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Abstract

The capabilities and limitations of refined two-dimensional (2D) composite plate elements

are discussed with respect to the stress concentration problem occurring at traction-free edges.

Classical displacement-based and advanced partially mixed finite elements are formulated ac-

cording to Carrera’s Unified Formulation (CUF). Rectangular laminates are analyzed under

extension and bending loading, where the attention is focused on the local stress response at

the free edges. Present results are compared with reference results available in literature and

a 3D finite element model. A power law representation for a singular stress field is used to fit

the obtained stresses in vicinity of the free edge and the parameters are used to assess the CUF

elements and to compare the free-edge effect occurring in extension and bending.

Keywords: Carrera Unified Formulation, refined plate element, free-edge effect, stress singu-

larities, power law
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1 Introduction

Fibre-reinforced composite laminates are being increasingly used in advanced structural applica-

tions, due to their excellent specific stiffness and strength properties. By stacking several com-

posite plies with different orientations of the fibrous reinforcement, stiffness and strength can be

tailored to meet the specific loading conditions of the panel. Their heterogenous composition and

anisotropic nature demands appropriate numerical tools to reliably predict the behavior of these

structures. A huge amount of scientific effort is being accordingly developed, which tries to cope

with the difficulties related to the heterogeneous microscale (fiber and matrix level) and its homog-

enization suitable for the structural scale.

A well accepted homogenization scheme represents the composite laminate as a stack of homo-

geneous, anisotropic plies that are separated by bi-material interfaces (Effective Modulus Theory)

[1]. Based on this representation, a large number of beam, plate and shell formulations have been

developed in order to enhance the stress prediction inside the laminates within computationally ef-

ficient structural models [2]. In the so-called Equivalent Single Layer (ESL) models, to which be-

long the well known Classical Laminate Theory (CLT) and First-order Shear Deformation Theory

(FSDT), the number of unknown parameters is independent of the number of layers constituting

the stack. High-order Shear Deformation Theories (HSDT) enhance the transverse shear behavior

of ESL models [3]. However, these models cannot represent the response at bi-material interfaces

where, according to EMT, the transverse stresses need to be continuous (interlaminar equilibrium)

and the displacement field has consequently a discontinuous slope along the thickness direction.

So-called Zig-Zag Theories (ZZT) can represent up to a certain extent these interfaces still within

an ESL approach [4]. Within the Effective Modulus Theory, the most refined description consid-

ers each ply’s properties separately; in these Layer-Wise (LW) models, the number of unknown

parameters depends on the number of the represented layers.

Most dimensionally reduced models are based on the plane stress assumption and refer there-
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fore to the 2D constitutive law. A discriminant feature of these reduced models consists in their

capability of capturing the transverse stress components [5]. These interlaminar stresses act at

the bi-material interfaces and are the most critical ones since they are responsible for promoting

delamination failure. Since transverse stresses are inherently 3D, various methods have been pro-

posed in order to reliably predict them starting from the reduced computational models, see, e.g.,

[6]: integration of the 3D equilibrium equations to post-process the in-plane stress field [7], or

a global-local sub-modeling technique with appropriate schemes to connect adjacent subregions

employing differently refined models [8–10].

From the above discussion, it appears interesting to assess different models with respect to their

capacity to capture transverse stress concentrations. Among the configurations with transverse

stress concentrations, the free-edge effect occurring at traction-free edges of loaded laminates is

the one that received most attention. Bi-material discontinuity at the free edge introduces very

high stress gradients which may even show a singular behavior [11]. Since the seminal work of

Pipes and Pagano [12], many studies focussed on the free-edge effect arising in symmetric lami-

nates subjected to a longitudinal strain (extension load). In this so-called Pipes-Pagano problem,

several simplifications can be exploited to reduce the computational problem and hence concen-

trate the effort on the resolution of the highly localized free-edge stress gradients: besides evident

symmetry conditions, de Saint Venant’s principle can be invoked to formulate a quasi-3D (Q3D)

model, which reduces the computational domain to the central cross-section of the laminate. This

way, the solution of free-edge problems was accessible to the limited computing power of the

time: first results have been obtained by Pipes and Pagano [12] within a Finite Difference (FD)

scheme and early Finite Element (FE) solutions have been proposed, among others, by Wang and

Crossman [13] and Raju and Crews Jr [14]. This latter paper discussed the existence of a sin-

gular stress field at the free edge and proposed a power-law r−α representation of the singularity.

Wang and Stango [15] proposed an optimized FE mesh for the computation of free-edge stresses

with particular attention to the extrapolation of the stress components at the bi-material interface,

3
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 P
ar

is 
X

] a
t 0

0:
16

 1
0 

D
ec

em
be

r 2
01

5 



ACCEPTED MANUSCRIPT

where displacement-based methods fail to satisfy the transverse stress continuity required by the

equilibrium condition. Mixed-hybrid FE methods have been thus proposed to enhance the inter-

laminar stresses [16, 17]. It is interesting to note that these works yield contradictory conclusions

with regard to the stress singularity, in particular Spilker and Chou [16] rejected the presence of

singularities.

Ghiringhelli and Sala [18] applied the FE analysis of the stress singularity to a laminate model

that included a resin-rich interlaminar layer, which lead to a weaker singularity with respect to

models with bare bi-material interfaces. Ye [19] assessed the effect of material nonlinearities in

the free-edge response and concluded that a linear elastic analysis is sufficiently accurate for the

analysis of inter laminar stresses. In this paper, the Q3D-based FE analyses addressed laminates

subjected to longitudinal extension as well as pure bending in the xz plane. Bar-Yoseph and Ben-

David [20] applied the mixed-hybrid FE of [17] for comparing free-edge effects originated by

bending and extension loads and concluded that the edge effects are stronger for the extension

case. It is interesting to note that the opposite conclusion was drawn by Murthy and Chamis [21]

by means of a classical 3D displacement-based FE method that included, however, the resin-rich

interlaminar layer.

Alternative, not FE-based approaches to the Pipes-Pagano problems have been developed on

the basis of the Q3D model: the semi-analytic method of Wang and Choi, based on Lekhnitskii’s

complex stress functions, demonstrated that the transverse stresses at the free edge are weakly

singular [22] and permitted to present an elasticity solution for the free-edge stress fields [23].

Kassapoglou and Lagace [24] proposed an efficient stress-based solution through the minimization

of the complementary energy, which has been later extended to unsymmetric laminates and com-

bined loading by Kassapoglou [25]. Davì and Milazzo [26] conveniently applied the Boundary

Element Method (BEM) to compute the stress field and its singularity at the free edge.

While most findings concerning the free-edge problem have been realized within the Q3D

model, several authors analyzed the free-edge problems by means of more general plate models,
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where the computational domain is not limited to a cross-section but represents the whole lami-

nate. A global-local modeling technique based on kinematic refinement of plate elements has been

proposed by Robbins Jr and Reddy [8]: simple ESL plate elements have been used to globally

mesh the plate, and a local mesh consisting of refined LW plate elements is superposed to it in the

boundary layer. A partially mixed plate element has been developed and successfully applied to

the free-edge problem by Ramtekkar and Desai [27]. Nguyen and Caron [28] applied a previously

developed refined plate model inspired by Pagano [29] to the free-edge problem. A layer-wise

mesh refinement along the laminate thickness has been subsequently proposed for this model by

Saeedi et al. [30] in order to enhance the representation of the stress singularities. Semi-analytical

solutions for free-edge effects have been developed as well: Tahani and Nosier [31] studied general

cross-ply laminates subjected to bending loads on the basis of Lévy’s approach and using the LW

description developed by Robbins Jr and Reddy [32] and already employed in [8]. On the basis

of de Saint Venant’s principle for long plates, the full 3D problem can be split into a global plate

problem defined in the mid-plane of the plate and a local Q3D problem defined in the cross-section.

This approach has been applied to analyze free-edge effects occurring in general laminates sub-

jected to various loading (extension, bending, torsion), where FSDT is used for the plate problem

and the LW model for the local Q3D problem [33–36].

In a preceding paper [37], several plate models formulated according to the established Car-

rera’s Unified Formulation (CUF) [38] have been assessed with respect to the stress fields predicted

at free edges of laminates subjected to extensional loading only. In this paper, FE results obtained

by CUF plate elements are used to identify the parameters of the power-law stress singularity,

which will in turn be employed to assess the models and to compare the edge effect due to bending

and extension. The paper is organized as follows. The various plate models and their FE imple-

mentation are presented in Section 2 along with the systematic description of the case studies and

the employed meshes. In Section 3, the most accurate plate models are validated against literature

results by comparing the stress fields and Section 4 presents the approach for identifying the stress
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singularity. The comparison between different models and between the extension and bending

loading is carried out in Section 5. Conclusions are finally drawn in Section 6.

2 Modelling approach

2.1 Description of the multilayered plate

The rectangular laminated plate has a length of 2a along the longitudinal x direction, a width

2b along y and a thickness h along z. The in-plane axes x, y identify the plate’s mid-surface, so

that z ∈ [−h2 , h2 ], see Fig. 1(a). The laminate consists of k = 1, 2, . . . ,Nl plies, each of thickness

hk, that are stacked along the thickness direction z. The generic kth ply is thus delimited by the

coordinates zbk and z
t
k identifying the bottom (superscript b) and top (superscript t) surfaces of the

ply, respectively, see Fig. 1(b). Two local coordinates can be introduced for each ply: the local

coordinate zk ∈ [zbk , ztk] and the dimensionless local coordinate ζk = 2(zk − z0k)/hk ∈ [−1, 1], where

z0k = (ztk + z
b
k)/2 is the coordinate of the mid-surface of the k

th ply.

The perfect bond condition between adjacent plies requires the continuity of the displacement

vector ui = [u1 u2 u3]T and of the stress vector σi3 composed of the three transverse stress com-

ponents σi3 = [σ13 σ23 σ33]T , i.e., uti k = u
b
i (k+1) and σ

t
i3 k = σ

b
i3 (k+1). In the expressions above and

throughout the paper, superscript T denotes transposition and index i ∈ (1, 2, 3) identifies the three

Cartesian coordinates x, y, z. These conditions, that are a direct consequence of the Effective Mod-

ulus Theory, lead to the so-calledC0z -requirements for the through-thickness modeling assumptions

for the displacement and transverse stress fields [39]: the Interlaminar Continuity (IC) of the trans-

verse stresses at a bi-material interface can in general be satisfied only by a displacement field

that has a slope discontinuity (Zig-Zag, ZZ) at the interface. In the following, the various plate

models formulated by means of Carrera’s Unified Formulation are briefly introduced with special

reference to the satisfaction of the C0z -requirements.
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2.2 Plate models in Carrera’s Unified Formulation

Carrera’s Unified Formulation (CUF) consists in a compact index notation that permits to formu-

late many different plate models in a unified manner by introducing different assumptions for the

through-thickness behavior of the structure [38]. The approximations are introduced for displace-

ment variables only or for both displacement and transverse stress variables. In the former case,

classical displacement-based models are developed by referring to the weak form related to the

Principle of Virtual Displacements (PVD). In the latter case, advanced partially mixed models are

formulated in the framework of Reissner’s Mixed Variational Theorem (RMVT) [40], that is a

variational statement expressly dedicated to the fulfillment of the IC conditions in laminated plate

models [41]. In a PVD approach all stresses are evaluated from Hooke’s law through the geomet-

rically compatible strain field, which entails the violation of the IC at bi-material interface. On the

contrary, the RMVT approach permits to introduce a transverse stress field that is independent of

the strain field and it can be hence chosen so to exactly (“a priori”) enforce the continuity of these

stresses at the interfaces.

The approximations can be introduced for the whole laminate, which leads to an ESL descrip-

tion, or for each layer independently, which leads to a LW description. In CUF, the transverse stress

variables are always described in an LW sense because of the local, material-dependent nature of

the stresses. For the displacement unknowns, the choice between ESL and LW is let free.

The ESL description of the displacement field is represented by the following through-thickness

distribution that holds over the whole laminate thickness (z ∈ [−h/2, h/2]):

ui(x, y, z) =
N∑

s=0
Fs(z) ûi s(x, y) (1)

where ûi s is the vector of 3(N+1) unknown functions that does not depend on the number of layers

in the laminate. The approximating functions Fs(z) are here chosen to be Taylor polynomials, i.e.,

Fs(z) = zs. This approximation is of class CN in z, which means that it fulfills the Interlaminar

Continuity (IC) but the Zig-Zag (ZZ) behavior at bi-material interfaces is violated. To overcome
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this limitation, the highest-order term of the Taylor expansion, FN(z) ûi N can be replaced by Mu-

rakami’s Zig-Zag Function (MZZF) FZZ(ζk(z)) = (−1)k ζk and the corresponding ESL unknown

function ûi ZZ . This way, the resulting through-thickness approximation has a slope discontinuity

at the interfaces.

The LW description of the displacement field is given by

uki (x, y, z) =
N∑

s=0
Fs(ζk(z)) ûki s(x, y)

= Fb(ζk) ûki b(x, y) + Ft(ζk) û
k
i t(x, y) +

N∑

r=2
Fr(ζk) ûki r(x, y) (2)

where the approximation is introduced for each ply separately (superscript k) so that the number

of unknown functions ûki s is now dependent on the number of layers in the laminate. Legendre

polynomials are used as interpolation functions Fs(ζk) and are illustrated in Fig. 2. Note that the

first approximation (N = 1) corresponds to the linear Lagrange interpolation that is only function

of the bottom (b) and top (t) variables: since top and bottom unknown functions are available at

each ply, it is straightforward to account for the IC within a standard assembly scheme. The same

LW approximation is introduced for the transverse stress unknowns in the case of RMVT-based

models.

In CUF, all variables are expanded with same order N; for a generalization of this formulation

the reader is referred to the works of Demasi [42, 43]. In this work, linear (N = 1) up to fourth-

order (N = 4) polynomials are used for all independent variables (i.e., ui for classical PVD-based

models and ui and σi3 for advanced RMVT-based models). Note that the full 3D constitutive law

is used in all CUF models.

All CUF models are implemented as User Element in Abaqus as isoparametric four-node plate

elements based on a bilinear Lagrangian interpolation of all unknown functions, see Fig. 3. For

classical PVD-based models, these are ûi s(x, y) for an ESL description and ûki s(x, y) for an LW

description. For RMVT-based models, the same bilinear approximation is used for the LW trans-
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verse stress unknowns σ̂ki3 s(x, y). All stiffness contributions are computed exactly through Gaussian

quadrature.

A solid (3D) FEM model will be used for comparison purposes, which is computed with the

commercial software Ansys. Each of the possible models is identified by a unique acronym, which

is indicated in Tab. 1 along with their capability to fulfill a priori the Interlaminar Continuity of

the transverse stress field (IC) and the Zig-Zag behavior of the displacement field at the interfaces

(ZZ). Note that PVD-based models, such as ED, LD as well as the standard (displacement) FEM,

cannot satisfy exactly the IC conditions for the transverse stresses. Tab. 1 also reports the number

of unknowns per node of the in-plane mesh (NDOF) as a function of the expansion order N and

the number of layers Nl. For a 3D model of Ansys with quadratic interpolation, for each node in

the mid-plane the NDOF depends on the number Ne z of elements used to discretize the thickness

of each ply.

2.3 Problem description and finite element model

This work considers symmetric four-layered and eight-layered composite plates and focuses on the

free-edge effect appearing under longitudinal extension (the classical Pipes-Pagano problem) and

bending. The material properties of the orthotropic plies are reported in Tab. 2. With reference

to Fig. 1(a), the geometry of the plate is defined by a = 2b = 8h unless otherwise stated. All

plies have the same thickness hk, where hk = 1mm is taken for all numerical computations. The

boundary conditions for the considered case studies are schematically illustrated in Fig. 4: for

the extensional load case, a uniform axial strain ε0 is applied via a pre-described longitudinal

displacement at x = ±a, see Fig. 4(a); for the bending case, the plate is simply supported at its

edges x = ±a and is loaded by a uniform pressure load q0 at its top surface, see Fig. 4(b). In either

case, a traction-free condition is present at the edges y = ±b:

σyy(x, y = ±b, z) = σxy(x, y = ±b, z) = σyz(x, y = ±b, z) = 0 (3)
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Since the CUF elements are plate elements, only an in-plane (2D) discretization is required:

Ne x is the number of elements along the longitudinal axis and Ne y that along the width. A spacing

ratio is applied to the elements’ nodes in order to densify the mesh towards the free-edge. Two

different FE meshes will be used, both being symmetric with respect to the x and y axes:

• Mesh I is illustrated in Fig. 5(a) and is made of 32 × 32 elements (Ne x = Ne y = 32); two

spacing ratios are used for the x and y direction for having the smallest element at the plate

center (x = 0) and at the free edges (y = ±b).

• Mesh II still has a spacing ratio that densifies the mesh towards the center (x = 0), but it

subdivides the width direction into 2 partitions as schematically illustrated in 5(b): a large

region that occupies 98.75% of the half-width b (which corresponds to a size of 15.9hk as

b = 4h = 16hk) and a small region at the boundary of size 0.1hk, which represents only

1.75% of the half-width b. The total number of elements is still given by Ne x × Ne y, where

now Ne y = Nin
e y + Nbr

e y, Nin
e y and Nbr

e y being the number of elements along the width used for

the interior region and the boundary region, respectively. Both regions are discretized with a

spacing ratio along the y direction that densifies the mesh toward the free edges.

The 3D model employed for reference computation with the commercial FE software Ansys is

based on the same in-plane mesh, but additionally Ne z elements are used to discretize the thickness

of each ply. A spacing ratio is here introduced in order to densify the mesh towards the ply inter-

faces. Quadratic 20-node brick elements are used for the Ansys model. The parameters for Mesh I

and Mesh II employed for the two case studies (extensional and bending load) are summarized in

Tab. 3.
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3 Validation of models

The models from the CUF are first validated for the two loading configurations by referring only to

the fourth-order ESL and LWmodels. Reference results are extracted from open literature and from

3D FE results obtained by Ansys. For the distributions along the width at bi-material interfaces,

the transverse stresses σi3 from PVD models are evaluated at the bottom ply of the interface. It

is emphasized that, in classical displacement models, all stresses are directly obtained from the

constitutive law, i.e., no integration of indefinite equilibrium equations is employed. Advanced

models based on RMVT provide transverse stresses direct as nodal unknowns.

3.1 Free-edge effect under extensional loading

The composite plate is subjected to a uniform axial strain ε0 = 1. If not stated otherwise, all

stress results are given in GPa. Two four-layered symmetric laminates are considered, the angle-

ply [±45]s and the cross-ply [0, 90]s. The symmetry of the layup is exploited by modeling only

the upper half of the laminate. All results are obtained with the discretization referred to as Mesh

I. Note that the stress values provided by Wang and Crossman [13] at the free edge (y = b) are

actually located at y = 0.9985 b.

Angle-ply Fig. 6(a) reports the evolution of the transverse shear stress σxz along the half-width

at the bi-material (±45) interface located at z = h/4. The sharp increase of the transverse shear

stress towards the free edge y = b is seen. Both LW models agree well with the solutions of Wang

and Crossman [13] and Davì and Milazzo [26] as well as with the 3D FE results of Ansys. ESL

models do not reach the high stress value at the free edge. Fig. 6(b) reports the distribution of σxz

through the thickness at the free edge. It is apparent that ESL models are not able to capture any

stress gradients occurring at the bi-material interface because they can only represent an average

distribution.
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Cross-ply The evolution of the transverse normal stress σzz along the half-width at the bi-

material (0, 90) interface is reported in Fig. 7(a). Results from classical PVD-based and advanced

RMVT-based models are reported in separated graphs. The free-edge effect is clearly visible

through the steep increase of the stress. An excellent agreement is found between the LW models

and the 3D results by Ansys, which are slightly different compared to those by Wang and Cross-

man [13]. The worst results are obtained by the classical, high-order ED4 model. The distribution

through the thickness of σzz is given in Fig. 7(b) and confirms the good agreement between LW

models and the reference solutions. ESL models yield only averaged distributions which, however,

provide a less erroneous result at the bi-material interface compared to the results reported for the

angle-ply laminate (Fig. 6(b)). Moreover, Fig. 7(b) shows that PVD models do not exactly fulfill

the IC condition and provide a discontinuity of σzz at the bi-material interface.

3.2 Free-edge effect under bending loading

This case study, illustrated in Fig. 4(b), has been proposed by Tahani and Nosier [31] and concerns

a plate whose dimensions are defined by a = 2b = 10h (hk = 1mm is again considered). The four-

ply [0, 90]s laminate is loaded by a uniform pressure load q0 = 1 GPa. Due to the bending load,

the whole laminate has to be modeled, i.e., the layup symmetry cannot be exploited to reduce the

computational model. It is noted that, due to the thickness of the plate, no shear locking appears

when using the CUF plate elements. Mesh I discretization has been used.

Fig. 8(a) reports the evolution along the half-width of the transverse shear stressσyz evaluated at

the mid-surface (z = 0) and at the upper (0, 90) interface located at z = h/4. This stress component

shows a steep rise in vicinity of the free edge, where however it has to vanish due to the traction-

free conditions. The good agreement between the LW models and the reference results is again

apparent. As in the extension case, ESL models underestimate the characteristic gradients and,

additionally, they fail to capture the substantially different behavior at the mid-surface and at the
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bi-material interface. The through-thickness distribution of the transverse normal stress σzz at the

free edge is reported in Fig. 8(b), which confirms the excellent performance of the LW models and

the difficulties of ESL models to follow the gradients induced by the bi-material interfaces.

4 Stress Singularity

Within the linear elastic Effective Modulus Theory approach, the bi-material interfaces at the free

edge are expected to introduce singularities in the unbounded interlaminar stress components. This

should result in rising stress values with a refinement of the FE mesh. For the CUF elements two

refinements are actually possible: a refinement of the in-plane FE mesh and a refinement along the

thickness by subdividing each ply into several mathematical layers.

Fig. 9 shows the effect of the FE mesh refinement on two transverse stress distributions:

Fig. 9(a) reports the evolution along the half-width of the transverse shear stress σxz for the [±45]s
laminate under longitudinal strain ε0 and Fig. 9(b) the through-thickness distribution of σzz for the

[0, 90]s laminate under the bending load q0. In either case no significant rise of the stress level

can be observed: it appears that the high-order LW plate elements do not recognize any stress

singularity upon a refinement of the in-plane FE mesh.

The role of a refinement through-the-thickness is next considered: Mesh I is used and each

ply is subdivided into a variable number of mathematical layers. The same approach proposed by

Saeedi et al. [30] for their high-order plate model is here followed, which suggests to refine the

mathematical layers towards the ply’s interfaces. Note that the 3D Ansys model follows this ap-

proach as well, by employing a spacing ratio for the discretization along the thickness (see Tab. 3).

The results obtained with LD4 elements are reported in Fig. 10. The current implementation of

LM4 elements requires excessive RAM to perform the computations with large number of layers.

The effect on the half-width evolution of σzz for the angle-ply laminate in extension, Fig. 10(a),

shows a clear increase in the stress level at the free edge. The effect on the through-thickness distri-
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bution at the free edge for cross-ply in bending is illustrated in Fig. 10(b) and shows that including

mathematical layers enhances the satisfaction of the IC condition and of the traction conditions at

the top and bottom surfaces of the laminate (σzz(z = h/2) = q0 and σzz(z = −h/2) = 0).

The increase in the stress level observed in Fig. 10(a) suggests the presence of a singularity

and the following analysis is focused on the stress response at a very close distance to the free

edge. Therefore, subsequent analyses are performed with the discretization scheme referred to as

Mesh II (see Tab. 3) and the normalized distance r from the free edge and along the interface is

introduced as

r(y) =
b − y
hk

where




y ∈ [b − hk, b]

r ∈ [1, 0]
(4)

For small distances r, the singular stress behavior can be represented as [14, 26]

σi j(r) ≈ Ai j r−αi j with r ∈ ]0, 1] and αi j ∈ [0, 1] (5a)

or, equivalently, as

logσi j(r) ≈ log Ai j − αi j log r (5b)

where αi j is the singularity power and Ai j the singularity strength, which can be related to a stress

intensity factor. According to Eq. (5b), the log-log plot of σi j(r) would be a line of slope −αi j and

σ-intercept at r = 1 of Ai j. This representation should be applied to those stress components that

are continuous at the interface (r runs along the interfaces) and that are unbounded at the free edge,

i.e., σxz (for angle-ply laminates only) and σzz.

Fig. 11(a) presents a zoom of the distributions along the width of σxz limited to the range 1 ≤

r ≤ 0, obtained with various models for the angle-ply laminate subjected to extension; Fig. 11(b)

presents the same results in log-log scale for the range 5. 10−4 ≤ r ≤ 10−1. It can be seen that

the refinement needs to be increased further in order to recover the linear behavior (in the log-log

scale) of Davì and Milazzo [26] in the whole interval. However, convergence appears to be reached
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in the range 10−2 ≤ r ≤ 10−1. Therefore, the parameters Axz and αxz can be evaluated via a least-

squares fitting from the FE results at the nodes inside this interval. In an attempt to enlarge this

interval upon increasing the resolution next to the interfaces, Lagrange polynomials interpolated

at Chebyshev nodes [44] have been used instead of the standard Legendre polynomials of CUF.

However, no relevant improvement could be remarked for the present application.

The convergence of the values of the singularity power and strength with increasing number of

mathematical layers is reported in Fig. 12. The plots highlight that the values extracted from the

CUF elements converge towards the 3D solution of Ansys. Comparison with the BEM solution

of Davì and Milazzo [26] shows a very good agreement for the singularity strength Axz and a

difference of about 10% for the singularity power αxz. It is noted that very different values have

been predicted for the singularity power by means of quasi-analytic approaches [22]. Note also

that due to RAM limitations, only 2 mathematical layers can be presently used for the LM4 model,

for which convergence is not achieved, see Fig. 12.

5 Assessments using singularity parameters

Based on the singularity parameters, an assessment of the behavior of the different CUF models

for both extension and bending loading is proposed. The geometry of the plate is here coincident

with that of the classical Pipes-Pagano example and Mesh II is employed to extract the singularity

parameters from the nodal stress values located in the range 10−2 ≤ r ≤ 10−1. In order to have

comparable results between the extensional load and the bending load, the magnitude of the uni-

form load q0 is chosen so to produce the same total deformation energy in the laminate as in the

extension load case. The evaluation of the total deformation energy is provided by the 3D Ansys

FE model. Tab. 4 reports the magnitudes of the uniform pressure load q0 for the various sym-

metric laminates considered in this Section, i.e., the 4-ply [±45]s and [0, 90]s laminates as well as

the 8-ply quasi-isotropic laminates [±45, 0, 90]s and [90, 0,±45]s. In order to provide a consistent
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comparison between all LW, i.e., the LDN, LMN and EMN models, only 2 mathematical layers

are used in this section, even if the results in the previous Section indicate that this solution may

not be converged.

5.1 Symmetric 4-ply laminates

The power law characterized by the singularity parameters obtained for σxz in the [±45]s angle-

ply laminate are graphically displayed in Fig. 13, those for σzz in the [0, 90]s cross-ply laminate

in Fig. 14. The left and right graphs of each figure report the results for the extension and the

bending load, respectively. In order to ease the comparison between the two loading conditions,

the same axes range is used for the log-log scales. As a consequence, some curves may not be

visible because they lie outside of the selected range.

By taking the Ansys 3D FE results as reference, the results show clearly the superiority of

LW descriptions over ESL ones, which systematically underestimate the singularity power αi j.

Moreover, better results are obtained for high-order polynomial expansion N. It appears that the

introduction of the Zig-Zag function does not enhance the overly poor response of ESL models.

No enhancement can be expected from ESL models upon introducing mathematical layers. It is

further emphasized that MZZF is completely useless if fictitious interfaces are introduced through

the use of mathematical layers because the Zig-Zag term vanishes. Advanced ESL models, such as

EM4, EM2 and EMz2, have an LW description of the transverse stresses but these models result to

be practically insensitive with respect to a refinement through mathematical layers because of the

ESL displacement field. Classical displacement-based models and advanced RMVT-based models

show comparable results. This means that no real improvement is obtained in terms of singularity

parameters if mixed models are used that exactly fulfill the IC condition, exception made for the

advantage of having a unique transverse stress value at the interfaces. It is finally noted that, in

general, if the singularity power is underestimated (αmodel < αref), then the singularity strength
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results overestimated (Amodel > Aref), and vice-versa.

Concerning the comparison between the free-edge effect induced by the extension and the

bending load, it may be concluded that the angle-ply laminate has a higher singularity strength in

extension than in bending, while the opposite holds true for the cross-ply laminate. However, for

the cross-ply laminate the singularity power appears to be larger in extension than in bending.

5.2 Quasi-isotropic laminates

Based on the singularity parameters |Ai j| and αi j, a comparison between the various interfaces

that characterize two symmetric quasi-isotropic laminates is proposed. Both extension (ε0) and

bending under uniform pressure load (q0) are considered. Results for unbounded interlaminar

stress components σzz and σxz are obtained using the LD4 model with two mathematical layers per

ply.

The quasi-isotropic laminate [±45, 0, 90]s is first considered (Fig. 15) and the interlaminar

stresses are evaluated at the following three interfaces, starting from the symmetry plane: the

(0, 90) cross-ply interface, the (−45, 0) interface and the (±45) angle-ply interface. The results are

reported in Fig. 15(a) for the extension load and in Fig. 15(b) for the bending load. The strongest

singularity appears to occur for σzz at the (0, 90) interface. Note that at the same interface, no

singularity is present for the transverse shear stress (αxz = 0). Considering the angle-ply interface,

it is worth remarking that the singularity power of σxz and σzz are not the same (|αzz| > |αxz|), and

that the singularity strength is higher for the transverse shear stress σxz (|Axz| > |Azz|). As far as

the free-edge effect under bending load is concerned, it appears that the strongest singularity is

associated to σxz at the angle-ply interface and that its strength is smaller than in the extension

case.

The quasi-isotropic [90, 0,±45]s laminate is next considered, see Fig. 16. The interlaminar

stresses are reported for the two interfaces (0, 45) and (±45) (angle-ply interface). At the (90, 0)
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cross-ply interface, the transverse shear stress shows no singularity and the transverse normal stress

is not monotonous within the defined interval of r, which prevents the evaluation of the singularity

parameters according to Eq. (5) [14]. Observing the free-edge effect arising under the extensional

load, Fig. 16(a), it appears that the strongest singularity occurs at the angle-ply interface and con-

cerns in equal way both stress components σxz and σzz. In this case, the same singularity power

is found for all stress components. The results for the bending load suggest that the strongest sin-

gularity is associated to the transverse normal stress σzz, irrespective of the interface. In this case,

the singularity power of the interlaminar stresses taken at the one interface appears to be different.

Finally, the comparison between the singularity strength in bending and extension indicates that

the free-edge effects due to extension are higher than those induced by bending loads.

6 Conclusion

Classical and advanced, higher-order plate elements formulated according to Carrera’s Unified For-

mulation (CUF) have been employed to the free-edge problems occurring in symmetric laminates

subjected to extension (classical Pipes-Pagano problem) and bending. Unbounded interlaminar

stresses have been represented through the classical power-law singularity approach and the ex-

tracted singularity parameters have been shown to converge towards the results obtained with a 3D

FE model computed with Ansys. A subdivision of the plies into several mathematical layers is the

key factor to allow high-order LW models to well capture the stress singularity. The presented 2D

plate elements provide quasi-3D solutions and transverse stress singularities can be well evaluated.

Since they require only a 2D mesh, these elements may be interesting for applications involving

large FE models. Based on the singularity parameters, an assessment of various CUF models has

been proposed leading to the conclusion that LW models are mandatory and that the use of math-

ematical layers is necessary for enhancing the accuracy. Furthermore, the free-edge effects due to

bending and extension have been compared and it appears that the singularity strength is larger in
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extension than in bending.

Further developments are planned that concern a more thorough investigation of the advanced

LMN models once the current RAM limitation is overcome by a more efficient User Element

implementation. A submodeling technique involving the connection between kinematically in-

compatible plate models should permit a further reduction in the computational effort [10]. A

quantitative criterion to establish mesh and model requirements for free-edge problems could be

proposed based on the singularity parameters. Finally, despite the numerous works that addressed

the free-edge problem, it appears that some key questions are still to be answered. In particular,

the differences between the singularity powers predicted by semi-analytical approaches [22, 45]

and those obtained from discrete numerical solutions [14, 26] are still to be explained.
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Figure 1: Geometry and reference frames used for the description of the laminated plate
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Figure 2: Through-thickness interpolation functions for LW descriptions
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Figure 3: Isoparametric bilinear FEM interpolation for CUF elements
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(a) Extensional configuration (b) Bending configuration

Figure 4: Case studies for the free-edge effect: laminates subjected to longitudinal extension (left)
and bending (right)
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(a) Mesh I
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(b) Mesh II

Figure 5: Illustration of the employed discretization schemes: Mesh I (left) has a continuous
refinement towards the free edges; Mesh II (right) subdivides the half-width into an interior region
and a boundary region
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Figure 6: Transverse shear stress for the [±45]s laminate under uniform axial extension: distribu-
tion along the width at the (±45) interface (left) and through the thickness at the free edge (right)
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(b) [0, 90]s (ε0) : σzz(x = 0, y = b, z)

Figure 7: Transverse normal stress for the [0, 90]s laminate under uniform axial extension: dis-
tribution along the width at the (0, 90) interface (left) and through the thickness at the free edge
(right)

31
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 P
ar

is 
X

] a
t 0

0:
16

 1
0 

D
ec

em
be

r 2
01

5 



ACCEPTED MANUSCRIPT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

0

0.05

0.1
σ

yz
 (G

Pa
)

y/b
 

 
LM4
EM4
ANSYS
 Tahani & Nosier

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

0

0.05

0.1

σ
yz

 (G
Pa

)

y/b
 

 
LD4
ED4
ANSYS
 Tahani & Nosier

z = 0z = 0

z = h/4z = h/4

z = 0z = 0

z = h/4z = h/4

(a) [0, 90]s (q0) : σyz(x = 0, y = b, z = {0, h/4})

-2 0 2 4
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

z

σzz (GPa)
 

 

LM4
EM4
ANSYS
Tahani & 
Nosier

-2 0 2 4
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

z

σzz (GPa)
 

 

LD4
ED4
ANSYS
Tahani & 
Nosier
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Figure 8: Transverse stresses for the [0, 90]s laminate under uniform pressure load. Left: distribu-
tion of σyz along the width at the mid-surface ((90, 90) interface at z = 0) and at the bi-material
interface ((0, 90) interface at z = h/4); Right: distribution of σzz through the thickness at the free
edge.
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Figure 9: Effect of FE mesh refinement on the unbounded interlaminar stress components for a
uniform extension load (left) and the bending load (right).
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Figure 10: Effect of number of mathematical layers on the unbounded interlaminar stress compo-
nents for a uniform extension load (left) and the bending load (right).
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(b) log-log representation of Fig. 11(a)

Figure 11: Distribution of σxz at the bi-material interface for the [±45] laminate under extension
load in immediate vicinity of the free edge (left) and its log-log representation (right).
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Model |Axz| [GPa] αxz
1 × LM4 7.0380 0.1460
2 × LM4 6.2170 0.2123

1 × LD4 6.9099 0.1399
2 × LD4 6.3246 0.1979
3 × LD4 4.9793 0.2894
4 × LD4 4.9186 0.2920
5 × LD4 4.9212 0.2895

Ansys 4.9758 0.2884
Davì & Milazzo 5.0280 0.2630
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Figure 12: Convergence of singularity strength αxz and power Axz with increasing number of math-
ematical layers ([±45]s laminate in extension).
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(a) [±45]s (ε0) : σxz(x = 0, r, z = h/4)
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(b) [±45]s (q0) : σxz(x = 0, r, z = h/4)

Figure 13: Transverse shear stress σxz(r) response (log-log scale) for the [±45]s laminate under
extension load (left) and bending load (right): assessment of different CUF models.
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(a) [0, 90]s (ε0) : σzz(x = 0, r, z = h/4)
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Figure 14: Transverse normal stress σzz(r) response (log-log scale) for the [0, 90]s laminate under
extension load (left) and bending load (right): assessment of different CUF models.
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(a) [±45, 0, 90]s (ε0) : {σxz,σzz}(x = 0, r, z = h/4)
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Figure 15: Interlaminar stresses at the interfaces of the [±45, 0, 90]s laminate under extension load
(left) and bending load (right).
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(a) [90, 0,±45]s (ε0) : {σxz,σzz}(x = 0, r, z = h/4)
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Figure 16: Interlaminar stresses at the interfaces of the [90, 0,±45]s laminate under extension load
(left) and bending load (right).
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Table 1: Capabilities and characteristics of the 2D CUF and 3D Ansys models and associated
DOFs

N=1-4 ZZ IC NDOF
ED N - - 3(N + 1)

PVD EDz N
√

- 3(N + 1)
LD N

√
- 3(NlN + 1)

EM N -
√

6 + 3N(Nl + 1)
RMVT EMz N

√ √
6 + 3N(Nl + 1)

LM N
√ √

6(NlN + 1)
Ansys

√
- 3(Nl(2Ne z + 1) − 1 )
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Table 2: Single ply material properties
E1 = 137900 MPa (20. 106 psi)

E2 = E3 = 14480 MPa (2.1 106 psi)
G12 = G13 = G23 = 5860 MPa (0.85 106 psi)

ν12 = ν13 = ν23 = 0.21
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Table 3: Parameters of the employed mesh. Values in parentheses indicate the spacing ratios used
to densify the mesh towards the free-edge (x and y direction) and ply interfaces (z direction).

Extension Bending
Mesh I Ne x 32 (64) 32 (64)

Ne y 32 (32) 32 (32)
(for Ansys) Ne z 8 (12) 12 (12)

Mesh II Ne x 8 (20) 24 (20)
Nin
e y 30 (60) 20 (60)

Nbr
e y 30 (20) 30 (20)

(for Ansys) Ne z 8 (12) 12 (12)
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Table 4: Pressure load magnitude q0 for the different laminates
laminate q0 [MPa]
[±45]s 5130.060
[0, 90]s 253.453
[±45, 0, 90]s 298.798
[90, 0,±45]s 213.531
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