NUMERICAL SIMULATION OF COLLISION DYNAMICS FOR FINITE SIZE PARTICLES IN TURBULENT SUSPENSION

S. Vincent, J.C. Brändle de Motta, E. Climent, J.-L. Estivalezes

ICMF 2016, Firenze, March 26th 2016

The particle laden flows

Numerical approach Collision model

Simulations

Particles dynamics Collisions Average flow around particles

Conclusion

Goals and outline

The main goal of this presentation is to:

Understand collisions for finite-size particles in a HIT.

The presentation follow those points:

- Context and motivations
- VoFLag method for finite size particles
- Lubrication phenomena and its model
- HIT characteristics
- Collisions in a HIT

3/19

The particle laden flows

Particle laden flows are common:

In natural flows:

- Rivers
- Volcanos
- Clouds
- Microorganism
- In industrial applications:
 - Fluidized bed
 - Combustion Chamber

The particle laden flows

Particle laden flows are common:

In natural flows:

- Rivers
- Volcanos
- Clouds
- Microorganism
- In industrial applications:
 - Fluidized bed
 - Combustion Chamber

Source: http://geography.unt.edu

The particle laden flows

Particle laden flows are common:

In natural flows:

- ► Rivers
- Volcanos
- Clouds

4/19

- Microorganism
- In industrial applications:
 - Fluidized bed
 - Combustion Chamber

Source: Wikipedia

The particle laden flows

Particle laden flows are common:

In natural flows:

- Rivers
- Volcanos
- Clouds
- Microorganism

In industrial applications:

- Fluidized bed
- Combustion Chamber

Source: Wikipedia

Falkovich et al. - Nature - Vol. 4194 (2002).

The particle laden flows

Particle laden flows are common:

In natural flows:

- Rivers
- Volcanos
- Clouds
- Microorganism

In industrial applications:

- Fluidized bed
- Combustion Chamber

Source: Godfrey, NIWA

Durham et al. - Nature - 2148 (2013)

Denny et al. - Biological Bulletin - 203 (2002)

The particle laden flows

Particle laden flows are common:

In natural flows:

- Rivers
- Volcanos
- Clouds
- Microorganism

In industrial applications:

- Fluidized bed
- Combustion Chamber

The particle laden flows

Particle laden flows are common:

In natural flows:

- Rivers
- Volcanos
- Clouds
- Microorganism

In industrial applications:

- Fluidized bed
- Combustion Chamber

Source: Linassier - Thèse Université de Toulouse (2012)

The particle laden flows

Particle laden flows are common:

In natural flows:

- Rivers
- Volcanos
- Clouds
- Microorganism

In industrial applications:

- Fluidized bed
- Combustion Chamber

The particle laden flows

Many parameters drive those flows:

- Density Ratio
- Particle size
- Shape
- Flow
- Solid fraction
- **۱**...

Different numerical approaches exist:

- Microscopic
- Mesoscopic
- Macroscopic

Many parameters drive those flows:

- Microscopic (Fully Resolved Particles)
- Mesoscopic (Point-wise Particles)
- Macroscopic (Continuum phase)

Many parameters drive those flows:

- Microscopic (Fully Resolved Particles)
- Mesoscopic (Point-wise Particles)
- Macroscopic (Continuum phase)

6/19

Many parameters drive those flows:

- Microscopic (Fully Resolved Particles)
- Mesoscopic (Point-wise Particles)
- Macroscopic (Continuum phase)

Many parameters drive those flows:

- Microscopic (Fully Resolved Particles)
- Mesoscopic (Point-wise Particles)
- Macroscopic (Continuum phase)

Many parameters drive those flows:

- Microscopic (Fully Resolved Particles)
- Mesoscopic (Point-wise Particles)
- Macroscopic (Continuum phase)

Microscopic method permits to understand surrounding fluid behaviour

6/19

Method

Thetis code

- MAC staggered unstructured grid
- Finite volumes
- Fictitious Domain Approach

The solid behaviour is enforced by high viscosity.

Randrianarivelo et al. Int. J. Num. Meth. in Fluids (2005)

Vincent et al. - Comp. & Fluids (2007)

Vincent et al. - J. Comp. Phy. (2013)

7/19

Firenze, March 26th 2016

Firenze, March 26th 2016

Collisions

8/19

Firenze, March 26th 2016

Collisions

Firenze, March 26th 2016

Collisions

8/19

Firenze, March 26th 2016

Collisions

A model is required.

8/19

Firenze, March 26th 2016

Collisions

$$\mathbf{F}_{\mathbf{I}}(\epsilon, \mathbf{u}_{\mathbf{n}}) = -6\pi\mu_{f}R\mathbf{u}_{n}\left[\lambda\left(\epsilon\right) - \lambda\left(\epsilon_{\mathsf{al}}\right)\right]$$

Brenner - Chem. Eng. Sci. - Vol. 16 (1961)

Firenze, March 26th 2016

Collisions

$$\mathbf{F}_{\mathbf{I}}(\epsilon, \mathbf{u}_{\mathbf{n}}) = -6\pi\mu_{f}R\mathbf{u}_{n}\left[\lambda\left(\epsilon\right) - \lambda\left(\epsilon_{al}\right)\right]$$

- µ_f dynamic viscosity
- R particle radius
- u_n normal velocity
- $\epsilon = \frac{d}{R}$ dimensionless distance
- λ Taylor series

Brenner - Chem. Eng. Sci. - Vol. 16 (1961)

Firenze, March 26th 2016

Collisions

8/19

Firenze, March 26th 2016

Collisions

$$\mathbf{F}_{s} = \underbrace{\frac{m_{e}\left(\pi^{2} + [lne_{d}]^{2}\right)}{[N_{c}\Delta t]^{2}}}_{\text{spring}} \mathbf{d} - \underbrace{\frac{2m_{e}\left[lne_{d}\right]}{[N_{c}\Delta t]}}_{\text{dashpot}} \mathbf{d}$$

Schäfer et al. - Jo. de Phys. - Vol 6 (1996)

Firenze, March 26th 2016

Collisions

$$\mathbf{F}_{s} = \underbrace{\frac{m_{e}\left(\pi^{2} + [\mathit{lne}_{d}]^{2}\right)}{[\mathit{N}_{c}\Delta t]^{2}}}_{\text{spring}} \mathbf{d} - \underbrace{\frac{2m_{e}\left[\mathit{lne}_{d}\right]}{[\mathit{N}_{c}\Delta t]}}_{\text{dashpot}} \dot{\mathbf{d}}$$

Schäfer et al. - Jo. de Phys. - Vol 6 (1996)

- *m_e* reduced mass
- *e_d* coefficient of restitution in vaccum
- *N_c* number of time step during collision
- Δt time step (fluid)

Firenze, March 26th 2016

Collisions

8/19

Firenze, March 26th 2016

Collisions

Firenze, March 26th 2016

Collisions

Collisions in turbulence

8/19

Firenze, March 26th 2016

Collisions

$$rac{e_l}{e_d} = exp\left(-rac{35}{St}
ight)$$

Legendre et al. - Phys. Fluids - Vol. 17 (2005)

Firenze, March 26th 2016

10²

St

 10^{3}

Collisions

Legendre et al. - Phys. Fluids - Vol. 17 (2005)

 St^*_C

10⁰

10¹

Firenze, March 26th 2016

Collisions

Legendre et al. - Phys. Fluids - Vol. 17 (2005)

8/19

Introduction Numerical approach Simulations Conclusion Firenze, March 26th 2016

HIT: Initial condition

$$L_b = 2\pi$$

9/19

Introduction Numerical approach Simulations Conclusion Firenze, March 26th 2016

HIT: Initial condition

$$L_b = 2\pi$$
$$\frac{L_b}{\Lambda} = 2\pi$$
HIT: Initial condition

$$L_b = 2\pi$$
$$\frac{L_b}{\Lambda} = 2\pi$$
$$\frac{\Lambda}{\lambda} = 4.3$$

HIT: Initial condition

$$L_b = 2\pi$$

 $\frac{L_b}{\Lambda} = 2\pi$
 $\frac{\Lambda}{\lambda} = 4.3$
 $\frac{\eta}{\lambda} = 17$

HIT: Initial condition

$$L_b = 2\pi$$
$$\frac{L_b}{\Lambda} = 2\pi$$
$$\frac{\Lambda}{\lambda} = 4.3$$
$$\frac{\eta}{\lambda} = 17$$
$$\frac{R_p}{\eta} = 11$$

Collisions in turbulence

9/19

 $\frac{L_b}{\Lambda}$

 $\frac{\Lambda}{\lambda}$

HIT: Initial condition

$$Re_{\lambda} = 73$$

$$Re_{\Lambda} = 315$$

$$L_{b} = 2\pi$$

$$\frac{L_{b}}{\Lambda} = 2\pi$$

$$\frac{\rho_{p}}{\rho_{f}} = \{1, 2, 4\}$$

$$\frac{\Lambda}{\lambda} = 4.3$$

$$St_{k} = 26\frac{\rho_{p}}{\rho_{f}}$$

$$St_{E} = 1.5\frac{\rho_{p}}{\rho_{f}}$$

$$\frac{\eta}{\lambda} = 17$$

$$R_{p}}{\eta} = 11$$

$$M_{p} = 512$$

$$\phi_{v} = 3\%$$

$$\frac{\eta_{k}}{\Delta x} = 0.56$$
Nodes = 256³

Firenze, March 26th 2016

HIT: Initial condition

 $Re_{\lambda} = 73$ $Re_{\Lambda} = 315$ $L_b = 2\pi$ $\frac{L_b}{\Lambda} = 2\pi$ $\frac{\rho_p}{\rho_f} = \{1, 2, 4\}$ $rac{\Lambda}{\lambda} = 4.3$ $St_k = 26rac{
ho_p}{
ho_f}$ $St_E = 1.5rac{
ho_p}{
ho_f}$ $\frac{\eta}{\lambda} = 17$ $\frac{R_p}{\eta} = 11 \quad \begin{array}{c} N_p = 512\\ \phi_v = 3\% \end{array}$ $\frac{\eta_k}{\Delta x} = 0.56$

 $\frac{\eta_{\kappa}}{\Delta x} = 0.56$ Nodes = 256³

The particles are on the inertial range.

Firenze, March 26th 2016

HIT: Initial condition

10/19

Firenze, March 26th 2016

HIT: Initial condition

10/19

Firenze, March 26th 2016

HIT: Initial condition

10/19

Firenze, March 26th 2016

HIT: Initial condition

Firenze, March 26th 2016

HIT: Initial condition

Firenze, March 26th 2016

Visualization of one simulation

512 particles

256³ grid nodes 512 processors

 \sim 10h / T_E

(Movie)

In this section only solid collision model is activated (no lubrication).

Collision time

12/19

Collision time

$$\frac{1}{\tau_c} = n_p \pi d_p^2 < |\mathbf{w}| >$$

Collision time

$$egin{aligned} rac{1}{ au_c} &= n_p \pi d_p^2 < |\mathbf{w}| > \ &< |\mathbf{w}| > = < |\mathbf{V}_p^a - \mathbf{V}_p^b| > \end{aligned}$$

Collision time

$$\begin{split} & \frac{1}{\tau_c} = n_p \pi d_p^2 < |\mathbf{w}| > \\ & \frac{1}{\tau_c^{\text{th}}} = n_p \pi d_p^2 \sqrt{\frac{16}{\pi} \frac{2}{3} q_p^2} \end{split}$$

Collision time

$$\frac{1}{\tau_c} = n_p \pi d_p^2 < |\mathbf{w}| >$$
$$\frac{1}{\tau_c^{\text{th}}} = n_p \pi d_p^2 \sqrt{\frac{16}{\pi} \frac{2}{3}} q_p^2$$

12/19

Collision time

Saffman and Turner - J. Fluid. Mech. - Vol. 1 (1956)

Collision time

Collision time

12/19

Contact angle

The velocity between particles at collision are correlated.

Collision velocity

Effect of the lubrication on intercollision time

Visualization of secondary collisions

 $\rho=1$ with lubrication model

Encounter
 Solid collision (Movie)

Effect of lubrication in acceleration p.d.f

Collisions increase the p.d.f. for large accelerations.

Comparison for different density ratio

Effect of lubrication in acceleration p.d.f

Collisions increase the p.d.f. for large accelerations.

Suppress accelerations during collision

Firenze, March 26th 2016

Effect of lubrication in acceleration p.d.f

Collisions increase the p.d.f. for large accelerations.

Acceleration r.m.s. is related to density. $A_0 = a_{r.m.s.}^2/\epsilon^{3/2}\nu^{1/2}$

Qureshi et al. - European Phy. Jo. B - 2008

17/19

Effect of lubrication in acceleration p.d.f

Collisions increase the p.d.f. for large accelerations.

Suppress accelerations during collision

Effect of lubrication in acceleration p.d.f

Collisions increase the p.d.f. for large accelerations.

Exponential Count coll 10⁻¹ No count €. 10⁻² 10⁻² 10⁻³ 10^{-4} -15 -10 -5 0 5 10 15 a / a_{rms}

Comparison for $\rho=1$

Effect of lubrication in acceleration p.d.f

Collisions increase the p.d.f. for large accelerations.

Same but for lubricated case

The lubrication do not modify the p.d.f. for larger accelerations

Conclusions and future work

This work highlight some important effects:

- > The lubrication model is representative for collisions in viscous fluids
- The lubrication creates the secondary collisions
- This secondary collisions have an effect on collision time
- The collisions modify the acceleration p.d.f.

These effects have to be considered when the collision frequency is treated. New models have to be put in place.

Firenze, March 26th 2016

Acknowledgements:

P. Fedem, W.-P. Breugem, P. Costa, J. Derksen, ... Supercomputer support: CALMIP, CINES

Appendix

Appendix: Method VoFLag method Simulation Collision Particle Stats Average flow calculation Validations Poiseuille Rotation Sedimentaition Job time

- MAC stagered grid
- Finite volumes
- Fictitious Domain Approach

	· · · ·						<u> </u>				~~~				
•	•	•	•	•	•	÷	•	•	•	•	•	•	•	•	•
•	•					F				•	•••	•		-	
				2	P-	÷	1				•••				
	•	1	r-			1.			~						
	17	r.				1.									
	1/-					1.					1.				
•	1.					1.				•	1	•			
	•											•			
. 1											1				
	1.									•	1/-				
	1									17	1.				
	1.	1				1.				1.					
						ŀ.	1.	2							
· · · ·	<u> </u>		_	_			<u> </u>			· · · ·			_	_	<u> </u>

$\mathbf{X}_{i}^{n}, \mathcal{R}_{i} \longrightarrow \mathbf{Find nodes on particles} \longrightarrow \mathbf{Treat particles} on borders} \longrightarrow \mathbf{Update density} p^{n}, \mu^{n}$

The solid behaviour is enforced by high viscosity.

Randrianarivelo et al. Int. J. Num. Meth. in Fluids - Vol. 47

(2005)

Vincent et al. - Comp. & Fluids - Vol. 36 (2007)

Firenze, March 26th 2016

• •	• • •	· · · ·	· · · ·	<u> </u>	<u> </u>	~ ~	~ ⊷ •	~ ~	~ ~	<u> </u>	• • • •	· · · ·	· · · ·	~~	<u> </u>
•	• • :	•				÷ :	•	•	•	•	•	•	•		
F		•	•	-	-	F			•	•	•	•	•	-	-
÷				~	-					•					
÷	•	1	r								•				
ŀ	1.7										•				
÷	1/-										N.				
÷	1.										T				
•															
	•									•	17				
÷	N.									•	1.				
÷	1.									1					
÷	•	1				ŀ			2		•				
ŀ								2							
	<u> </u>		_	_	_			_	\rightarrow	_			_	_	_

÷	•	•	•	•	•	F	-	•	•	•	•	•	•	•	•
•	•					ŀ		•	•	•	•				•
•	•			17	P	·	1	1	ŀ	•	•				•
•	•	1	·			ŀ		•		ŀ	•				•
•	1	•	•			ŀ	•	•	ŀ	1	•	•	•		•
•	1/-	•	•		•	ŀ	•	•	ŀ	ŀ	N	•	•	•	•
•	ŀ	•	•	•	•	ŀ	•	•	•	•	H	•	•	•	•
•	•	•	•	•	•			•	•	•	•	•	•	•	•
•	ŀ	•	•	•	•	F		•	•	•	17	•	•	÷	•
•	N•	•	÷	•	•	F	•	•	•	•	7.	•	÷	÷	•
÷	-	÷	•	•	•	F	-	•	•	17	•	•	•	•	•
•	•	1	·	•		•		•	1.	r.	•	•	•		
•	•	•	·	•			-	2	r.	•	•	•	•		•
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

$$\widetilde{\mathbf{X}_{i}^{n+\frac{1}{2}} = \mathbf{X}_{i}^{n} + \frac{\Delta t}{2}\mathbf{V}_{i}^{n}t}$$
$$\widetilde{\mathbf{V}_{i}^{n+\frac{1}{2}} = \frac{3}{2}\mathbf{V}_{i}^{n} - \mathbf{V}_{i}^{n-1}}$$

Firenze, March 26th 2016

21/19

A collision model gives the force applied on each particle. The model developed is explained in later.

Brändle et al. - Phys. Fluids - (2013)

Breugem - ASME Summer Meeting - Montreal (2010)

Method

The force is distributed on the solid volume and becomes a source term for N.-S. solution.

An augmented Lagrangian method is implemented. With BiCG Stab solver.

The new velocity field is calculated. The solid behaviour is respected by this field.

Vincent et al. - Comp. & Fluids - Vol. 36. (2007)

1.															
L .	-	-	_		_	_				_	-				
•	•	•	•	1 - 1	•	•	•	•	•	•	•	•		1 - 1	•
•	•	•	2	-	•	•	•	1	•	•	•	•	•	•	•
•		1	•	•	•					ŀ	÷	•	÷	•	•
•	1	•	•	•	•				•	•	•	•	•	•	•
·	7.	•	•	•	•						\·	•	·	•	•
·	•	•	•	•	•					•	1	·	÷	•	•
·	•	•	•	•	•	•					•	•		•	•
•	•	•	•	•	•	•	•	•	•	•	1	•		•	•
·	<u>\</u> .	•	•	•	•	•	- 1	•	•	•	/•	·		•	•
•	•	•	•	• •	•	• 1	• 1	•	·	1	•		÷	•	•
				• •	•	• 1	- 1	•	2	·				•	•
•	•	•	\cdot			• 1		-				•		• • •	• • •

Method

The particle velocity is calculated by interpolating the velocity

Method

$$\left(\mathbf{X}_{i}^{n+1}=\mathbf{X}_{i}^{n}+\Delta t\left(\frac{\mathbf{V}_{i}^{n+1}+\mathbf{V}_{i}^{n}}{2}\right)\right)$$

Firenze, March 26th 2016

Validations

Dennis et al. - JFM - Vol 101 (1980)

Validations

22/19

Firenze, March 26th 2016

Validations

Constraints

23/19

Constraints

23/19

Constraints

23/19

Constraints

23/19

Constraints

23/19

Constraints

23/19

Constraints

23/19

HIT: Forcing

The turbulence forcing is done in physical space by maintaining the total energy

$$u_n = \sqrt{\frac{E_0}{E_n}}$$

(the density of particles is not taken into account)

Rosales et. al - Phys. Fluids - Vol. 17 (2005)

24/19

Firenze, March 26th 2016

HIT: Turbulence modulation

Firenze, March 26th 2016

HIT: Turbulence modulation

25/19

Firenze, March 26th 2016

HIT: Turbulence modulation

 $\Rightarrow~$ We need to analyze the Lagrangian spectrum

25/19

Firenze, March 26th 2016

HIT: Lagrangian spectrum

Fluid particles

Collisions in turbulence

26/19

Firenze, March 26th 2016

HIT: Lagrangian spectrum

26/19

Firenze, March 26th 2016

HIT: Lagrangian spectrum

26/19

Intercollision time

27/19

ρ	q_p^2	$\frac{q_p^2}{q_f^2}$	T_L	$\frac{T_L}{T_L^f}$	D	$\frac{D}{D_f}$
-	$(m^2 s^{-2})$	-	<i>(s)</i>	-	$(m^2 s^{-1})$	-
1	1.27	0.85	1.22	1.31	3.10	1.13
2	1.17	0.79	1.35	1.45	3.16	1.15
4	1.10	0.74	1.53	1.65	3.37	1.23

ρ	q_p^2	$\frac{q_p^2}{q_f^2}$	T_L	$\frac{T_L}{T_L^f}$	D	$\frac{D}{D_f}$
-	$(m^2 s^{-2})$	-	<i>(s)</i>	-	$(m^2 s^{-1})$	-
1	1.27	0.85	1.22	1.31	3.10	1.13
2	1.17	0.79	1.35	1.45	3.16	1.15
4	1.10	0.74	1.53	1.65	3.37	1.23

The q_p^2 agitation decreases with ρ .

28/19

ρ	q_p^2	$\frac{q_p^2}{q_f^2}$	T_L	$\frac{T_L}{T_L^f}$	D	$\frac{D}{D_f}$
-	$(m^2 s^{-2})$	-	<i>(s)</i>	-	$(m^2 s^{-1})$	-
1	1.27	0.85	1.22	1.31	3.10	1.13
2	1.17	0.79	1.35	1.45	3.16	1.15
4	1.10	0.74	1.53	1.65	3.37	1.23

The velocity autocorrelation time T_L increases with ρ .

28/19

ρ	q_p^2	$\frac{q_p^2}{q_f^2}$	T_L	$\frac{T_L}{T_L^f}$	D	$\frac{D}{D_f}$
-	$(m^2 s^{-2})$	-	<i>(s)</i>	-	$(m^2 s^{-1})$	-
1	1.27	0.85	1.22	1.31	3.10	1.13
2	1.17	0.79	1.35	1.45	3.16	1.15
4	1.10	0.74	1.53	1.65	3.37	1.23

28/19

ρ	q_p^2	$\frac{q_p^2}{q_f^2}$	T_L	$\frac{T_L}{T_L^f}$	D	$\frac{D}{D_f}$
-	$(m^2 s^{-2})$	-	<i>(s)</i>	-	$(m^2 s^{-1})$	-
1	1.27	0.85	1.22	1.31	3.10	1.13
2	1.17	0.79	1.35	1.45	3.16	1.15
4	1.10	0.74	1.53	1.65	3.37	1.23

 q_p^2 and T_L balance and give similar diffusion coefficient.

28/19

Particles diffusion

$$\frac{D}{D_f} = \frac{2q_p^2 T_L}{2q_f^2 T_L^f} = \{1.13, 1.15, 1.23\}$$
Firenze, March 26th 2016

Average flow calculation

30/19

Firenze, March 26th 2016

Average flow calculation

Collisions in turbulence

30/19

Firenze, March 26th 2016

Average flow calculation

30/19

Firenze, March 26th 2016

Average flow calculation

30/19

Collisions in turbulence

Firenze, March 26th 2016

Average flow calculation

30/19

Validations

lci je vais mettre les slides que j'avais fait sur les validations afin de répondre aux questions

31/19

Firenze, March 26th 2016

Validations: Poiseuille

Segré and Silberberg - Nature - Vol. 189 (1961)

Firenze, March 26th 2016

Validations: Poiseuille

Equilibrium

Segré and Silberberg - Nature - Vol. 189 (1961)

Firenze, March 26th 2016

Validations: Poiseuille

A : Inamuro et al. - IJMF - Vol 26 - 2000

B : Pan et al. - JCP - Vol 181 - 2002

	Author	Case1	Case2	Case3	Case4	Case5	Case6
$Re = \frac{L\overline{u_f}}{\mu}$		12.78	27.72	43.40	55.55	69.13	96.74
Ŧ	A	0.2745	0.2733	0.2728	0.2723	0.2716	0.2706
	В	0.2732	0.2725	0.2723	0.2720	0.2719	0.2722
	VofLag	0.2643	0.2636	0.2637	0.2643	0.2650	0.2752
	Error	3.8%	3.6%	3.4%	3.0%	2.5%	2.0 %
Ū	A	0.04137	0.04131	0.04091	0.04118	0.04110	0.04101
	В	0.04155	0.04159	0.04122	0.04166	0.04148	0.04144
	VofLag	0.04599	0.04605	0.04570	0.04628	0.04623	0.04682
	Error	10.6%	10.9%	11.1%	11.7%	11.7%	13.2%
	A	-0.054675	-0.054694	-0.053772	-0.053765	-0.053101	-0.051607
ω	В	-0.05345	-0.05343	-0.05264	-0.05264	-0.05206	-0.05052
	VofLag	-0.05500	-0.05331	-0.05082	-0.04966	-0.04761	-0.05276
	Error	0.6%	2.6%	5.6%	7.9%	10.9%	2.2%

With 6 nodes per diameter we obtain a low relative error

Method Simulation Collision Particle Stats Average flow Validations Job time Firenze, March 26th 2016

Validations : Dennis 1980

Collisions in turbulence

Method Simulation Collision Particle Stats Average flow Validations Job time Firenze, March 26th 2016

Validations : Dennis 1980

34/19

Method Simulation Collision Particle Stats Average flow Validations Job time Firenze, March 26th 2016

Validations : Dennis 1980

Collisions in turbulence

Firenze, March 26th 2016

Validations : Dennis 1980

Dimensionless torque $M = \frac{2T}{\rho_f R^5 \omega^2}$ vs Reynolds number $Re_\omega = \frac{R^2 \omega \rho}{\mu_f}$

35/19

Firenze, March 26th 2016

Validations: Ten Cate 2002

36/19

Firenze, March 26th 2016

Validations: Ten Cate 2002

37/19

HIT : Jobs time

With 512 procs

	$T_{\rm sim}/T_E$	Percentage
Navier-Stokes Resolution	26828 <i>s</i>	75%
Postraitement (Out + Spectra)	3977 <i>s</i>	11%
Fluid Particles	2121 <i>s</i>	6%
Advection	2105 <i>s</i>	6%
Collisions	39 <i>s</i>	< 1%
Others	714 <i>s</i>	2%
Total	35784 $s\sim 10~{ m h}$	