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LContext and Reviews

LForced convection around isolated particle

Nu ~= f(R., Pr) >
10 Pr=1
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[ —a—— Ranz & Marshall (1952)
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—— Feng & Michaelides (2000)
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L Context and Reviews
L Non-isothermal flows through Static Array of particles
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L Numerical method and code validation
|—Tensorial penalty method
v
du

cu=0
o(Gi+ o) =

~Vp+pg+ V- (n(Vu+ Vi) +F.
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L Numerical method and code validation

LTensorial penalty method

V-u=0
Ou "
p(§+(u~V)u) =-Vp+pg+V-(n(Vu+vVv u))J+F,,-
9C L w.vC=0
ot

T
oC, (aa—t+u-VT)+£T=v-(,\VT)+s.

e Tensorial Penalty Method (Vincent & Caltagirone J. Comput Phys 2011 )
Ve (u(Vut Vi) ) = V- [sA(@)] + [€O((w)] + [0((w)]

Solid behaviour , C=1:n>1, ( =k =2n

e Darcy Penalty Method (kadra & al. Int. J. Numer Meth Fluids 1999)

e Constant temperature in the solid particle : /7, S
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LValidation test cases
Conduction
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Numerical method and code validation

LValidation test cases

Conduction
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Numerical method and code validation

LValidation test cases
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- Numerical method and code validation

LValidation test cases

Spherical particle surface is approximated by triangular
elements and the flux is computed as :

v

= —
& =3 —kVT(zp, yp, 2) - nvdSy

(zp, Y, 2) barycenter of each triangle

v

%
ny normal vector of each surface element

v

v

dSy surface of each triangle

ar _ ~Tita+ 8(Tit1 — Ti—1) + Tiyo
dz |; 12Dz

+ O(h%)
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Numerical method and code validation
I—Va.lidation test cases

Mean relative error Nu, f (D—p)
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Numerical method and code validation

LValidation test cases

Forced Convection

Forced Convection around a stationnary spherical particle
Domain : L, = 15D, ; L, = 8D, ; L, = 8D,
Reynolds number Re = 50
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Numerical method and code validation

LValidation test cases

Forced Convection

Forced Convection around a stationnary spherical particle

Reynolds mumber e =50 e Darcy Penalty Method (DPM)
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- Numerical method and code validation

LValidation test cases
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Numerical method and code validation
LValidation test cases

Analysis of Heat Transfer in Dense Suspensions by Particle Resolved Numerical Simulations
@ = psCp
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LAnalysis of heat transfer in dense Suspension

Flow throug random static array of spherical particle
Periodic boundary condition for temperature and velocity in lateral faces

Constant Particle temperature imposed

Inlet Fluid velocity

Temperature
areimposed

Slices of temperature
with velocity line

$=04,Re=50,Pr=1

e Darcy Penalty Method (DPM)
e Imposed Inlet (T,V)

e Randomly distributed particle
e 9,=0.1, 0.2, 0.3, 04

e R.=10, 50, 100; P, =1
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LAnalysis of heat transfer in dense Suspension

L Calculation of heat transfer coefficient

e x(z,y,2) =1 — C(z,y, 2) Phase Function
e Tj Cup-mixing bulk temperature
JI x(@,y, 2) Us(2, y, 2) Tz, y, 2)dydz
Ty(z) = 2
/{f xX(z,y,2) Us(z, y, 2) dydz
e Total convective heat flux
(Deen & al Chem. Eng. Sci 2012; Tavassoli & al Int. J. Multiph. Flow 2013)
d]%(x) 6¢

Q= UooprpT = hf D: (Ts - Tb(m))'

e The heat transfer coefficient assumed to be constant

T, — T, ) Usops C
h — _1 out p
f n( T, — Ty, 6.

P
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|—Ana1ysis of heat transfer in dense Suspension

L Calculation of heat transfer coefficient

Bulk temperature
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|—Ana1ysis of heat transfer in dense Suspension

L Calculation of heat transfer coefficient

Bulk temperature
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LAnalysis of heat transfer in dense Suspension

LRcsult compared to correlations

Nu ~ f(Re, ¢, P, =1)
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Random mobile Suspension
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Random mobile Suspension
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|—Random mobile Suspension
LSuspended Particle

Suspended Particle

e Tensorial Penalty Method
(TPM)

Vz (m/s)

e Inlet velocity and gravity

e Balance of forces
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|—Random mobile Suspension
LSuspended Particle
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Random mobile Suspension
:
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L Heat transfer in fluidized bed

Heat transfer in fluidized bed

e Periodic and Circulating
e Porous Wall
e Soft Sphere collision

» Particle-particle
» Particle-wall

J. C. B de Motta & al (Physics of Fluids 2013)
e Several solid fraction
» Settling velocity

» Fluidization velocity
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» Heat transfer on isolated particle
e Conduction

e Forced convection

» Convergence study and code validation
e Grid Convergence

e Tensorial Penalty method

» Flow though random static array

e Heat transfer Analysis
e Statistical dependence

» Random mobile suspension
e Local heat transfer coefficient

e Instantaneous distribution of particles

e More random configurations of particles
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