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Context and goals
Non-isothermal particle laden flows in dense regime

Particle-particle interaction, Particle-wall interactions

Heat exchange
• Between phases
• Between phases and wall
• Nusselt number, function of

I Solid fraction
I Structure of the suspension
I ....

Industrial Applications
• Chemical Looping Combustion
• CO2 Capture
• Carbon neutral-energy

I Generation
I Transformation

• Cases of validation for Single particle
• Fluid-particle heat transfer coefficient

I Fixed assembly of particles, mobile suspension
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Forced convection around isolated particle

Nu ∼= f (Re,Pr)
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Non-isothermal flows through Static Array of particles

Nu ∼= f (Re,Pr , φs)⊕
Gunn (Int. J. Heat and Mass Transfer 1977)

⊕
Sun & al (Int. J. Heat and Mass Transfer 2015)
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Tensorial penalty method

∇ · u = 0

ρ

(
∂u
∂t

+ (u · ∇) u
)

= −∇p + ρg +∇ ·
(
µ
(
∇u +∇tu

))︸ ︷︷ ︸+Fsi

∂C
∂t

+ u · ∇C = 0

ρCp

(
∂T
∂t

+ u · ∇T
)

+ `T = ∇ · (λ∇T) + S .

• Tensorial Penalty Method (Vincent & Caltagirone J. Comput Phys 2011 )

∇ ·
(
µ
(
∇u +∇tu

))
= ∇ · [κΛ((u)] + [ζΘ((u)] + [ηΓ((u)]

Solid behaviour , C = 1 :: η � 1, ζ = κ = 2η
• Darcy Penalty Method (Kadra & al. Int. J. Numer Meth Fluids 1999)

• Constant temperature in the solid particle : `T , S
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Validation test cases

Conduction

T(r , t)− T∞
(Ts − T∞)

=
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R
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0
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2
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→
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Validation test cases

Spherical particle surface is approximated by triangular
elements and the flux is computed as :

I Φ =
∑
−kf

→
∇T (xb, yb, zb) ·→nOdSO

I (xb, yb, zb) barycenter of each triangle
I
→nO normal vector of each surface element

I dSO surface of each triangle

dT
dx

∣∣∣∣
i

= −Ti+2 + 8(Ti+1 − Ti−1) + Ti+2
12Dx +O(h4)
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Validation test cases

Mean relative error Nu, f (Dp
Dx

)
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Validation test cases

Forced Convection

• Darcy Penalty Method (DPM)
• Re = 10 · · · 60, Pr = 1

Nu = hf Dp
kf

hf = Φ
∆T (4πR2)

Φ = Φout − Φin .
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Validation test cases

Φ = ρf Cp

∫ ∫
Sout

Ux(Lx , y, z)T(Lx , y, z)dydz − ρf Cp

∫ ∫
Sin

Ux(0, y, z)T(0, y, z)dydz
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• Darcy Penalty Method (DPM)
• Imposed Inlet (T,V)
• Randomly distributed particle
• φs = 0.1, 0.2, 0.3, 0.4
• Re = 10, 50, 100 ; Pr = 1
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Calculation of heat transfer coefficient

• χ(x, y, z) = 1−C(x, y, z) Phase Function
• Tb Cup-mixing bulk temperature

Tb(x) =

∫∫
Ac

χ(x, y, z)Ux(x, y, z)T (x, y, z)dydz∫∫
Ac

χ(x, y, z)Ux(x, y, z)dydz

• Total convective heat flux
(Deen & al Chem. Eng. Sci 2012; Tavassoli & al Int. J. Multiph. Flow 2013)

Q = U∞ρf Cp
dTb(x)

dx = hf
6φs
Dp

(Ts − Tb(x)) .

• The heat transfer coefficient assumed to be constant

hf = − ln
(Ts − Tbout

Ts − Tbin

)U∞ρf Cp
6φs
Dp

L


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Calculation of heat transfer coefficient

Bulk temperature
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Result compared to correlations

Nu ∼ f (Re, φ, Pr = 1)

s

N
u

Sun & al (Int. J. Heat and Mass Transfer 2015)
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Suspended Particle

Suspended Particle

• Tensorial Penalty Method
(TPM)

• Inlet velocity and gravity
• Balance of forces
• Re = 58
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Suspended Particle

Suspended Particle

• Tensorial Penalty Method
(TPM)

Re = 58, Nu = 5.4 (DPM)

14 / 16



Analysis of Heat Transfer in Dense Suspensions by Particle Resolved Numerical Simulations
Random mobile Suspension

Heat transfer in fluidized bed

Heat transfer in fluidized bed

• Periodic and Circulating
• Porous Wall
• Soft Sphere collision

I Particle-particle
I Particle-wall

J. C. B de Motta & al (Physics of Fluids 2013)

• Several solid fraction
I Settling velocity
I Fluidization velocity
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I Heat transfer on isolated particle
• Conduction
• Forced convection

I Convergence study and code validation
• Grid Convergence
• Tensorial Penalty method

I Flow though random static array
• Heat transfer Analysis
• Statistical dependence

I Random mobile suspension
• Local heat transfer coefficient
• Instantaneous distribution of particles
• More random configurations of particles
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