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Goals and outline

The main goal of this presentation is to:

I Understand collisions for finite-size particles in a HIT.

The presentation follow those points:

I Context and motivations

I VoFLag method for finite size particles

I Lubrication phenomena and its model

I HIT characteristics

I Collisions in a HIT
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The particle laden flows

Particle laden flows are common:

In natural flows:

I Rivers

I Volcanos

I Clouds

I Microorganism

In industrial applications:

I Fluidized bed

I Combustion Chamber
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The particle laden flows

Particle laden flows are common:

In natural flows:

I Rivers

I Volcanos

I Clouds

I Microorganism

In industrial applications:

I Fluidized bed

I Combustion Chamber Source: Godfrey, NIWA
Durham et al. - Nature - 2148 (2013)

Denny et al. - Biological Bulletin - 203 (2002)
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The particle laden flows

Many parameters drive those flows:

I Density Ratio

I Particle size

I Shape

I Flow

I Solid fraction

I ...

Different numerical approaches exist:

I Microscopic

I Mesoscopic

I Macroscopic
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Numerical approaches

Many parameters drive those flows:

I Microscopic (Fully Resolved Particles)

I Mesoscopic (Point-wise Particles)

I Macroscopic (Continuum phase)

F F

Microscopic method permits to understand surrounding fluid behaviour
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Method

Update physical
characteristics

Particle
Interactions

Navier-Stokes
solution

Particle Tracking

ρs
µs � µf

Thetis code
- MAC staggered unstructured grid
- Finite volumes
- Fictitious Domain Approach

The solid behaviour is enforced by high
viscosity.

Randrianarivelo et al. Int. J. Num. Meth. in Fluids (2005)

Vincent et al. - Comp. & Fluids (2007)

Vincent et al. - J. Comp. Phy. (2013)
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Figure 24. Collision of a sphere onto a wall. The left half and right half of each frame
corresponds to the present numerical results and the experimental results by Eames & Dalziel
(2000), respectively. Re = 850, hmin = 9.2 µm. The vorticity contours are shown and the black
line is a streakline. (a) − τ ′, (b) 0, (c) τ ′, (d) 2τ ′, (e) 3τ ′, (f ) 4τ ′, (g) 5τ ′ where τ ′ =D/U .

The motion of a sphere falling under gravity is considered next. The sphere is
released from a height of L = 5d with a Reynolds number of 510 based on the initial
velocity. The Reynolds number increases to 865 when the particle collides with the
wall. The vorticity contours are shown in figure 25. The coefficient of restitution for
a dry collision is zero in the left half and 0.5 in the right half of each frame of
figure 25. In frame(a), both sides correspond to a time before collision and are the
same. As time elapses (figure 25b), a secondary vortex ring is generated in both cases
while the wake vortex is moving towards the wall due to its inertia. In the right half
of figure 25(b), a secondary vortex is growing and becoming the wake vortex for

Ardekani et Rangel - J. Fluid. Mech. - Vol. 596 (2008)

Navier-Stokes
solution

Lubrication model

Soft-sphere model

d

A model is required.

Fl(ε, un) = −6πµf Run [λ (ε) − λ (εal)]

I µf dynamic viscosity

I R particle radius

I un normal velocity

I ε = d
R

dimensionless distance

I λ Taylor series
Brenner - Chem. Eng. Sci. - Vol. 16 (1961)

Fs =
me

(
π2 + [lned ]2)
[Nc∆t]2︸ ︷︷ ︸
spring

d − 2me [lned ]

[Nc∆t]︸ ︷︷ ︸
dashpot

ḋ

Schäfer et al. - Jo. de Phys. - Vol 6 (1996)

I me reduced mass

I ed coefficient of restitution
in vaccum

I Nc number of time step
during collision

I ∆t time step (fluid)
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Figure 24. Collision of a sphere onto a wall. The left half and right half of each frame
corresponds to the present numerical results and the experimental results by Eames & Dalziel
(2000), respectively. Re = 850, hmin = 9.2 µm. The vorticity contours are shown and the black
line is a streakline. (a) − τ ′, (b) 0, (c) τ ′, (d) 2τ ′, (e) 3τ ′, (f ) 4τ ′, (g) 5τ ′ where τ ′ =D/U .
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ḋ
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line is a streakline. (a) − τ ′, (b) 0, (c) τ ′, (d) 2τ ′, (e) 3τ ′, (f ) 4τ ′, (g) 5τ ′ where τ ′ =D/U .
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Figure 24. Collision of a sphere onto a wall. The left half and right half of each frame
corresponds to the present numerical results and the experimental results by Eames & Dalziel
(2000), respectively. Re = 850, hmin = 9.2 µm. The vorticity contours are shown and the black
line is a streakline. (a) − τ ′, (b) 0, (c) τ ′, (d) 2τ ′, (e) 3τ ′, (f ) 4τ ′, (g) 5τ ′ where τ ′ =D/U .

The motion of a sphere falling under gravity is considered next. The sphere is
released from a height of L = 5d with a Reynolds number of 510 based on the initial
velocity. The Reynolds number increases to 865 when the particle collides with the
wall. The vorticity contours are shown in figure 25. The coefficient of restitution for
a dry collision is zero in the left half and 0.5 in the right half of each frame of
figure 25. In frame(a), both sides correspond to a time before collision and are the
same. As time elapses (figure 25b), a secondary vortex ring is generated in both cases
while the wake vortex is moving towards the wall due to its inertia. In the right half
of figure 25(b), a secondary vortex is growing and becoming the wake vortex for

Ardekani et Rangel - J. Fluid. Mech. - Vol. 596 (2008)

Navier-Stokes
solution

Lubrication model

Soft-sphere model

d

A model is required.

Fl(ε, un) = −6πµf Run [λ (ε) − λ (εal)]

I µf dynamic viscosity

I R particle radius

I un normal velocity

I ε = d
R

dimensionless distance

I λ Taylor series
Brenner - Chem. Eng. Sci. - Vol. 16 (1961)

Fs =
me

(
π2 + [lned ]2)
[Nc∆t]2︸ ︷︷ ︸
spring

d − 2me [lned ]

[Nc∆t]︸ ︷︷ ︸
dashpot

ḋ
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wall. The vorticity contours are shown in figure 25. The coefficient of restitution for
a dry collision is zero in the left half and 0.5 in the right half of each frame of
figure 25. In frame(a), both sides correspond to a time before collision and are the
same. As time elapses (figure 25b), a secondary vortex ring is generated in both cases
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Figure 24. Collision of a sphere onto a wall. The left half and right half of each frame
corresponds to the present numerical results and the experimental results by Eames & Dalziel
(2000), respectively. Re = 850, hmin = 9.2 µm. The vorticity contours are shown and the black
line is a streakline. (a) − τ ′, (b) 0, (c) τ ′, (d) 2τ ′, (e) 3τ ′, (f ) 4τ ′, (g) 5τ ′ where τ ′ =D/U .

The motion of a sphere falling under gravity is considered next. The sphere is
released from a height of L = 5d with a Reynolds number of 510 based on the initial
velocity. The Reynolds number increases to 865 when the particle collides with the
wall. The vorticity contours are shown in figure 25. The coefficient of restitution for
a dry collision is zero in the left half and 0.5 in the right half of each frame of
figure 25. In frame(a), both sides correspond to a time before collision and are the
same. As time elapses (figure 25b), a secondary vortex ring is generated in both cases
while the wake vortex is moving towards the wall due to its inertia. In the right half
of figure 25(b), a secondary vortex is growing and becoming the wake vortex for
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Figure 24. Collision of a sphere onto a wall. The left half and right half of each frame
corresponds to the present numerical results and the experimental results by Eames & Dalziel
(2000), respectively. Re = 850, hmin = 9.2 µm. The vorticity contours are shown and the black
line is a streakline. (a) − τ ′, (b) 0, (c) τ ′, (d) 2τ ′, (e) 3τ ′, (f ) 4τ ′, (g) 5τ ′ where τ ′ =D/U .
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released from a height of L = 5d with a Reynolds number of 510 based on the initial
velocity. The Reynolds number increases to 865 when the particle collides with the
wall. The vorticity contours are shown in figure 25. The coefficient of restitution for
a dry collision is zero in the left half and 0.5 in the right half of each frame of
figure 25. In frame(a), both sides correspond to a time before collision and are the
same. As time elapses (figure 25b), a secondary vortex ring is generated in both cases
while the wake vortex is moving towards the wall due to its inertia. In the right half
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Figure 24. Collision of a sphere onto a wall. The left half and right half of each frame
corresponds to the present numerical results and the experimental results by Eames & Dalziel
(2000), respectively. Re = 850, hmin = 9.2 µm. The vorticity contours are shown and the black
line is a streakline. (a) − τ ′, (b) 0, (c) τ ′, (d) 2τ ′, (e) 3τ ′, (f ) 4τ ′, (g) 5τ ′ where τ ′ =D/U .

The motion of a sphere falling under gravity is considered next. The sphere is
released from a height of L = 5d with a Reynolds number of 510 based on the initial
velocity. The Reynolds number increases to 865 when the particle collides with the
wall. The vorticity contours are shown in figure 25. The coefficient of restitution for
a dry collision is zero in the left half and 0.5 in the right half of each frame of
figure 25. In frame(a), both sides correspond to a time before collision and are the
same. As time elapses (figure 25b), a secondary vortex ring is generated in both cases
while the wake vortex is moving towards the wall due to its inertia. In the right half
of figure 25(b), a secondary vortex is growing and becoming the wake vortex for
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Figure 24. Collision of a sphere onto a wall. The left half and right half of each frame
corresponds to the present numerical results and the experimental results by Eames & Dalziel
(2000), respectively. Re = 850, hmin = 9.2 µm. The vorticity contours are shown and the black
line is a streakline. (a) − τ ′, (b) 0, (c) τ ′, (d) 2τ ′, (e) 3τ ′, (f ) 4τ ′, (g) 5τ ′ where τ ′ =D/U .

The motion of a sphere falling under gravity is considered next. The sphere is
released from a height of L = 5d with a Reynolds number of 510 based on the initial
velocity. The Reynolds number increases to 865 when the particle collides with the
wall. The vorticity contours are shown in figure 25. The coefficient of restitution for
a dry collision is zero in the left half and 0.5 in the right half of each frame of
figure 25. In frame(a), both sides correspond to a time before collision and are the
same. As time elapses (figure 25b), a secondary vortex ring is generated in both cases
while the wake vortex is moving towards the wall due to its inertia. In the right half
of figure 25(b), a secondary vortex is growing and becoming the wake vortex for
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Figure 24. Collision of a sphere onto a wall. The left half and right half of each frame
corresponds to the present numerical results and the experimental results by Eames & Dalziel
(2000), respectively. Re = 850, hmin = 9.2 µm. The vorticity contours are shown and the black
line is a streakline. (a) − τ ′, (b) 0, (c) τ ′, (d) 2τ ′, (e) 3τ ′, (f ) 4τ ′, (g) 5τ ′ where τ ′ =D/U .

The motion of a sphere falling under gravity is considered next. The sphere is
released from a height of L = 5d with a Reynolds number of 510 based on the initial
velocity. The Reynolds number increases to 865 when the particle collides with the
wall. The vorticity contours are shown in figure 25. The coefficient of restitution for
a dry collision is zero in the left half and 0.5 in the right half of each frame of
figure 25. In frame(a), both sides correspond to a time before collision and are the
same. As time elapses (figure 25b), a secondary vortex ring is generated in both cases
while the wake vortex is moving towards the wall due to its inertia. In the right half
of figure 25(b), a secondary vortex is growing and becoming the wake vortex for
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Figure 24. Collision of a sphere onto a wall. The left half and right half of each frame
corresponds to the present numerical results and the experimental results by Eames & Dalziel
(2000), respectively. Re = 850, hmin = 9.2 µm. The vorticity contours are shown and the black
line is a streakline. (a) − τ ′, (b) 0, (c) τ ′, (d) 2τ ′, (e) 3τ ′, (f ) 4τ ′, (g) 5τ ′ where τ ′ =D/U .

The motion of a sphere falling under gravity is considered next. The sphere is
released from a height of L = 5d with a Reynolds number of 510 based on the initial
velocity. The Reynolds number increases to 865 when the particle collides with the
wall. The vorticity contours are shown in figure 25. The coefficient of restitution for
a dry collision is zero in the left half and 0.5 in the right half of each frame of
figure 25. In frame(a), both sides correspond to a time before collision and are the
same. As time elapses (figure 25b), a secondary vortex ring is generated in both cases
while the wake vortex is moving towards the wall due to its inertia. In the right half
of figure 25(b), a secondary vortex is growing and becoming the wake vortex for
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Figure 24. Collision of a sphere onto a wall. The left half and right half of each frame
corresponds to the present numerical results and the experimental results by Eames & Dalziel
(2000), respectively. Re = 850, hmin = 9.2 µm. The vorticity contours are shown and the black
line is a streakline. (a) − τ ′, (b) 0, (c) τ ′, (d) 2τ ′, (e) 3τ ′, (f ) 4τ ′, (g) 5τ ′ where τ ′ =D/U .

The motion of a sphere falling under gravity is considered next. The sphere is
released from a height of L = 5d with a Reynolds number of 510 based on the initial
velocity. The Reynolds number increases to 865 when the particle collides with the
wall. The vorticity contours are shown in figure 25. The coefficient of restitution for
a dry collision is zero in the left half and 0.5 in the right half of each frame of
figure 25. In frame(a), both sides correspond to a time before collision and are the
same. As time elapses (figure 25b), a secondary vortex ring is generated in both cases
while the wake vortex is moving towards the wall due to its inertia. In the right half
of figure 25(b), a secondary vortex is growing and becoming the wake vortex for

Ardekani et Rangel - J. Fluid. Mech. - Vol. 596 (2008)

Navier-Stokes
solution

Lubrication model

Soft-sphere model

d

A model is required.

Fl(ε, un) = −6πµf Run [λ (ε) − λ (εal)]

I µf dynamic viscosity

I R particle radius

I un normal velocity

I ε = d
R

dimensionless distance

I λ Taylor series
Brenner - Chem. Eng. Sci. - Vol. 16 (1961)

Fs =
me

(
π2 + [lned ]2)
[Nc∆t]2︸ ︷︷ ︸
spring

d − 2me [lned ]

[Nc∆t]︸ ︷︷ ︸
dashpot

ḋ
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Figure 24. Collision of a sphere onto a wall. The left half and right half of each frame
corresponds to the present numerical results and the experimental results by Eames & Dalziel
(2000), respectively. Re = 850, hmin = 9.2 µm. The vorticity contours are shown and the black
line is a streakline. (a) − τ ′, (b) 0, (c) τ ′, (d) 2τ ′, (e) 3τ ′, (f ) 4τ ′, (g) 5τ ′ where τ ′ =D/U .

The motion of a sphere falling under gravity is considered next. The sphere is
released from a height of L = 5d with a Reynolds number of 510 based on the initial
velocity. The Reynolds number increases to 865 when the particle collides with the
wall. The vorticity contours are shown in figure 25. The coefficient of restitution for
a dry collision is zero in the left half and 0.5 in the right half of each frame of
figure 25. In frame(a), both sides correspond to a time before collision and are the
same. As time elapses (figure 25b), a secondary vortex ring is generated in both cases
while the wake vortex is moving towards the wall due to its inertia. In the right half
of figure 25(b), a secondary vortex is growing and becoming the wake vortex for
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Figure 24. Collision of a sphere onto a wall. The left half and right half of each frame
corresponds to the present numerical results and the experimental results by Eames & Dalziel
(2000), respectively. Re = 850, hmin = 9.2 µm. The vorticity contours are shown and the black
line is a streakline. (a) − τ ′, (b) 0, (c) τ ′, (d) 2τ ′, (e) 3τ ′, (f ) 4τ ′, (g) 5τ ′ where τ ′ =D/U .

The motion of a sphere falling under gravity is considered next. The sphere is
released from a height of L = 5d with a Reynolds number of 510 based on the initial
velocity. The Reynolds number increases to 865 when the particle collides with the
wall. The vorticity contours are shown in figure 25. The coefficient of restitution for
a dry collision is zero in the left half and 0.5 in the right half of each frame of
figure 25. In frame(a), both sides correspond to a time before collision and are the
same. As time elapses (figure 25b), a secondary vortex ring is generated in both cases
while the wake vortex is moving towards the wall due to its inertia. In the right half
of figure 25(b), a secondary vortex is growing and becoming the wake vortex for
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Figure 24. Collision of a sphere onto a wall. The left half and right half of each frame
corresponds to the present numerical results and the experimental results by Eames & Dalziel
(2000), respectively. Re = 850, hmin = 9.2 µm. The vorticity contours are shown and the black
line is a streakline. (a) − τ ′, (b) 0, (c) τ ′, (d) 2τ ′, (e) 3τ ′, (f ) 4τ ′, (g) 5τ ′ where τ ′ =D/U .

The motion of a sphere falling under gravity is considered next. The sphere is
released from a height of L = 5d with a Reynolds number of 510 based on the initial
velocity. The Reynolds number increases to 865 when the particle collides with the
wall. The vorticity contours are shown in figure 25. The coefficient of restitution for
a dry collision is zero in the left half and 0.5 in the right half of each frame of
figure 25. In frame(a), both sides correspond to a time before collision and are the
same. As time elapses (figure 25b), a secondary vortex ring is generated in both cases
while the wake vortex is moving towards the wall due to its inertia. In the right half
of figure 25(b), a secondary vortex is growing and becoming the wake vortex for

Ardekani et Rangel - J. Fluid. Mech. - Vol. 596 (2008)

Navier-Stokes
solution

Lubrication model

Soft-sphere model

d

A model is required.

Fl(ε, un) = −6πµf Run [λ (ε) − λ (εal)]

I µf dynamic viscosity

I R particle radius

I un normal velocity

I ε = d
R

dimensionless distance

I λ Taylor series
Brenner - Chem. Eng. Sci. - Vol. 16 (1961)

Fs =
me

(
π2 + [lned ]2)
[Nc∆t]2︸ ︷︷ ︸
spring

d − 2me [lned ]

[Nc∆t]︸ ︷︷ ︸
dashpot

ḋ
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Figure 24. Collision of a sphere onto a wall. The left half and right half of each frame
corresponds to the present numerical results and the experimental results by Eames & Dalziel
(2000), respectively. Re = 850, hmin = 9.2 µm. The vorticity contours are shown and the black
line is a streakline. (a) − τ ′, (b) 0, (c) τ ′, (d) 2τ ′, (e) 3τ ′, (f ) 4τ ′, (g) 5τ ′ where τ ′ =D/U .

The motion of a sphere falling under gravity is considered next. The sphere is
released from a height of L = 5d with a Reynolds number of 510 based on the initial
velocity. The Reynolds number increases to 865 when the particle collides with the
wall. The vorticity contours are shown in figure 25. The coefficient of restitution for
a dry collision is zero in the left half and 0.5 in the right half of each frame of
figure 25. In frame(a), both sides correspond to a time before collision and are the
same. As time elapses (figure 25b), a secondary vortex ring is generated in both cases
while the wake vortex is moving towards the wall due to its inertia. In the right half
of figure 25(b), a secondary vortex is growing and becoming the wake vortex for
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Visualization of one simulation

512 particles

2563 grid nodes
512 processors

∼ 10h / TE

(Movie)

In this section only solid collision model is activated (no lubrication).
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Contact angle
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Kinetic theory
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ρ = 4

The velocity between particles at collision are correlated.
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Collision velocity
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Effect of the lubrication on intercollision time
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Visualization of secondary collisions

ρ = 1 with lubrication model

• = Encounter
• = Solid collision
(Movie)
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Effect of lubrication in acceleration p.d.f

Collisions increase the p.d.f. for large accelerations.

Comparison for different density ratio
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The lubrication do not modify the p.d.f. for larger accelerations
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Effect of lubrication in acceleration p.d.f

Collisions increase the p.d.f. for large accelerations.

Acceleration r.m.s. is related to density.
A0 = a2

r .m.s./ε
3/2ν1/2

Qureshi et al. - European Phy. Jo. B - 2008
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Effect of lubrication in acceleration p.d.f

Collisions increase the p.d.f. for large accelerations.
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Effect of lubrication in acceleration p.d.f

Collisions increase the p.d.f. for large accelerations.

Same but for lubricated case
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Conclusions and future work

This work highlight some important effects:

I The lubrication model is representative for collisions in viscous fluids

I The lubrication creates the secondary collisions

I This secondary collisions have an effect on collision time

I The collisions modify the acceleration p.d.f.

These effects have to be considered when the collision frequency is
treated. New models have to be put in place.
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Thanks

Thanks for your attention.
Some questions ?
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Appendix

Appendix:

Method
VoFLag method

Simulation

Collision

Particle Stats

Average flow calculation

Validations
Poiseuille
Rotation
Sedimentaition

Job time
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Method

Update physical
characteristics

Particle
Interactions

Navier-Stokes
solution

Particle Tracking

Thetis code
- MAC stagered grid
- Finite volumes
- Fictitious Domain Approach
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Method

Update physical
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Particle
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Particle Tracking

Xn
i ,Ri

Find nodes on
particles

Treat particles
on borders

Update density
and viscosity

ρn ,µn
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Method

Update physical
characteristics

Particle
Interactions

Navier-Stokes
solution

Particle Tracking

Xn
i ,Ri

Find nodes on
particles

Treat particles
on borders

Update density
and viscosity

ρn ,µn

ρs
µs � µf

The solid behaviour is enforced by high
viscosity.

Randrianarivelo et al. Int. J. Num. Meth. in Fluids - Vol. 47

(2005)

Vincent et al. - Comp. & Fluids - Vol. 36 (2007)
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Method

Update physical
characteristics

Particle
Interactions

Navier-Stokes
solution

Particle Tracking

Xn
i ,Ri

Find nodes on
particles

Treat particles
on borders

Update density
and viscosity

ρn ,µn

ρs
µs � µf

·······
··
·······
··
·······
··
·······
··
·······
··
·······
··
·······
··
·······
··
·······
··

C =
∑25N

1 δP∈R
25N
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Method

Update physical
characteristics

Particle
Interactions

Navier-Stokes
solution

Particle Tracking

Xn
i ,Ri

Find nodes on
particles

Treat particles
on borders

Update density
and viscosity

ρn ,µn

ρs
µs � µf

ρ = Cρs + (1− C )ρl
µ = µf µs

Cµf +(1−C)µs
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Method
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Ṽ
n+ 1

2
i = 3

2Vn
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Method

Update physical
characteristics

Particle
Interactions

Navier-Stokes
solution

Particle Tracking

Xn
i

,Vn
i ,V

n−1
i

Estimate n + 1
2

positions
Find collisions Collision model

Distribute
volumetric force

Sn

CPU block

To find collisions
Cell-list approach
is implemented.
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Method

Update physical
characteristics

Particle
Interactions

Navier-Stokes
solution

Particle Tracking

Xn
i

,Vn
i ,V

n−1
i

Estimate n + 1
2

positions
Find collisions Collisions model

Distribute
volumetric force

Sn

A collision model gives the force applied
on each particle.

The model developed is explained in
later.

Brändle et al. - Phys. Fluids - (2013)

Breugem - ASME Summer Meeting - Montreal (2010)
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Method

Update physical
characteristics

Particle
Interactions

Navier-Stokes
solution

Particle Tracking

Xn
i

,Vn
i ,V

n−1
i

Estimate n + 1
2

positions
Find collisions Collision model

Distribute
volumetric force

Sn

The force is distributed on the solid
volume and becomes a source term for

N.-S. solution.
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Method

Update physical
characteristics

Particle
Interactions

Navier-Stokes
solution

Particle Tracking

ρn ,κn ,ηn , ζn ,
Sn ,

u0 = un ,p0 =
pn

ρn
(

uk+1−un

∆t
+ uk · ∇uk+1

)
= ρng + Sn

−∇pk +∇
(
λ∇ · uk+1

)

+∇ ·
(
κΛ

k+1
+ ζΘ

k+1
+ ηΓ

k+1

) pk+1 = pk − λ∇ · uk+1 un+1,pn+1

An augmented Lagrangian method is
implemented.

With BiCG Stab solver.
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Method

Update physical
characteristics

Particle
Interactions

Navier-Stokes
solution

Particle Tracking

ρn ,κn ,ηn , ζn ,
Sn ,

u0 = un ,p0 =
pn

ρn
(

uk+1−un

∆t
+ uk · ∇uk+1

)
= ρng + Sn

−∇pk +∇
(
λ∇ · uk+1

)

+∇ ·
(
κΛ

k+1
+ ζΘ

k+1
+ ηΓ

k+1

) pk+1 = pk − λ∇ · uk+1 un+1,pn+1

The new velocity field is calculated.
The solid behaviour is respected by this

field.
Vincent et al. - Comp. & Fluids - Vol. 36. (2007)
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Navier-Stokes
solution
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Tracking
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Virtual points Interpolate
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Method

Update physical
characteristics

Particle
Interactions

Navier-Stokes
solution

Particle
Tracking

Xn
i ,u

n ,Vn+1
i

Virtual points Interpolate
velocities

Particle Tracking Xn+1
i ,Vn+1

i ,Ωn+1
i

The particle velocity is calculated by
interpolating the velocity

21/19 Collisions in turbulence J.C.B. de Motta



Method Simulation Collision Particle Stats Average flow Validations Job time Firenze, March 26th 2016

Method

Update physical
characteristics

Particle
Interactions

Navier-Stokes
solution

Particle
Tracking

Xn
i ,u

n ,Vn+1
i

Virtual points Interpolate
velocities

Particle Tracking Xn+1
i ,Vn+1

i ,Ωn+1
i

21/19 Collisions in turbulence J.C.B. de Motta



Method Simulation Collision Particle Stats Average flow Validations Job time Firenze, March 26th 2016

Method
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Interactions
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solution
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Tracking
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i

Virtual points Interpolate
velocities

Particle
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Validations

Inamuro et al. -

IJMF - Vol 26 (2000)
ten Cate et al. - Phys. Fluids - Vol 14 (2002)

g

Mordant et al. - Europ. Physical

Journal B - Vol. 18 (2000)

g

Dennis et al. - JFM - Vol 101 (1980)

M
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Validations

Inamuro et al. -

IJMF - Vol 26 (2000)
ten Cate et al. - Phys. Fluids - Vol 14 (2002)

g

Mordant et al. - Europ. Physical

Journal B - Vol. 18 (2000)

g

Dennis et al. - JFM - Vol 101 (1980)

M

With only 8 nodes per di-
ameter results agree.

We use 20 for the simulations for
more reliability in fully turbulent flows.
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Validations

Inamuro et al. -

IJMF - Vol 26 (2000)
ten Cate et al. - Phys. Fluids - Vol 14 (2002)

g

Mordant et al. - Europ. Physical

Journal B - Vol. 18 (2000)

g

Dennis et al. - JFM - Vol 101 (1980)

M

Vincent et al. - J. Comp. Phy. - 2013
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Constraints

Physics:
I Scale separation

I Moderate concentrated

I Not too inertial

Numerical:
I η

∆x
∼ 1

I D
∆x
∼ 20

I Nx ∼ 256

I As many particles as possible

Consequences:
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Constraints

Physics:
I Scale separation

I Moderate concentrated

I Not too inertial

Numerical:
I η

∆x
∼ 1

I D
∆x
∼ 20

I Nx ∼ 256

I As many particles as possible

Consequences:
I 60 < Reλ < 90 Pope and Pope - Cambridge Univ. Press. -

(2000)

23/19 Collisions in turbulence J.C.B. de Motta



Method Simulation Collision Particle Stats Average flow Validations Job time Firenze, March 26th 2016

Constraints

Physics:
I Scale separation

I Moderate concentrated

I Not too inertial

Numerical:
I η

∆x
∼ 1

I D
∆x
∼ 20

I Nx ∼ 256

I As many particles as possible

Consequences:
I 60 < Reλ < 90

I D
η
∼ 20

23/19 Collisions in turbulence J.C.B. de Motta



Method Simulation Collision Particle Stats Average flow Validations Job time Firenze, March 26th 2016

Constraints

Physics:
I Scale separation

I Moderate concentrated
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Numerical:
I η

∆x
∼ 1

I D
∆x
∼ 20

I Nx ∼ 256

I As many particles as possible

Consequences:
I 60 < Reλ < 90

I D
η
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I Stk < 100
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Constraints

Physics:
I Scale separation

I Moderate concentrated

I Not too inertial

Numerical:
I η

∆x
∼ 1

I D
∆x
∼ 20

I Nx ∼ 256

I As many particles as possible

Consequences:
I 60 < Reλ < 90

I D
η
∼ 20

I Stk < 100

I ρ < 10

I φv ∼ 3%
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HIT: Forcing

The turbulence forcing is done in physical space by maintaining the total
energy

un =

√
E0

En

(the density of particles is not taken into account)
Rosales et. al - Phys. Fluids - Vol. 17 (2005)
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HIT: Turbulence modulation
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HIT: Lagrangian spectrum
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HIT: Lagrangian spectrum
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Intercollision time
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Statistics

ρ q2
p

q2
p

q2
f

TL
TL

T f
L

D D
Df

- (m2 s−2) - (s) - (m2 s−1) -

1 1.27 0.85 1.22 1.31 3.10 1.13
2 1.17 0.79 1.35 1.45 3.16 1.15
4 1.10 0.74 1.53 1.65 3.37 1.23
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ρ q2
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f
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T f
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D D
Df
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1 1.27 0.85 1.22 1.31 3.10 1.13
2 1.17 0.79 1.35 1.45 3.16 1.15
4 1.10 0.74 1.53 1.65 3.37 1.23

The q2
p agitation decreases with ρ.
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Statistics

ρ q2
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The velocity autocorrelation time TL increases with ρ.
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Statistics

ρ q2
p
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- (m2 s−2) - (s) - (m2 s−1) -

1 1.27 0.85 1.22 1.31 3.10 1.13
2 1.17 0.79 1.35 1.45 3.16 1.15
4 1.10 0.74 1.53 1.65 3.37 1.23

q2
p and TL balance and give similar diffusion coefficient.
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Particles diffusion
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Average flow calculation
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Average flow calculation
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Validations

Ici je vais mettre les slides que j’avais fait sur les validations afin de
répondre aux questions
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Validations: Poiseuille

Equilibrium

Segré and Silberberg - Nature - Vol. 189 (1961)
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Validations: Poiseuille

ω
U

Y

Equilibrium
Segré and Silberberg - Nature - Vol. 189 (1961)
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Validations: Poiseuille

A : Inamuro et al. - IJMF - Vol 26 - 2000
B : Pan et al. - JCP - Vol 181 - 2002

Author Case1 Case2 Case3 Case4 Case5 Case6

Re =
Luf
µ

12.78 27.72 43.40 55.55 69.13 96.74

Y

A 0.2745 0.2733 0.2728 0.2723 0.2716 0.2706
B 0.2732 0.2725 0.2723 0.2720 0.2719 0.2722
VofLag 0.2643 0.2636 0.2637 0.2643 0.2650 0.2752
Error 3.8% 3.6% 3.4% 3.0% 2.5% 2.0 %

U

A 0.04137 0.04131 0.04091 0.04118 0.04110 0.04101
B 0.04155 0.04159 0.04122 0.04166 0.04148 0.04144
VofLag 0.04599 0.04605 0.04570 0.04628 0.04623 0.04682
Error 10.6% 10.9% 11.1% 11.7% 11.7% 13.2%

ω

A -0.054675 -0.054694 -0.053772 -0.053765 -0.053101 -0.051607
B -0.05345 -0.05343 -0.05264 -0.05264 -0.05206 -0.05052
VofLag -0.05500 -0.05331 -0.05082 -0.04966 -0.04761 -0.05276
Error 0.6% 2.6% 5.6% 7.9% 10.9% 2.2%

With 6 nodes per diameter we obtain a low relative error
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Validations : Dennis 1980

24R

M
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Validations : Dennis 1980

Dimensionless torque M = 2T
ρf R5ω2 vs Reynolds number Reω = R2ωρ

µf
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Validations: Ten Cate 2002
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Validations: Ten Cate 2002
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HIT : Jobs time

With 512 procs

Tsim/TE Percentage

Navier-Stokes Resolution 26828 s 75%

Postraitement (Out + Spectra) 3977 s 11%

Fluid Particles 2121 s 6%

Advection 2105 s 6%

Collisions 39 s < 1%

Others 714 s 2%

Total 35784 s ∼ 10 h
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