL manner, possibly including a
Zig–Zag function for improving the ESL description, whereas trans-
verse stresses are always taken LW. Moreover, the order of the
polynomial approximation through the thickness of the panel (in
an ESL description) or of the layer (in a LW description) may be
freely selected, but it is taken to be the same for all unknown func-
tions. This latter limitation has been removed by the Generalized
Unified Formulation (GUF) proposed by Demasi [22,23], where dif-
ferent orders can be introduced for the approximation of different
field variables. Demasi [24] further extended his PVD-based GUF
upon allowing independent ESL or LW descriptions for each
displacement component. However, in both GUF and CUF the same
hypotheses (i.e., ESL or LW description and approximation order) are
used for all the plies of the composite. A recent development
dedicated to sandwich plates extended the RMVT-based CUF to
use an ESL description of the displacement field at the composite
face sheets level, while using a Layer-Wise description for the
sandwich level [25]. Similar ideas have been also recently imple-
mented by Messina [26] by referring to Adaptive-Global
Piecewise-Smooth Functions (A-GPSF).

The present contribution extends in a systematic way the above
Unified Formulations by introducing the sublaminate concept of
Reddy [10]: different hypotheses expressed through the most flex-
ible GUF are formulated at a sublaminate level. As a result, each
field variable pertaining to the PVD or RMVT approach, can be
described in either ESL or LW manner and with an independent
order of the polynomial approximation inside each arbitrarily
defined sublaminate. The computational cost can be hence
optimized by enriching the approximation - within the variable
kinematics modeling freedom offered by the Unified Formulation
– only in those sublaminates that deserve a refined description.
This is the main novelty of the present work and is schematically
illustrated in Fig. 1. It appears useful to emphasize that the pro-
posed formulation is an extension of existing variable kinematics
modeling approaches by comparing it with the latest develop-
ments concerning GUF and CUF reported in [24,25], respectively.
On the one hand, the PVD-based development of [24] is extended
by enhancing the modeling flexibility through the introduction of
sublaminates and by addressing also RMVT-based models; note
that all established GUF models can be retrieved as special cases
of the proposed formulation by representing the whole composite
section as only one sublaminate. On the other hand, the approach
proposed in [25] is extended by expressing the assumptions within
GUF instead of CUF and by allowing also the use of PVD-models.
Therefore, the proposed S-GUF permits a further optimization of
the computational cost, with respect to [24] by allowing to select
different approximations for different sublaminates and with
respect to [25] by allowing to use different approximations for dif-
ferent field variables in each sublaminate.

The paper is organized as follows. A literature review is
proposed in Section 2 for introducing several models that will be
used in the numerical evaluations proposed in the paper. Section 3
details out the Sublaminate-GUF. Section 4 proposes a naming con-
vention for the models formulated in the framework of S-GUF. The
numerical assessment in Section 5 addresses bending problems of
simply supported, rectangular and orthotropic sandwich plates for
which a closed-form Navier-type solution exists. Section 6 closes
the paper with a brief summary and an outlook towards further
work.

2. Literature review

Typical examples of ESL models are the Classical Laminate The-
ory (CLT), and the First-order Shear Deformation Theory (FSDT)
[11]. Both CLT and FSDT rely on the plane stress hypothesis dis-
carding the transverse normal stress and refer to the reduced 2D
constitutive law [27]. The accuracy of FSDT is known to depend
on problem-specific Shear Correction Factors (SCF), which numer-
ically tune the transverse shear deformability of the model [28].

Higher-order Shear Deformation Theories (HSDT) are con-
structed by introducing more permissive hypotheses about the
transverse shear deformation, although the plane stress condi-
tion is still retained. Shear Correction Factors are no longer
required in HSDT. Ambartsumyan’s and Reddy’s third-order the-
ory [29,30], based on a mixed approach with a quadratic varia-
tion of the transverse shear stresses and a cubic one for the
in-plane displacements, or the displacement-based Sinus model
of Touratier [31] count among the most representative HSDT.
The discard of the transverse normal stress appears justified in
absence of significant loading gradients occurring over a length
proportional to the panel thickness [32]. The seminal work of



Fig. 2. Multilayered plate as an assembly of Np physical plies (left) and Nl numerical
layers (right). Global z, layer-specific zk and ply-specific zp coordinates are used for
the description of the model along with the non-dimensional layer- and ply-specific
coordinates fk and fp .
Lo et al. [33] enhances the third-order theory by including a
quadratic variation of the transverse deflection and, hence, a lin-
ear transverse stretch. The full 3D constitutive law is thus
retained. It is worth noticing that the linear transverse stretch
prevents the so-called Poisson locking [34]. High-order ESL mod-
els may give useful estimates of the global response, e.g., funda-
mental frequencies [6].

A noticeable enhancement of ESL models can be achieved by
referring to Zig–Zag theories, in which a piecewise linear displace-
ment field is superimposed to a classical ESL description. The
resulting displacement field has discontinuous slopes at layer
interfaces (Zig–Zag shape) and the consequent discontinuous
transverse strains allow to fulfill (at least to a certain extent) the
interlaminar equilibrium between plies with different material
properties [35]. The importance of the Zig–Zag term depends on
the mismatch of the mechanical properties of adjacent plies, which
is particularly strong, e.g., between skins and core of a sandwich
structure [36–38]. A simple and material-independent Zig–Zag
function could be conveniently introduced within the mixed
approach expressed by RMVT [39–41]. This so-called Murakami’s
Zig–Zag Function (MZZF) has been shown to be able to substan-
tially enhance the behavior of displacement-based models as well
[42,43].

The survey by Carrera and Brischetto [44] has shown that the
errors in the response predicted by ESL models, even those includ-
ing the Zig–Zag effect, increase with the panel thickness and the
strength of the material properties’ mismatch. In these cases, a
LW approach appears thus necessary. Several works report LW
models in which the same kinematic model is used for both faces
and core of sandwich panels. For instance, Librescu and Hause
[45] employ FSDT, Pai and Palazotto [46] apply the refined model
of Lo et al. [33] and D’Ottavio and Polit [47] use the most accurate
RMVT-based CUF model LM4.

However, when modeling sandwich structures it is customary
to employ different approximations for the faces and the core
[9]. Low-order models are usually chosen for the thin faces, such
as pure membrane [48], CLT [49–52] or FSDT [53]. A much larger
variety of models has been used to represent the thick and soft
core. Honeycomb cores are often considered to work in pure
transverse shear [49] or in anti-plane stress (zero membrane
stiffness) [50]. Several different assumptions have been intro-
duced for modeling the core as a 3D elastic continuum: for
instance, the transverse shear strain has been taken to vary lin-
early [51] or quadratically [52] across the core thickness; and
the transverse normal stress has been assumed to be constant
[53] or linear [52]. Most of the plate models discussed insofar
can be obtained as special cases of the Sublaminate-GUF pre-
sented in the following.
3. The Sublaminate-Generalized Unified Formulation

3.1. Geometric description of the composite plate

We consider a plate that occupies a volume V ¼ X� � H
2 ;

H
2

� �
,

where X ¼ ½0; a� � ½0; b� is the reference surface in the
ðx; yÞ ¼ ðx1; x2Þ plane and H is the plate thickness along the trans-
verse direction x3 ¼ z. As illustrated in Fig. 2 (left), the plate is com-
posed of p ¼ 1;2 . . .Np homogeneous, orthotropic and perfectly
bonded plies of thickness hp, which is assumed constant over the
xy-plane. Fig. 2 (right) shows how the composite cross-section is
here subdivided into k ¼ 1;2 . . .Nl numerical layers, the thickness
of the kth layer being denoted hk. Throughout the work, the
subscript k is the layer index while the subscript p the ply index.

Numerical layers could be employed in the framework of con-
ventional CUF and GUF to subdivide physical plies, i.e. hk 6 hp.
The present approach extends the notion of ‘‘numerical layer” by
introducing the possibility of regrouping several physical plies into
one numerical layer, which leads to the definition of sublaminates.

Let the generic kth sublaminate be composed of Nk
p physical plies,

ranging from the ply p ¼ pk
1 located at its bottom (first ply of the

sublaminate) to the ply p ¼ pk
N ¼ pk

1 þ Nk
p � 1 located at its top (last

ply of the sublaminate). So, the case Nk
p ¼ 1 can refer to the conven-

tional definition of numerical layer (hk 6 hp), whereas the case

Nk
p > 1 with hk > hp refers to the new possibility of defining

sublaminates inside the composite plate. Throughout the text,
‘‘numerical layer” and ‘‘sublaminate” shall hence be interchangeably
called ‘‘layer” without loss of clarity.

Several thickness coordinates are introduced for the description
of the composite cross-section, see Fig. 2. In the global coordinate
z 2 � H

2 ;
H
2

� �
, the positions of each ply p and of each layer k are iden-

tified by their mid-plane coordinates, denoted z0p and z0k, respec-
tively, which are obtained from the coordinates of the
corresponding top and bottom interfaces:

z0k ¼ ztk þ zbk
2

and z0p ¼
ztp þ zbp

2
ð1Þ

Layer-specific as well as ply-specific coordinates are introduced as

zk ¼ z� z0k; zk 2 �hk

2
;
hk

2

� �
and zp ¼ z� z0p; zp 2 �hp

2
;
hp

2

� �
ð2Þ

Non-dimensional coordinates are further introduced as

fk ¼
2zk
hk

; fk 2 �1;1½ � and fp ¼
2zp
hp

; fp 2 �1;1½ � ð3Þ

From Eqs. (2) and (3) one obtains the non-dimensional coordinates

fðp;tÞk and fðp;bÞk of the top and bottom interfaces of the physical ply p
inside the kth sublaminate:



fðp;tÞk ¼ fkðztpÞ ¼
2
hk

ztp � z0k
� �

and fðp;bÞk ¼ fkðzbpÞ ¼
2
hk

zbp � z0k
� �

ð4Þ
(see Fig. 2). Finally, the relation between the non-dimensional ply-
specific and the layer-specific coordinates is obtained as

fp ¼
hk

hp
fk þ

2
hp

z0k � z0p
� 	 ¼ 2

fðp;tÞk � fðp;bÞk

fk �
fðp;tÞk þ fðp;bÞk

2

!
ð5Þ

which verifies that fp fk ¼ fðp;tÞk

� �
¼ 1 and fp fk ¼ fðp;bÞk

� �
¼ �1.

3.2. Variational statements

The constraining hypotheses defining the plate model in axio-
matic sense are introduced by referring to variational statements.
The proposed S-GUF models are constructed following the
displacement-based approach expressed by the PVD or Reissner’s
mixed approach expressed by RMVT.

3.2.1. Displacement-based approach
The PVD expresses the weak form of the equilibrium equations

in terms of admissible, virtual variations of displacements uiðx; y; zÞ
asZZ

X

Z
H
d�ðGÞab r

ðHÞ
ab þ d�ðGÞi3 rðHÞ

i3 dz

 �

dx dy ¼
ZZ

X
dui ti dx dy ð6Þ

where Einstein’s summation convention has been used with Greek
indexes a;b 2 f1;2g and Latin index i 2 f1;2;3g. The imposed trac-
tions (external forces per unit surface) are denoted by ti. The in-
plane and transverse strains are defined by the geometric relations
(superscript ðGÞ)

�ðGÞab ¼ 1
2

ua;b þ ub;a

� �
; �ðGÞi3 ¼ 1

2
ui;3 þ u3;i

� 	 ð7Þ

where the compact notation u;i ¼ @u=@xi is used. The generalized
Hooke’s law (superscript ðHÞ) defines the corresponding in-plane
and transverse stresses in each ply p (superscript ðpÞ):

rðHÞ
ab

rðHÞ
i3

" #ðpÞ
¼

eCabcd
eCabj3eCi3cd
eCi3j3

" #ðpÞ
�ðGÞcd

�ðGÞj3

24 35 ð8Þ

Introducing Voigt notation and regrouping the in-plane and trans-
verse components of the stress and strain vectors as

rx ¼ ½r1r2r6�|; �x ¼ ½�1 �2 �6�|; rn ¼ ½r4r5r3�|;
�n ¼ ½�4 �5 �3�| ð9Þ
Hooke’s law Eq. (8) can be written as

rðHÞ
x

rðHÞ
n

" #ðpÞ
¼

eCxx
eCx neC|

x n
eCnn

" #ðpÞ
�ðGÞx

�ðGÞn

" #
ð10aÞ

where the superscript | indicates transposition. The internal virtual
work expressed by the PVD Eq. (6) can then be written as

dWint ¼
ZZ

X

Z
H
d�ðGÞx

|rðHÞ
x þ d�ðGÞn

|rðHÞ
n dz


 �
dx dy

¼
ZZ

X

Z
H
d�ðGÞx

| eC ðpÞ
xx �

ðGÞ
x þ d�ðGÞx

| eC ðpÞ
xn �

ðGÞ
n þ d�ðGÞn

| eC|
xnðpÞ �

ðGÞ
x



þd�ðGÞn

| eC ðpÞ
nn �

ðGÞ
n dz

o
dx dy ð10bÞ
3.2.2. Reissner’s mixed approach
In the case of RMVT, the virtual internal work is expressed in

terms of independent variations of the admissible displacements
uiðx; y; zÞ and of the transverse stresses ri3ðx; y; zÞ [21]:
ZZ
X

Z
H
d�ðGÞab r

ðCÞ
ab þ d�ðGÞi3 ri3 þ dri3 �ðGÞi3 � �ðCÞi3

� �
dz


 �
dx dy

¼
ZZ

X
dui ti dx dy ð11Þ

where the geometric strain–displacement relations are those in Eq.
(7) and the following mixed constitutive law is used:

rðCÞ
ab

�ðCÞi3

" #ðpÞ
¼ Cab cd Cab j3

Ci3 ab Ci3 j3

� �ðpÞ �ðGÞcd

rj3

" #

with

Cabcd ¼ eCabcd � eCab i3
eC�1
i3 j3
eCj3 cd

Cab i3 ¼ eCab j3
eC�1
j3 i3

Ci3 ab ¼ �eC�1
i3 j3
eCj3 ab

Ci3 j3 ¼ eC�1
i3 j3

8>>>>>><>>>>>>:
ð12Þ

With reference to the vector notation of Eq. (9), the constitutive
relation Eq. (12) is written as

rðCÞ
x

�ðCÞn

" #ðpÞ
¼ Cxx Cx n

�C|
x n Cn n

� �ðpÞ �ðGÞx

rn

" #
ð13aÞ

and the internal virtual work expressed by RMVT Eq. (11) reads

dWint ¼
ZZ

X

Z
H
d�ðGÞx

|rðCÞ
x þ d�ðGÞn

|rn þ dr|
n �ðGÞn � �ðCÞn

� 	
dz


 �
dx dy

¼
ZZ

X

Z
H
d�ðGÞx

|
CðpÞ
xx �x þ d�ðGÞx

|
CðpÞ
xnrn þ d�ðGÞn

|rn þ dr|
n �

ðGÞ
n



þdr|

n C
ðpÞ
xn

|
�ðGÞx � dr|

n C
ðpÞ
n nrn dz

o
dx dy ð13bÞ
3.3. GUF approximations in the sublaminate

Let U designate the generic variable for which approximations
are introduced, i.e., U 2 fuig for the displacement-based approach

of the PVD and U 2 fui;ri3g for the mixed RMVT approach. If all Nk
p

plies constituting the kth sublaminate are described in ESL manner,
the approximations are expressed in terms of the sublaminate zk-
coordinate by means of the following compact notation introduced
by Demasi [22]:

U
kðx; y; zkÞ ¼

XNk
U

aU¼0

FaU ðzkÞ Ûk
aU ðx; yÞ ð14Þ

If the Nk
p plies of the sublaminate are described in a LW manner, the

ply-specific coordinate zp is used:

U
pðx; y; zpÞ ¼

XNk
U

aU¼0

FaU ðzpÞ Ûp
aU ðx; yÞ ð15Þ

and the resulting through-thickness approximation for the kth sub-
laminate is obtained from the assembly of all ply contributions:

U
kðx; y; zkÞ ¼

XpkN
p¼pk1

U
pðx; y; zpÞ ¼

XpkN
p¼pk1

XNk
U

aU¼0

FaU ðzpÞ Ûp
aU ðx; yÞ

8<:
9=; ð16Þ

where pk
1 and pk

N are the indices of the first (bottom) and last (top)
ply of the kth sublaminate, respectively. The key point of S-GUF is

that the order of the expansion Nk
U depends not only on the variable

(subscript U) as in GUF, but also on the sublaminate k. This allows to
express different approximations for different sublaminates. Note

also that the same order Nk
U
is used for all Nk

p plies within the same
kth sublaminate. It is finally emphasized that the generic variable
Uk may be described within all plies of the kth sublaminate in an



ESL or a LW manner, and that this choice can be made for each sub-
laminate independently.

3.3.1. The employed approximating functions
The approximating functions FaU are expressed in terms of a

non-dimensional coordinate f 2 ½�1;1� that will be specified
depending on the ESL or LW description employed inside the sub-
laminate: f ¼ fk for an ESL description and f ¼ fp for a LW descrip-
tion. The employed functions are defined as follows:

if Nk
U ¼ 0 : F0ðfÞ ¼ 1 ð17aÞ

if Nk
U P 1 : F0ðfÞ ¼ 1þ f

2
; F1ðfÞ ¼ 1� f

2
; ð17bÞ

FrðfÞ ¼ PrðfÞ � Pr�2ðfÞ for r ¼ 2;3; . . .Nk
U ð17cÞ

where PrðfÞ is Legendre’s polynomial of order r that can be defined
recursively from following relations [54]

P0ðfÞ ¼ 1; P1ðfÞ ¼ f; Prþ1ðfÞ ¼ ð2r þ 1ÞfPrðfÞ � r Pr�1ðfÞ
r þ 1

ð18Þ

The polynomial functions in Eq. (17) are used in the proposed sub-
laminate version of GUF for representing both LW and ESL approxi-
mations inside the sublaminate k. This is different with respect to
the original CUF and GUF, in which Taylor’s polynomial expansion
is used for ESL descriptions, see, e.g., [55]. Fig. 3 shows the resulting
functions FaðfÞ for an expansion order N ¼ 4. The choice of the poly-
nomial functions Eq. (17) is based on convenience only. Note that
Eq. (17) defines the linear Lagrange polynomials F0ðfÞ ¼ FtðfÞ and
F1ðfÞ ¼ FbðfÞ that interpolate the values U0 ¼ Ut ¼ Uðf ¼ 1Þ at
the top and U1 ¼ Ub ¼ Uðf ¼ �1Þ at the bottom of the interval.
The chosen functions combine thus the feature of Lagrange’s linear
interpolation, which allows a direct access at interface values, and
the orthogonality of higher-order Legendre’s polynomials.

3.3.2. Zig–Zag function for ESL models
If an ESL description is used for the whole laminate

(Nl ¼ 1; zk ¼ z), Murakami’s Zig–Zag Function (MZZF)
FZZðfpÞ ¼ ð�1Þpfp can be superimposed to the approximation
described by Eq. (17) in order to introduce a slope discontinuity
at each interface between plies. The approximation in Eq. (14) is
thus enhanced as follows:

uiðx; y; zÞ ¼
XNk

ui

aui¼0

Faui ðzÞ ûiaui
ðx; yÞ þ FZZðfpÞ ûi ZZðx; yÞ ð19Þ

Note that MZZF can be here used independently for the three dis-
placement components, see also [35].

3.4. Construction of plate model arrays

According to the variable kinematics approach realized by Uni-
fied Formulations, the arrays for the plate model are obtained as an
assembly of sublaminate arrays, which are in turn obtained as an
Fig. 3. Functions FaðfkÞ ða 2 f0;4gÞ used for the polynomial approximation in the
kth layer.
assembly of elementary building blocks (kernels) related to the
assumptions introduced at ply level.

3.4.1. Generic kernel of the ply
The gradient relations Eq. (7) defining the strains in terms of the

displacements are substituted in the variational statement Eq. (6)
or Eq. (11). Now let Us be a generic unknown function and dUq

the virtual variation of a generic unknown function, i.e.,
Uðq;sÞ 2 fuig for the PVD Eq. (6) and Uðq;sÞ 2 fui;ri3g for the RMVT
Eq. (11).

The generic contribution of dUq and Us to the virtual internal
work defined by Eq. (10b) or Eq. (13b) is expressed in terms of
ply contributions in order to cope with the material-dependent

coefficient cðpÞQS :

dWint dUq;Us; c
ðpÞ
QS

� �
¼
XNl

k¼1

XpkN
p¼pk

1

dWp
int dUp

q;U
p
s ; c

ðpÞ
QS

� �8<:
9=; ð20Þ

Upon introducing the S-GUF approximation Eq. (14) or Eq. (15), this
generic contribution of the ply is expressed as

dWp
int dUp

q;U
p
s ; c

ðpÞ
QS

� �
¼
ZZ

X
@ðqÞ
a dÛp

q aq ðx; yÞ
� �

Z
paUq bUs
UqUs QS

� @ðsÞ
a Û

p
s bq

ðx; yÞ
� �

dx dy ð21aÞ

with the integral over the ply thickness defined as

Z
paUq ð;z Þ bUsð;zÞ
UqUs QS

¼ cðpÞQS

Z ztp

zbp

@ðqÞ
z Faq @

ðsÞ
z Fbs

h i
dz ð21bÞ

The appropriate definition of the thickness function has to be
accounted for in the computation of the Z-integrals of the sublam-
inate, i.e., F ¼ FðzkÞ for an ESL description and F ¼ FðzpÞ for a LW
description, as in Eqs. (14) and (15).

The generic contribution possesses different particular instanti-
ations, whose explicit expressions depend on the variational state-

ment, the nature of the variablesUq and Us and the coefficient cðpÞQS .

For the PVD case, cðpÞQS ¼ eC ðpÞ
QS is always a material stiffness, with

ðQ ; SÞ 2 f1;6g2 according to Eq. (10a). For the RMVT case, however,
displacement and stress variables may be directly work-
conjugated without the need for a material parameter; therefore,

cðpÞQS may be a material parameter CðpÞ
QS according to Eq. (13a), or a

unitary value. Furthermore, some variables may be differentiated
with respect to the in-plane directions xa or the transverse direc-
tion x3 ¼ z; this is indicated in Eq. (21) by the symbols @ðq;sÞ

a and
@ðq;sÞ
z , respectively, where the superscript specifies the concerned

variable.

The notation for the integrals over the ply thickness Z
p aUq bUs
UqUs QS

is

the same as in GUF [22,23]. A tilde is used to discern the integralseZ related to the PVD formulation and issued from the stiffness

coefficients eCQS. These 1� 1 terms are expanded to form the con-
tribution of the ply to the virtual internal work term Eq. (21a) upon

cycling over the indices aUq ¼ 0;1; . . .Nk
q and bUs

¼ 0;1; . . .Nk
s .

Detailed expressions for all particular instantiations of the generic
contribution (21) related to the PVD and RMVT frameworks can be
found in [22,23], respectively, along with the expansion procedure
to form the ply contribution.

3.4.2. Assembly at sublaminate level: ESL and LW descriptions
The procedure for assembling the ply-contributions of the Z-

integrals to form the sublaminate contributions depends on the
ESL or LW description of the concerned variables inside the sub-
laminate. The same standard procedure of the established CUF



Fig. 4. Assembly procedures for the sublaminates. The table reports the number of plies constituting each layer and the model employed in each layer for the generic
variables Uq and Us .

Table 1
Some ESL models and their designation and number of DOF within the present S-GUF.

Model S-GUF
acronym

Remarks DOF

CLT ED1;0 No transv. shear flexibility:
1=Ga3 ¼ 0

5

FSDT ED1;0 Shear correction factor j ¼ 5=6
is used

5

RMZC [41] ML2;�
E1Z;0

ua ESL + MZZF, ra3 LW, r33 ¼ 0;
SCy

7

TSDT [30] EM2;�
3;0

ui ESL, ra3 ESL, r33 ¼ 0; SCy 9

LCW [33] ED3;2 3D constitutive law 11

ZZEPVD889 [35] ED8Z;9 ua ESL + MZZF, u3 ESL 30

EMC332
221 [55] ML3;L2

E2;E1
ui ESL, ri3 LW, SCy 8

y SC indicates Static Condensation of the transverse stress unknowns.
and GUF is used and details can be found, e.g., in [55]. The chosen
interpolation functions Eq. (17) allow to impose the continuity
condition in a straight-forward manner for both ESL and LW
assembling processes.

3.4.3. Assembly of sublaminates at laminate level
The sublaminate contributions of different layers are always

assembled in a LW sense with the standard procedure that
enforces the continuity of the generic variable Uk at the interfaces
between adjacent layers, see, e.g., [54]. Note that the employed
interpolation functions Eq. (17) permit to follow the same standard
assembly procedure even if an ESL description is used inside the
sublaminates. Since the novelty of the proposed S-GUF is that dif-
ferent approximations may be chosen for different sublaminates,
an example of a resulting assembly scheme for 4 sublaminates,
each consisting of an arbitrary number of plies and employing very
different approximations, is illustrated in Fig. 4. By indicating with

Nk
Uðq;sÞ the number of DOF for the generic variables Uðq;sÞ in the
sublaminate k, the resulting array for the Z-integral for the
whole multilayer that describes the virtual internal work

contribution Eq. (21a) has the size
PNl

k¼1N
k
Uq

� �
� ðNl � 1Þ

� �
�PNl

k¼1N
k
Us

� �
� ðNl � 1Þ

� �
.

3.5. Governing equations of the 2D model: Navier-type solution

Once the model along the thickness coordinate z has been intro-
duced, the unknown functions of the remaining 2D problems are
ÛlU

ðx; yÞ, where the index lU ranges over all terms that define
the expansion across the whole multilayered plate, i.e.,

lU 2 1;
PNl

k¼1N
k
U

� �
� ðNl � 1Þ

n o
. In this work the Navier-type solu-

tion method is adopted, which permits to find exact solutions to
problems involving simply-supported, rectangular and specially
orthotropic plates [11]. The strong form of the 2D governing equa-
tions are first obtained from the integral over the in-plane domain
X in Eqs. (6) and (11) by integrating by parts the terms whose vir-
tual variations are differentiated with respect to the in-plane coor-
dinates xa. An exact solution of the resulting set of PDE and of the
associated boundary conditions is then given - under the above
mentioned restricting circumstances - by the following harmonic
solution:

fû1lu1
; r̂5lr5

gðx; yÞ ¼ fU1lu1
; T5lr5

g cos mpx
a

� 	
sin npy

b

� 	
fû2lu2

; r̂4lr4
gðx; yÞ ¼ fU2lu2

; T4lr4
g sin mpx

a

� 	
cos npy

b

� 	
fû3lu3

; r̂3lr3
gðx; yÞ ¼ fU3lu3

; T3lr3
g sin mpx

a

� 	
sin npy

b

� 	 ð22Þ

with x 2 ½0; a� and y 2 ½0; b�. Substitution of the above Navier-type
solution into the set of PDE yields finally the algebraic system
whose unknowns are the parameters of the thickness approxima-
tion. The resulting matrix system for the PVD case has the following
form



KU1U1 KU1U2 KU1U3

KU2U2 KU2U3

sym KU3U3

264
375 U1

U2

U3

264
375 ¼

R1

R2

R3

264
375 ð23Þ

while the form of that obtained from the RMVT case is
Fig. 5. BM1: assessment of PV
KU1U1 KU1U2 0U1U3 KU1T5 0U1T4 KU1T3

KU2U2 0U2U3 0U2T5 KU2T4 KU2T3

0U3U3 KU3T5 KU3T4 KU3T3

KT5T5 0T5T4 0T5T3

sym KT4T4 0T4T3

KT3T3

2666666664

3777777775

U1

U2

U3

T5

T4

T3

2666666664

3777777775
¼

R1

R2

R3

0
0
0

2666666664

3777777775
ð24aÞ
D-based 3-layers models.



Fig. 6. BM1: detail of the transverse shear stress in the laminated faces.

M.
which can be recast in the following partitioned form

KUU KUT

KTU KTT

� �
U
T

� �
¼ R

0

� �
ð24bÞ

Stress unknowns T can be statically condensed out, which yields the
following reduced matrix system

~KUUU ¼ R with ~KUU ¼ KUU � KUT KTTð Þ�1KTU ð24cÞ
Within the proposed formulation, the static condensation can be
carried out for separate sublaminates, or for the whole multilayered
plate [56]. Note that in the framework of the employed Navier-type
solution, the static condensation carried out at multilayered level
introduces no approximation. Once the static condensation is car-
ried out, the modified stiffness matrix ~KUU incorporates in an inte-
gral sense the approximations formulated for the transverse stress
field, e.g., including the transverse stress continuity at ply interfaces
or the satisfaction of zero transverse shear stress at top and bottom.
Fig. 7. BM1: assessment of several linear RMVT
ious plate models that can be formulated by means of the proposed
Sublaminate-GUF. For each sublaminate, a notation similar to that
proposed by Demasi is adopted as follows:

� Capital D and capital M stay for PVD and RMVT models,
respectively.

� The order of the polynomial expansion of the displacements and
the stresses are given in the subscript and superscript, respec-

tively. For the sake of simplicity, the same order Nk
u1

¼ Nk
u2

will

be employed for both in-plane displacement components uk
a;

analogously we set Nk
r13

¼ Nk
r23

for both transverse shear com-

ponents rk
a3. Only two indexes are hence necessary for denoting

the polynomial expansion order: Nk
ua ;N

k
u3

in the subscript and

Nk
ra3 ;N

k
r33

in the superscript. In addition to the standard expan-
sion orders of CUF and GUF, the present S-GUF implements the
constant distribution, which corresponds to a 0th order
(NU ¼ 0), and offers the possibility of discarding a transverse
stress component, which is indicated by a dot. So, plane stress
models formulated within RMVT have Nr33 ¼ �.

� As in standard CUF and GUF notation, capital E and L indicate
ESL and LW descriptions, respectively. However, the capital E
or L are reported in the sub- or superscript just before the order
of expansion used for the displacement and stress variables. In
fact, differently from standard CUF and GUF, the present S-GUF
allows an ESL description for the transverse stress variables as
well. If all displacement and stress variables are described in
the same way, the capital E or L is reported in the model name
just before the D or the M.

4. Naming convention

A dedicated nomenclature is introduced for designating the var-
models for the faces (core model: EM1;1
2;2).



� A similar convention is used for the capital Z indicating the
inclusion of MZZF: the capital Z is reported in the subscript after
the expansion order of the concerned displacement component,
and it appears in the model name just after the D or the M only
if MZZF is used for all displacement components.

Many models proposed in literature can be represented within
the proposed S-GUF. Table 1 reports some known ESL models and
their representation within the present S-GUF. Only one sublami-
nate is used for representing ESL models. It should be noted that
the number of DOF reported in Table 1 corresponds to that of the
present S-GUF implementation. For instance, CLT has the same
DOF number as FSDT since the vanishing transverse shear strain
is enforced by penalyzing the transverse shear stiffness. Moreover,
the DOF number reported in Table 1 for RMVT-based models is that
of the displacement-based model obtained through the Static Con-
densation (SC) of the transverse stress unknowns.

When the plate is composed of several sublaminates, the acro-
nyms are reported from the top sublaminate to the bottom one,
separated by a slash. Three-layers models for sandwich plates are
thus defined by specifying the model employed for the faces and
the core. In the numerical evaluations discussed in the following
section, the same model will be used for both top and bottom faces
even if the present S-GUF is evidently not limited to this classical
choice.
Table 2
Models assessed in BM1 and respective DOF number. Values in parentheses indicate
the DOF number after Static Condensation (SC) of transverse stress unknowns.

S-GUF GUF CUF

Faces/core DOF (SC) Model DOF (SC) Model DOF (SC)

FSDT/ED2;2 13 LD2;2 45 LD2 45

EM1;1
1;1=EM

1;1
2;2

27 (15)
LM1;1

2;2 69 (45) LM2 90 (45)
ML1;E1

L1;E1=EM
1;1
2;2

43 (23)
5. Numerical results

The main features of the proposed S-GUF will be highlighted by
two benchmark problems that address the bending response of
simply-supported rectangular and orthotropic plates. The first
benchmark illustrates the versatility of the proposed S-GUF as a
tool for obtaining hierarchic accuracies along with a computational
cost reduction compared to classical Unified Formulations. In the
second benchmark, S-GUF is used to reproduce different models
available in literature for consistently assess them against the chal-
lenging problem proposed by Meyer-Piening.

5.1. BM1: sandwich plate with laminated faces

The following results shall demonstrate the capability of the
proposed S-GUF to reduce the computational cost while still pre-
serving the hierarchic model accuracies offered by the established
CUF and GUF. For this, a new benchmark problem is considered
that involves a representative sandwich plate with laminated com-
posite faces:

Geometry: Core thickness hc ¼ 20 [mm], thickness of bottom
and top faces hf ¼ 1 [mm] (face-to-core thickness ratio
hf =hc ¼ 0:05). The plate is square of dimension a� awith aspect
ratio a=H ¼ 10.
Loading: Bi-sinusoidal pressure load pðx; yÞ ¼ p0 sinðpxa Þ sinðpyb Þ at
top surface.
Materials: Each face consists of four CFRP plies with stacking
sequence ½90;0�s and following properties: hp ¼ 0:25 [mm];
EL ¼ 107 [GPa], ET ¼ 15 [GPa], GLT ¼ 4:3 [GPa], GTT ¼ 3 [GPa],
mLT ¼ 0:3; mTT ¼ 0:49. An isotropic foam core is considered with
Ec ¼ 105 [MPa], Gc ¼ 40 [MPa] (therefore, mc ¼ 0:3125 is taken).

The face-to-core stiffness ratio is hence FCSR ¼ Efx
Ec
� 585.

Results: The following non-dimensional results are considered:
in-plane displacement UðzÞ ¼ u1ðx ¼ 0; y ¼ b

2 ; zÞ ET
p0HS

3, lateral dis-

placement WðzÞ ¼ u3ðx ¼ a
2 ; y ¼ b

2 ; zÞ 100ET
p0HS

4, in-plane stresses

fTxxðzÞ; TyyðzÞg ¼ rxxðx ¼ a
2 ; y ¼ b

2 ; zÞ;ryyðx ¼ a
2 ; y ¼ b

2 ; zÞ
� 

1
p0S

2,
transverse shear stress TxzðzÞ ¼ rxzðx ¼ 0; y ¼ b
2 ; zÞ 1

p0S
, transverse

normal stress TzzðzÞ ¼ rzzðx ¼ a
2 ; y ¼ b

2 ; zÞ 1
p0
.

The hierarchic accuracy of S-GUF models is first applied in the
PVD framework to identify the most opportune model for the core.
So, several displacement-based, three-layers models are assessed
in Fig. 5 with respect to the LM7 model, a high-order mixed model
that is capable of accurately recovering a full 3D response, see also
[57]. The laminated faces are modeled as CLT or FSDT, whereas sev-
eral different refined kinematics including transverse stretch are
used for the core. A very good agreement of the in-plane response
(displacement U, bending stresses Txx and Tyy) is noticed among all
models. The out-of-plane response W and Tzz inside the core
appears accurate as long as the linear term of the transverse
stretch is retained, i.e., Nu3 P 2 should be chosen for the core layer.
The core model with Nua ¼ Nu3 ¼ 2, which includes a linear trans-
verse shear and a linear transverse stretch, provides the best
accuracy-to-computational cost ratio. As far as the local transverse
stress response inside the laminated face is concerned, FSDT can
only provide an estimate of their mean value across the whole face,
see Fig. 6.

A model assessment for the laminated faces is next proposed by
referring to RMVT-based models. RMVT is here addressed in order
to explore the possibility of recovering accurate transverse stress
results in the laminated faces with low-order polynomial expan-
sions. According to the previous analysis, the RMVT model for
the core is selected to be EM1;1

2;2. All considered face models include
the transverse normal stress. In a first approximation, a linear ESL
approximation is used for the transverse deflection u3 and stress
r33. Fig. 7 illustrates the results obtained with linear approxima-
tions and different ESL/LW descriptions of the in-plane displace-
ments ua and transverse shear stresses ra3. From the results
reported in Fig. 7 the following conclusions can be drawn concern-
ing the choice of the model for the laminated faces:

� the use of a linear ESL model for the transverse normal stress
and transverse normal displacement is adequate;

� if ua is described ESL and ra3 is LW, the bending response is
accurate but the local transverse shear stresses distribution is
inaccurate;

� if ua is described LW and ra3 is ESL, the bending response is
inaccurate even if the local transverse shear stress distribution
is meaningful;

� a full ESL model provides rather accurate results for both the
global bending and the local transverse shear stress;

� accuracy is enhanced using a LW description for both ua and
ra3.

It is stressed that these considerations hold for the considered
case study involving thin, laminated faces and that extrapolation
to other configurations deserves preliminary investigation. For
instance, it is known that thick faces call for quadratic transverse
shear stress distributions.

In order to point out the computational cost saving that can be
achieved with the proposed S-GUF, some models considered for



this benchmark problem are reported in Table 2 along with their
DOF number. The DOF number in parenthesis corresponds to that
of the system once the transverse stress unknowns are statically
condensed out. PVD and RMVT-based S-GUF models consist of 3
sublaminates, one for each laminated face and one for the core.
Equivalent CUF and GUF models are considered by retaining a full
LW description with the highest expansion orders used in the S-
GUF. Note that classical CUF and GUF do not offer the possibility
of an ESL description of the transverse stresses.

Fig. 8 compares the global deflection and the local transverse
shear stress in the laminated faces, obtained by the S-GUF
ML1;E1

L1;E1=EM
1;1
2;2 model and those formulated within CUF and GUF.

Note that the GUF LD2;2 model exactly coincide with the CUF LD2
model. The values in Table 2 in combination with the results in
Fig. 8 show clearly that S-GUF models can be conveniently used
for reducing the number of DOF without substantially affecting
the accuracy. It should be finally noted that RMVT-based models
require special attention in the determination of the number of
Fig. 8. BM1, comparison of an S-GUF model wit

Table 3
BM2: comparison of present LM7 results with the 3D solution rep

z uz [mm] rxx [MPa]

3D [59] 6 �3.78 �624
5.9+ – 580
�5.5� – �138
-6 �2.14 146

LM7 6 �3.78 �624
5.9+ �3.78 580
�5.5� �2.14 �138
�6 �2.14 146

(y) Values referred to Fourier series expansion with 31 terms.

Table 4
BM2: assessment of several high-order ESL models. The absolute error is taken with respec

z uz [mm] (% error) r

RMZC 6 �0.03 (99) �
�6 �0.03 (99) 7

TSDT 6 �3.36 (11) �
�6 �3.36 (57) 4

LCW 6 �0.45 (88) �
�6 �0.44 (79) 1

ED9 6 �3.23 (15) �
�6 �1.84 (14) 1

ED8Z;9 6 �3.45 (9) �
�6 �2.02 (6) 1

EDZ8 6 �3.60 (4) �
�6 �2.01 (6) 1

LM7 6 �3.78 – �
�6 �2.14 – 1
stress parameters compared to the number of displacement DOFs
[58]: GUF models with Nua ¼ Nu3 > Nra3 ¼ Nr33 , such as the consid-

ered LM1;1
2;2, are known to provide a spuriously oscillating displace-

ment field, which for this reason is omitted from Fig. 8(a). S-GUF
provides also in this context more freedom for selecting the appro-
priate model.

5.2. BM2: Meyer-Piening benchmark

A more discriminant case study for sandwich plate models has
been provided by Meyer-Piening [59] and involves an unsymmet-
ric rectangular sandwich plate subjected to a localized pressure
load:

Geometry: Rectangular plate with a ¼ 100 [mm], b ¼ 200 [mm]
and thickness H ¼ 12 [mm]. The sandwich is unsymmetric with
the bottom face thickness h1 ¼ 0:5 [mm], top face thickness
h3 ¼ 0:1 [mm] and core thickness hc ¼ 11:4 [mm].
h equivalent classical GUF and CUF models.

orted by Meyer-Piening [59].

ryy [MPa] rxy [MPa] rzz
(y) [MPa]

�380 128 �1.1
353 �126 �0.85
�91 7 �0.18
97 �8 0

�371 129 �1.1
344 �127 �0.85
�93 6 �0.18
98 �6 0

t to LM7 solution. All values are taken at the plate center x ¼ a=2 ¼ 50; y ¼ b=2 ¼ 100.

xx [MPa] (% error) ryy [MPa] (% error)

28 (96) �21 (91)
(95) 5 (96)

37 (94) �27 (89)
4 (70) 33 (74)
52 (92) �49 (80)
24 (15) 85 (33)
513 (18) �192 (20)
12 (23) 95 (25)
547 (12) �200 (17)
32 (10) 109 (14)
610 (2) �235 (2)
38 (5) 116 (9)
624 – �241 –
46 – 127 –



Table 5
Three-layered models for sandwich panels and their representation within S-GUF
assessed in the Meyer-Piening benchmark BM2.

Model S-GUF (faces/core) DOF

LH [45] FSDT/FSDT 9
HL [51] CLT/ED2;1 12
DY [53] FSDT/ED2;1 12
PFK [52] CLT/ED3;2 15
PP [46] ED3;2=ED3;2 27

Fig. 9. Displaced configuration of Meyer-Piening sandwich under local pressure load.
Loading: Localized uniform pressure p0 ¼ 1 [MPa] acting at the
top surface on an area of 5� 20 ½mm2� centered at ðx; yÞ ¼ ða2 ; b2Þ.
Materials: Faces with Efx ¼ 70 [GPa], Efy ¼ 71 [GPa],
Efz ¼ 69 [GPa], Gf ¼ 26 [GPa] and mf ¼ 0:3; core with
Ecx ¼ Ecy ¼ 3 [MPa], Ecz ¼ 2:8 [MPa], Gc ¼ 1 [MPa] and mc ¼ 0:25.
Results: Dimensioned results (displacements in [mm], stresses
in [MPa]) are taken at selected points and along selected paths.

The high face-to-core stiffness ratio (EfEc � 104) and the localized
load make this case study particularly challenging for sandwich
Fig. 10. BM2: Bending stresses at bounding su
plate models. This benchmark is next used to assess several models
established in the literature and reproduced by the proposed S-
GUF.

Present solutions are obtained as Fourier series expansion with
101 terms in both x and y directions, as suggested by Meyer-
Piening [59]. Table 3 shows that the results obtained by the
high-order LM7 model – transverse deflection wðx ¼ 50; y ¼ 100Þ,
in-plane stresses rxxð50;100Þ;ryyð50;92:5Þ and rxyð47:5;90Þ, and
transverse normal stress rzzð50;100Þ – successfully compare
against those extracted from [59]. The values are reported for the
plate top and bottom surfaces (z ¼ �6) as well as for both face/core
interfaces, i.e., at z ¼ 5:9þ for the top interface and at z ¼ �5:5� for
the bottom one (stresses are evaluated in the faces). Note that the
values for rzz refer to a Fourier series expansion with only 31
terms, see also [59].

Table 4 proposes an assessment of several high-order ESL mod-
els (see also Table 1) for the bending response with respect to the
LM7 solution. Transverse displacement uz and in-plane direct
stresses rxx and ryy are reported at the plate center
ðx ¼ 50; y ¼ 100Þ and at its top (z ¼ 6) and bottom (z ¼ �6) sur-
faces. Despite the Zig–Zag function, the enhanced first-order model
rfaces of top and bottom sandwich faces.



Fig. 11. BM2: Through-thickness response at plate center ðx ¼ 50; y ¼ 100Þ (a)–(c) and at edge of loaded region ðx ¼ 47:5; y ¼ 100Þ (d).
RMZC is seen to completely fail in this severe problem because of
the low-order polynomial expansion and the plane stress assump-
tion. Third-order models such as TSDT and LCW behave generally
better than RMZC, but still provide unacceptable results with
errors up to 90%. One may notice that TSDT provides a more accu-
rate deflection than LCW, whereas LCW is slightly more accurate in
the prediction of the bending stresses compared to TSDT. Three
high-order displacement-based models involving the same DOF
number (30) are finally compared. The increasing accuracy of
ED9, ED8Z;9 and EDZ8 highlights that the use of MZZF for all dis-
placement components, including the transverse deflection, is of
great benefit.

Finally, an assessment is proposed of some displacement-based
three-layers plate models that have been introduced in the litera-
ture review. The considered models are summarized in Table 5
along with their S-GUF representation and associated DOF number.

Fig. 9 reports the deformed shape of the sandwich plate in
sections cut in the central planes y ¼ 100 and x ¼ 50. The indenta-
tion of the top face caused by the locally applied pressure load is
clearly visible. One notices that the LH model fails to reproduce
this local deformation due to the FSDT model adopted in the core,
which neglects the transverse normal deformation. Fig. 10 reports
the evolutions of the bending stresses rxx (Fig. 10 left) and
ryy (Fig. 10 right) along the x and y coordinate, respectively. The
stresses are taken at the top and bottom surfaces of the top and
bottom face of the sandwich. The localized bending at the top face
is well represented by all models that include the transverse
normal stretch inside the core. These models can distinguish the
different gradients that characterize the response at the top face
and at the bottom face. It can be further seen that the HL and DY
models have some difficulties in following the steep gradients
occurring at the edge of the loaded area: higher order kinematics,
such as the third-order one used by the PFK and PP models, is
indeed required in presence of rapid load variations.

Through-thickness distributions are reported in Fig. 11. The in-
plane coordinates ðx; yÞ are considered where the response has its
maximum magnitude. So, lateral deflection uz, bending stress
rxx and transverse normal stress rzz are taken in the plate center
ðx ¼ 50; y ¼ 100Þ, see Fig. 11(a)–(c), while the transverse shear
stress rxz is taken at the edge of the loaded region
(x ¼ 47:5; y ¼ 100), see Fig. 11(d). All considered three-layers mod-
els provide reasonable estimates for the lateral deflection and
bending stress. The transverse stress response is more challenging.
The Meyer-Piening benchmark involves a parabolic transverse
shear stress inside the faces, with a maximum peak of approxi-
mately 2% of the maximum bending stress, see Fig. 11(d). In order
to grasp this stress, FSDT and CLT are not sufficient and HSDT
should be used in the faces. The transverse normal stress is of even
smaller magnitude (maxðrzzÞ � 0:1rxz). However, as already
shown, it is necessary to include the transverse stress effects at
least inside the core, in order to correctly estimate the rapid gradi-
ents of the response due to the localized load.

6. Conclusions

This paper has presented an extension of the Generalized Uni-
fied Formulation (GUF) in which different approximations can be
introduced in different groups of plies (sublaminates) constituting
the multilayered plate. This Sublaminate-GUF (S-GUF) enhances
the modeling flexibility of classical GUF and appears particularly
useful for sandwich panels because the very different material
and geometric properties call for dedicated assumptions for the
faces and the core. S-GUF permits to substantially reduce the
computational cost within the hierarchic model definition that
characterizes the usefulness of Unified Formulations. Furthermore,
several sandwich plate models available in the literature can be
represented within one single computer program and thus
consistently assessed against each other. Further work already in
preparation addresses the study of viscoelastic sandwich plates,
the inclusion of interface slip as well as of piezoelectric coupling.
The extension to curved panel geometries shall not pose any sub-
stantial issues.
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