NUMERICAL SIMULATION OF COLLISION DYNAMICS FOR FINITE SIZE PARTICLES IN TURBULENT SUSPENSION
S. Vincent, J.C. Brändle de Motta, E. Climent, J.-L. Estivalezes

ICMF 2016, Firenze, March 26th 2016

Outline

The particle laden flows

Numerical approach Collision model

Simulations
Particles dynamics
Collisions
Average flow around particles

Conclusion

Goals and outline

The main goal of this presentation is to:

- Understand collisions for finite-size particles in a HIT.

The presentation follow those points:

- Context and motivations
- VoFLag method for finite size particles
- Lubrication phenomena and its model
- HIT characteristics
- Collisions in a HIT

The particle laden flows

Particle laden flows are common:

In natural flows:

- Rivers
- Volcanos
- Clouds
- Microorganism

In industrial applications:

- Fluidized bed
- Combustion Chamber

The particle laden flows

Particle laden flows are common:

In natural flows:

- Rivers
- Volcanos
- Clouds
- Microorganism

In industrial applications:

- Fluidized bed
- Combustion Chamber

Source:
http://geography.unt.edu

Particle laden flows are common:

In natural flows:

- Rivers
- Volcanos
- Clouds
- Microorganism

In industrial applications:

- Fluidized bed
- Combustion Chamber

Source: Wikipedia

The particle laden flows

Particle laden flows are common:

In natural flows:

- Rivers
- Volcanos
- Clouds
- Microorganism

In industrial applications:

- Fluidized bed
- Combustion Chamber

Source: Wikipedia
EFalkovich et al. - Nature - Vol. 4194 (2002).

The particle laden flows

Particle laden flows are common:

In natural flows:

- Rivers
- Volcanos
- Clouds
- Microorganism

In industrial applications:

- Fluidized bed
- Combustion Chamber

Source: Godfrey, NIWA
Durham et al. - Nature - 2148 (2013)
Denny et al. - Biological Bulletin - 203 (2002)

The particle laden flows

Particle laden flows are common:

In natural flows:

- Rivers
- Volcanos
- Clouds
- Microorganism

In industrial applications:

- Fluidized bed
- Combustion Chamber

The particle laden flows

Particle laden flows are common:

In natural flows:

- Rivers
- Volcanos
- Clouds
- Microorganism

In industrial applications:

- Fluidized bed
- Combustion Chamber

Source: Linassier - Thèse Université de Toulouse (2012)

The particle laden flows

Particle laden flows are common:

In natural flows:

- Rivers
- Volcanos
- Clouds
- Microorganism

In industrial applications:

- Fluidized bed
- Combustion Chamber

The particle laden flows

Many parameters drive those flows:

- Density Ratio
- Particle size
- Shape
- Flow
- Solid fraction

Different numerical approaches exist:

- Microscopic
- Mesoscopic
- Macroscopic

Numerical approaches

Many parameters drive those flows:

- Microscopic (Fully Resolved Particles)
- Mesoscopic (Point-wise Particles)
- Macroscopic (Continuum phase)

Numerical approaches

Many parameters drive those flows:

- Microscopic (Fully Resolved Particles)
- Mesoscopic (Point-wise Particles)
- Macroscopic (Continuum phase)

Numerical approaches

Many parameters drive those flows:

- Microscopic (Fully Resolved Particles)
- Mesoscopic (Point-wise Particles)
- Macroscopic (Continuum phase)

Numerical approaches

Many parameters drive those flows:

- Microscopic (Fully Resolved Particles)
- Mesoscopic (Point-wise Particles)
- Macroscopic (Continuum phase)

Numerical approaches

Many parameters drive those flows:

- Microscopic (Fully Resolved Particles)
- Mesoscopic (Point-wise Particles)
- Macroscopic (Continuum phase)

Microscopic method permits to understand surrounding fluid behaviour

Method

Thetis code 12 M㟔

- MAC staggered unstructured grid
- Finite volumes
- Fictitious Domain Approach

The solid behaviour is enforced by high viscosity.

Randrianarivelo et al. Int. J. Num. Meth. in Fluids (2005)

- Vincent et al. - Comp. \& Fluids (2007)

EVincent et al. - J. Comp. Phy. (2013)

Collisions

Collisions

Ardekani et Rangel - J. Fluid. Mech. - Vol. 596 (2008)

Collisions

Navier-Stokes solution

Collisions

Navier-Stokes solution

Collisions

A model is required.

Collisions

$$
\mathbf{F}_{\mathbf{l}}\left(\epsilon, \mathbf{u}_{\mathbf{n}}\right)=-6 \pi \mu_{f} \mathbf{R} \mathbf{u}_{\mathbf{n}}\left[\lambda(\epsilon)-\lambda\left(\epsilon_{a l}\right)\right]
$$

Collisions

Navier-Stokes solution Lubrication model Soft-sphere model

- μ_{f} dynamic viscosity
- R particle radius
$\mathbf{F}_{\mathbf{I}}\left(\epsilon, \mathbf{u}_{\mathbf{n}}\right)=-6 \pi \mu_{f} \mathbf{R} \mathbf{u}_{n}\left[\lambda(\epsilon)-\lambda\left(\epsilon_{a l}\right)\right]$
- \mathbf{u}_{n} normal velocity
- $\epsilon=\frac{d}{R}$ dimensionless distance
- λ Taylor series

```
Brenner - Chem. Eng. Sci. - Vol. 16 (1961)
```


Collisions

Navier-Stokes
\quad solution
Lubrication model
Soft-sphere model

Collisions

Navier-Stokes solution

Lubrication model
Soft-sphere model

$$
\mathbf{F}_{\mathbf{s}}=\underbrace{\frac{m_{e}\left(\pi^{2}+\left[I n e_{d}\right]^{2}\right)}{\left[N_{c} \Delta t\right]^{2}}}_{\text {spring }} \mathbf{d}-\underbrace{\frac{2 m_{e}\left[\ln e_{d}\right]}{\left[N_{c} \Delta t\right]}}_{\text {dashpot }} \dot{\mathbf{d}}
$$

[^0]
Collisions

Lubrication model
Soft-sphere model

- m_{e} reduced mass

$$
\mathbf{F}_{\mathbf{s}}=\underbrace{\frac{m_{e}\left(\pi^{2}+\left[I n e_{d}\right]^{2}\right)}{\left[N_{c} \Delta t\right]^{2}}}_{\text {spring }} \mathbf{d}-\underbrace{\frac{2 m_{e}\left[\ln e_{d}\right]}{\left[N_{c} \Delta t\right]}}_{\text {dashpot }} \dot{\mathbf{d}}
$$

- e_{d} coefficient of restitution in vaccum
- N_{c} number of time step during collision
- Δt time step (fluid)

Collisions

Collisions

Navier-Stokes solution Lubrication model Soft-sphere model

Before Collision

After collision

$$
V=V_{a}-V_{b}
$$

$$
e=\frac{v_{\text {after }}}{v_{\text {before }}}
$$

Collisions

Navier-Stokes solution

Lubrication model Soft-sphere model

$$
S t=\frac{2}{9} \frac{R V \rho_{p}}{\mu_{f}}
$$

Joseph et al. - J. Fluid. Mech. - Vol. 433 (2001)

Collisions

Navier-Stokes solution

Lubrication model Soft-sphere model

$$
\frac{e_{I}}{e_{d}}=\exp \left(-\frac{35}{S t}\right)
$$

Legendre et al. - Phys. Fluids - Vol. 17 (2005)

Collisions

Navier-Stokes solution

Lubrication model
Soft-sphere model

Legendre et al. - Phys. Fluids - Vol. 17 (2005)

Collisions

Navier-Stokes solution

Lubrication model
Soft-sphere model

Legendre et al. - Phys. Fluids - Vol. 17 (2005)

HIT: Initial condition

HIT: Initial condition

$$
\begin{array}{ll}
& R e_{\lambda}=73 \\
& R e_{\Lambda}=315 \\
L_{b}=2 \pi & \frac{\rho_{p}}{\rho_{f}}=\{1,2,4\} \\
\frac{L_{b}}{\Lambda}=2 \pi & S t_{k}=26 \frac{\rho_{p}}{\rho_{f}} \\
\frac{\Lambda}{\lambda}=4.3 & S t_{E}=1.5 \frac{\rho_{\rho}}{\rho_{f}} \\
\frac{\eta}{\lambda}=17 & \\
\frac{R_{p}}{\eta}=11 & N_{p}=512 \\
& \phi_{v}=3 \% \\
& \frac{\eta_{k}}{\Delta x}=0.56 \\
& \text { Nodes }=256^{3}
\end{array}
$$

The particles are on the inertial range.

HIT: Initial condition

Visualization of one simulation

512 particles
256^{3} grid nodes
512 processors
$\sim 10 \mathrm{~h} / T_{E}$
(Movie)

In this section only solid collision model is activated (no lubrication).

Collision time

Collision time

$$
\frac{1}{\tau_{c}}=n_{p} \pi d_{p}^{2}<|\mathbf{w}|>
$$

Collision time

$$
\begin{aligned}
& \frac{1}{\tau_{c}}=n_{p} \pi d_{p}^{2}<|\mathbf{w}|> \\
& <|\mathbf{w}|>=<\left|\mathbf{V}_{p}^{a}-\mathbf{V}_{p}^{b}\right|>
\end{aligned}
$$

Collision time

$$
\begin{aligned}
& \frac{1}{\tau_{c}}=n_{p} \pi d_{p}^{2}<|\mathbf{w}|> \\
& \frac{1}{\tau_{c}^{\text {th }}}=n_{p} \pi d_{p}^{2} \sqrt{\frac{16}{\pi} \frac{2}{3} q_{p}^{2}}
\end{aligned}
$$

Collision time

$$
\begin{aligned}
& \frac{1}{\tau_{c}}=n_{p} \pi d_{p}^{2}<|\mathbf{w}|> \\
& \frac{1}{\tau_{c}^{\mathrm{tr}}}=n_{p} \pi d_{p}^{2} \sqrt{\frac{162}{\pi} \frac{2}{3} q_{p}^{2}}
\end{aligned}
$$

Collision time

$$
\begin{aligned}
& \frac{1}{\tau_{c}}=n_{p} \pi d_{p}^{2}<|\mathbf{w}|> \\
& \frac{1}{\tau_{c}^{\mathrm{th}}}=n_{p} \pi d_{p}^{2} \sqrt{\frac{16}{\pi} \frac{2}{3} q_{p}^{2}} \\
& \frac{1}{\tau_{c}^{\text {S.-T. }}}=n_{p} d_{p}^{3} \sqrt{\frac{8 \pi}{15} \frac{\epsilon}{\nu}}
\end{aligned}
$$

Saffman and Turner - J. Fluid. Mech. - Vol. 1 (1956)

Collision time

Collision time

$$
\begin{aligned}
& \frac{1}{\tau_{c}}=n_{p} \pi d_{p}^{2}<|\mathbf{w}|> \\
& \frac{1}{\tau_{c}^{\mathrm{th}}}=n_{p} \pi d_{p}^{2} \sqrt{\frac{16}{\pi} \frac{2}{3} q_{p}^{2}} \\
& \frac{1}{\tau_{c}^{\mathrm{S} .-\mathrm{T} .}}=n_{p} d_{p}^{3} \sqrt{\frac{8 \pi}{15} \frac{\epsilon}{\nu}}
\end{aligned}
$$

ρ	$\tau_{c}^{\text {th }} / \tau_{k}$	$\tau_{c}^{\text {S.- }} / \tau_{k}$	$\tau_{c}^{\mathrm{m}} / \tau_{k}$	$\left\langle\theta_{\text {coll }}>\right.$
1	21.5	13.9	24.5	44°
2	22.48	-	20.8	59°
4	23.1	-	17.1	69°

Contact angle

The velocity between particles at collision are correlated.

Collision velocity

Effect of the lubrication on intercollision time

Visualization of secondary collisions

$\rho=1$ with lubrication model

- = Encounter
- = Solid collision (Movie)

Effect of lubrication in acceleration p.d.f

Collisions increase the p.d.f. for large accelerations.
Comparison for different density ratio

Effect of lubrication in acceleration p.d.f

Collisions increase the p.d.f. for large accelerations.
Suppress accelerations during collision

Effect of lubrication in acceleration p.d.f

Collisions increase the p.d.f. for large accelerations.
Acceleration r.m.s. is related to density.

$$
A_{0}=a_{\text {r.m.s. }}^{2} / \epsilon^{3 / 2} \nu^{1 / 2}
$$

Qureshi et al. - European Phy. Jo. B - 2008

Effect of lubrication in acceleration p.d.f

Collisions increase the p.d.f. for large accelerations.
Suppress accelerations during collision

Effect of lubrication in acceleration p.d.f

Collisions increase the p.d.f. for large accelerations.
Comparison for $\rho=1$

Effect of lubrication in acceleration p.d.f

Collisions increase the p.d.f. for large accelerations.
Same but for lubricated case

The lubrication do not modify the p.d.f. for larger accelerations

Conclusions and future work

This work highlight some important effects:

- The lubrication model is representative for collisions in viscous fluids
- The lubrication creates the secondary collisions
- This secondary collisions have an effect on collision time
- The collisions modify the acceleration p.d.f.

These effects have to be considered when the collision frequency is treated. New models have to be put in place.

Thanks

Thanks for your attention. Some questions ?

Acknowledgements:

P. Fedem, W.-P. Breugem, P. Costa, J. Derksen, ...

Supercomputer support: CALMIP, CINES

Appendix

Appendix:

$$
\begin{aligned}
& \text { Method } \\
& \text { VoFLag method }
\end{aligned}
$$

Simulation

Collision
Particle Stats
Average flow calculation
Validations
Poiseuille
Rotation
Sedimentaition
Job time

Method

.	.	.			:	-			.			-	.		.		
:	:	:			-	-	:	-	-			-	:		:		.
-					:							-	-				
	-				:	$:$:			\because		
\therefore	-				-	\cdots	-		-			-	.		-		
\because	-	-			-	-	.	-	-			-	.		.		
\square	-	-			-	-	.	.	-			-	.	-	.		-
:	-	-			-	-	-	-	-			-	-		.		
												.			\square		
					:							:	:		:		
-	-	-			-	-	-		-			-	-		-		
:		:			:	-	:		-			:	-		:		
\because	-	-			:	.	.	-	-			-	-		.		
:		:			:	:	:	-	-			:	:		:		

Thetis code $\mathbf{1}$ Ma

- MAC stagered grid
- Finite volumes
- Fictitious Domain Approach

Method

Method

The solid behaviour is enforced by high viscosity.

Randrianarivelo et al. Int. J. Num. Meth. in Fluids - Vol. 47 (2005)

- Vincent et al. - Comp. \& Fluids - Vol. 36 (2007)

Method

$$
C=\frac{\sum_{1}^{25^{N}} \delta_{P \in R}}{25^{N}}
$$

Method

$$
\begin{gathered}
\rho=C \rho_{s}+(1-C) \rho_{l} \\
\mu=\frac{\mu_{f} \mu_{s}}{C_{\mu_{f}+(1-C) \mu_{s}}}
\end{gathered}
$$

Method

Method

$$
\begin{aligned}
& \tilde{\mathbf{X}}_{i}^{n+\frac{1}{2}}=\mathbf{X}_{i}^{n}+\frac{\Delta t}{2} \mathbf{V}_{i}^{n} t \\
& \tilde{\mathbf{v}}_{i}^{n+\frac{1}{2}}=\frac{3}{2} \mathbf{V}_{i}^{n}-\mathbf{V}_{i}^{n-1}
\end{aligned}
$$

Method

CPU block

	0					0		
	0					0		
				0				
	0	0	0				0	
	0	0	0	0	0			
			0					
			0	0	0			
0							0	

To find collisions Cell-list approach is implemented.

Method

A collision model gives the force applied on each particle.
The model developed is explained in later.

Brändle et al. - Phys. Fluids - (2013)

- Breugem - ASME Summer Meeting - Montreal (2010)

Method

The force is distributed on the solid volume and becomes a source term for N.-S. solution.

Method

An augmented Lagrangian method is implemented. With BiCG Stab solver.

Method

The new velocity field is calculated. The solid behaviour is respected by this field.

EVincent et al. - Comp. \& Fluids - Vol. 36. (2007)

Method

Method

The particle velocity is calculated by interpolating the velocity

Method

Method

$$
\mathbf{X}_{i}^{n+1}=\mathbf{X}_{i}^{n}+\Delta t\left(\frac{\mathbf{V}_{i}^{n+1}+\mathbf{V}_{i}^{n}}{2}\right)
$$

Validations

Dennis et al. - JFM - Vol 101 (1980)
Mordant et al. - Europ. Physical
Journal B - Vol. 18 (2000)

$\downarrow g$

Validations

Validations

Constraints

Physics:

Numerical:

- $\frac{\eta}{\Delta x} \sim 1$
- Scale separation
- $\frac{D}{\Delta x} \sim 20$
- Moderate concentrated
- $N_{x} \sim 256$
- Not too inertial
- As many particles as possible

Constraints

Physics:

- Scale separation
- Moderate concentrated
- Not too inertial

Numerical:

- $\frac{\eta}{\Delta x} \sim 1$
- $\frac{D}{\Delta x} \sim 20$
- $N x \sim 256$
- As many particles as possible

Constraints

Physics:

- Scale separation
- Moderate concentrated
- Not too inertial

Numerical:

- $\frac{\eta}{\Delta x} \sim 1$
- $\frac{D}{\Delta x} \sim 20$
- $N x \sim 256$
- As many particles as possible

Consequences:

- $60<R e_{\lambda}<90$

Collisions in turbulence
J.C.B. de Motta

Constraints

Physics:

- Scale separation
- Moderate concentrated
- Not too inertial

Numerical:

- $\frac{\eta}{\Delta x} \sim 1$
- $\frac{D}{\Delta x} \sim 20$
- $N_{x} \sim 256$
- As many particles as possible

Constraints

Physics:

- Scale separation
- Moderate concentrated
- Not too inertial

Numerical:

- $\frac{\eta}{\Delta x} \sim 1$
- $\frac{D}{\Delta x} \sim 20$
- $N x \sim 256$
- As many particles as possible

Constraints

Physics:

- Scale separation
- Moderate concentrated
- Not too inertial

Numerical:

- $\frac{\eta}{\Delta x} \sim 1$
- $\frac{D}{\Delta x} \sim 20$
- $N_{x} \sim 256$
- As many particles as possible

Constraints

Physics:

- Scale separation
- Moderate concentrated
- Not too inertial
- $\frac{\eta}{\Delta x} \sim 1$

Numerical:

- $\frac{D}{\Delta x} \sim 20$
- $N_{x} \sim 256$
- As many particles as possible

HIT: Forcing

The turbulence forcing is done in physical space by maintaining the total energy

$$
u_{n}=\sqrt{\frac{E_{0}}{E_{n}}}
$$

(the density of particles is not taken into account)
Rosales et. al - Phys. Fluids - Vol. 17 (2005)

HIT: Turbulence modulation

Turbulence increases for high wave numbers

HIT: Turbulence modulation

Lucci et al. - J. Fluid. Mech. -
Vol. 650 (2010)

Turbulence increases for high wave numbers (Numerical effect?)

HIT: Turbulence modulation

(a) Particle effect

Lucci et al. - J. Fluid. Mech. -
Vol. 650 (2010)

Turbulence increases for high wave numbers (Numerical effect?)
\Rightarrow We need to analyze the Lagrangian spectrum

HIT: Lagrangian spectrum

Fluid particles

HIT: Lagrangian spectrum

Fluid particles

HIT: Lagrangian spectrum

Fluid particles

The turbulence is not modified by the particles

Intercollision time

Statistics

ρ	q_{p}^{2} $\left(m^{2} s^{-2}\right)$	q_{p}^{2} q_{f}^{2}	T_{L} (s)	T_{L} T_{L}^{t} -	D $\left(m^{2} s^{-1}\right)$	$\frac{D}{D_{f}}$ - 1 1.27
	0.85	1.22	1.31	3.10	1.13	
2	1.17	0.79	1.35	1.45	3.16	1.15
4	1.10	0.74	1.53	1.65	3.37	1.23

Statistics

ρ	$\begin{gathered} q_{p}^{2} \\ \left(m^{2} s^{-2}\right) \end{gathered}$	$\frac{q_{p}^{2}}{q_{f}^{2}}$	$\begin{aligned} & T_{L} \\ & (s) \end{aligned}$	$\overline{\frac{T_{L}}{T_{L}^{f}}}$	$\begin{gathered} D \\ \left(m^{2} s^{-1}\right) \end{gathered}$	$\frac{D}{D_{f}}$
1	1.27	0.85	1.22	1.31	3.10	1.13
2	1.17	0.79	1.35	1.45	3.16	1.15
4	1.10	0.74	1.53	1.65	3.37	1.23

The q_{p}^{2} agitation decreases with ρ.

Statistics

ρ	q_{p}^{2}	$\frac{q_{\rho}^{2}}{q_{f}^{2}}$	T_{L} $\left(m^{2} s^{-2}\right)$	-	$\frac{T_{L}}{T_{L}^{T}}$	D -
$\left.-m^{2} s^{-1}\right)$	$\frac{D}{D_{f}}$					
-						
1	1.27	0.85	1.22	1.31	3.10	1.13
2	1.17	0.79	1.35	1.45	3.16	1.15
4	1.10	0.74	1.53	1.65	3.37	1.23

The velocity autocorrelation time T_{L} increases with ρ.

Statistics

ρ	q_{p}^{2} $\left(m^{2} s^{-2}\right)$	q_{p}^{2} q_{f}^{2}	T_{L} (s)	$\frac{T_{L}}{T_{L}^{t}}$ -	D $\left(m^{2} s^{-1}\right)$	$\frac{D}{D_{f}}$ - - 1 1.27
2	1.17	0.85	1.22	1.31	3.10	1.13
4	1.10	0.74	1.35	1.45	3.16	1.15

Statistics

ρ	q_{p}^{2}	$\frac{q_{p}^{2}}{q_{f}^{2}}$	T_{L}	$\frac{T_{L}}{T_{L}^{f}}$	D	$\frac{D}{D_{f}}$
-	$\left(m^{2} s^{-2}\right)$	-	(s)	-	$\left(m^{2} s^{-1}\right)$	-
1	1.27	0.85	1.22	1.31	3.10	1.13
2	1.17	0.79	1.35	1.45	3.16	1.15
4	1.10	0.74	1.53	1.65	3.37	1.23

q_{p}^{2} and T_{L} balance and give similar diffusion coefficient.

Particles diffusion

Average flow calculation

Average flow calculation

Average flow calculation

Average flow calculation

Average flow calculation

Validations

Ici je vais mettre les slides que j'avais fait sur les validations afin de répondre aux questions

Validations: Poiseuille

Segré and Silberberg - Nature - Vol. 189 (1961)

Validations: Poiseuille

Equilibrium

Segré and Silberberg - Nature - Vol. 189 (1961)

Validations: Poiseuille

A : Inamuro et al. - IJMF - Vol 26-2000
B : Pan et al. - JCP - Vol 181-2002

	Author	Case1	Case2	Case3	Case4	Case5	Case6
$R e=\frac{L \overline{u_{f}}}{\mu}$		12.78	27.72	43.40	55.55	69.13	96.74
\bar{Y}	A	0.2745	0.2733	0.2728	0.2723	0.2716	0.2706
	B	0.2732	0.2725	0.2723	0.2720	0.2719	0.2722
	VofLag	0.2643	0.2636	0.2637	0.2643	0.2650	0.2752
	Error	3.8\%	3.6\%	3.4\%	3.0\%	2.5\%	2.0 \%
\bar{U}	A	0.04137	0.04131	0.04091	0.04118	0.04110	0.04101
	B	0.04155	0.04159	0.04122	0.04166	0.04148	0.04144
	VofLag	0.04599	0.04605	0.04570	0.04628	0.04623	0.04682
	Error	10.6\%	10.9\%	11.1\%	11.7\%	11.7\%	13.2\%
$\bar{\omega}$	A	-0.054675	-0.054694	-0.053772	-0.053765	-0.053101	-0.051607
	B	-0.05345	-0.05343	-0.05264	-0.05264	-0.05206	-0.05052
	VofLag	-0.05500	-0.05331	-0.05082	-0.04966	-0.04761	-0.05276
	Error	0.6\%	2.6\%	5.6\%	7.9\%	10.9\%	2.2\%

With 6 nodes per diameter we obtain a low relative error

Validations : Dennis 1980

Validations : Dennis 1980

Validations: Dennis 1980

Validations : Dennis 1980

Dimensionless torque $M=\frac{2 T}{\rho_{f} R^{5} \omega^{2}}$ vs Reynolds number $R e_{\omega}=\frac{R^{2} \omega \rho}{\mu_{f}}$

Symbols by
$\frac{\Delta x}{D}=\{10,20,40\}$
Colors by
T

Validations: Ten Cate 2002

Validations: Ten Cate 2002

Dashed lines $\frac{D}{\Delta T}=8$, straight line $\frac{D}{\Delta T}=16$.
ten Cate et al. - Phys. Fluids - Vol 14 (2002)

HIT : Jobs time

With 512 procs

	$T_{\text {sim }} / T_{E}$	Percentage
Navier-Stokes Resolution	26828 s	75%
Postraitement (Out + Spectra)	3977 s	11%
Fluid Particles	2121 s	6%
Advection	2105 s	6%
Collisions	39 s	$<1 \%$
Others	714 s	2%
Total	$35784 \mathrm{~s} \sim 10 \mathrm{~h}$	

[^0]: Schäfer et al. - Jo. de Phys. - Vol 6 (1996)

