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Abstract

In this paper, a multi-solution strategy aimed at greatly decreasing the cost of structural identification problems is

proposed. It is based on the large time increment method and on the possibility offered by this approach to obtain a

family of admissible displacement and stress fields in order to solve a nonlinear time-dependent problem. This technique

relies on a time and space decomposition of the solution. It has been extended to solve at a low cost, the inverse problem

of identification, for various techniques. In particular, it has been adapted to the minimization of the gradient of the gap

between test and simulation. In this first attempt, it is applied to the simple case of bending of an elastic–viscoplastic

beam. The issue of the numerical efficiency of this type of strategy is studied. � 2002 Published by Elsevier Science

B.V.
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1. Introduction

Today, more and more knowledge of the behavior of structures in service is required. The loadings are
complex, multi-axial, nonproportional and, therefore, very difficult to reproduce with homogeneous ex-
periments on test samples. Furthermore, the most critical phenomena, such as failure, happen mostly near
the edges, where the loads are applied. These zones are characterized by high gradients and three-dimen-
sional (3D) loads. Typical problems where such a situation occurs include, for example, the delamination of
laminated composites [1], the identification of joints and the determination of parameters of constitutive
models involving the phenomenon of localization [2].
Thus, in these cases, regardless of the identification strategy adopted, the identification of the behavior is

indirect and requires numerous and expensive computations in order to establish satisfactory comparisons
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between experiments and calculations. In this work, a method of calculation aimed at greatly decreasing
the cost of these analyses is proposed and studied on a simple case. It uses the fact that a large number of
the calculations to be carried out are identical in many respects. To take advantage of this, we try to use the
possibilities offered by the ‘‘Large Time INcrement method’’ (LATIN method) proposed by Ladev�eeze and
coworkers [3–6] and, particularly, to reuse a family of admissible displacements, stress fields of a given
problem to solve other similar problems much less expensively. The inverse stage of the identifica-
tion problem involves the resolution of problems different from those encountered in the resolution of the
direct problem: therefore, we must also develop methodologies which allow us to solve these problems within
the framework of the LATIN method. It is to be noted that these problems have not been solved so far in
previous studies related to the LATIN method. They depend on the strategy of identification used. Sample
situations were studied.
Common strategies to solve identification problems use algorithms based on the evaluation of the gra-

dient with respect to parameters chosen for reasons of efficiency [7,8]. The evaluation of the gradient can be
performed by direct differentiation [8–11]. An interesting alternative is the adjoint state method which was
developed for nonlinear mechanical applications, for example in [12–14]. Another technique already used is
the estimation of the gradient by interpolation [15,17]. All these methods are based on classical incremental
methods of nonlinear calculations. Algorithms based on the evaluation of the cost function (genetic,
evolution) are also used in [18–21]. The main disadvantage of these methods is their computational cost
because of the large number of function evaluations which must be carried out. To handle the problems

Nomenclature

B positive operator
E0 Young modulus
H� search direction operator
Hþ search direction operator
H sensitivity matrix
Ke fourth order tensor of elastic stiffness moduli
k structural parameters
kv, nv material constants
l length of the beam
p cumulative plastic strain
u� pseudo-potential of dissipation
w free energy
R isotropic hardening
R0 initial yield stress
RC covariance matrix
sgn sign
rD deviatoric part of the stress tensor
S0 space of regular displacements satisfying homogeneous boundary conditions, and of stresses r

self-equilibrated
dkj Kronecker’s delta
div divergence
EðÞ average operator
hxiþ positive part of x



linked to measurement noise, stochastic methods have been elaborated [18–20]. Another technique proposed
in this connection is that of the Kalman filters [15,16,22,23].
To take advantage of the LATIN method, we studied different methods which are representative of the

difficulties encountered in structural identification, namely, the direct differentiation method, the adjoint
state method, the interpolation method and the Kalman filters method.
In this first work, we considered a simple example: a cantilever beam which exhibits a viscoplastic be-

havior. A white measurement noise (which, here, is simulated) is introduced. In the first part, we present the
LATIN method as it is used. Then, we discuss the application of the LATIN method to the various
identification strategies. Finally, a comparison of the computational costs of these methods is presented and
discussed.

2. The LATIN method

First of all, we recall the principle of the LATIN method. Then, we focus on its multi-solution feature,
which seems to us to be a particularly interesting aspect in the context of identification.

2.1. Formulation of the direct problem

The identification is performed in the context of nonlinear evolution problems for small isothermal
deformations under quasi-static conditions. The structure studied is defined in a domain X bounded by oX.
On a portion o1X of the boundary oX, the displacement Ud is prescribed. On the complementary part o2X, a
surface force density F d is applied. The structure is also subjected to a volume force density f

d
.

For the purpose of the application of the version of the LATIN method used, the problem to be solved
in the context of a viscoplastic model is to find ðr;U ; _eep; _pp;RÞ defined on ½0; T 	 
 X belonging to the in-
tersection of the two following spaces Ad and C where

• Ad is composed of the static admissibility, the kinematic admissibility, the initial conditions, the compat-
ibility equation and the linear part of the constitutive relations,

• C is composed of the nonlinear part of the constitutive relations.

More precisely, Ad is defined by

• kinematic constraints:

Uðt;MÞ ¼ Ud 8 t 2 ½0; T 	; 8M 2 o1X ð1Þ
• initial conditions:

U jt¼0¼ U 0 8M 2 X ð2Þ
• equilibrium equations:

�
Z

X
r : eðU �ÞdX þ

Z
X
f
d
� U � dX þ

Z
o2X

F d � U � dS ¼ 0 8U �=U � ¼ 0 on o1X; 8 t 2 ½0; T 	 ð3Þ

with e ¼ eðUÞ.
• linear part of the constitutive relation [24], i.e. the state laws: the model is defined by its free energy

qw ¼ 1
2
K�1
e r : r þ 1

2
bp2 ð4Þ



which the derivatives yield to the state equations

R ¼ b � p;
r ¼ Keðe � epÞ;

ð5Þ

Ke is the fourth order tensor of elastic stiffness moduli.

And, C is defined by

• nonlinear part of the constitutive relation, i.e., the evolution laws: the model is also defined by its pseu-
do-potential of dissipation which is given by

u�ðr;RÞ ¼ kv
nv þ 1

hzinvþ1þ with z ¼ krDk � R� R0 ð6Þ

kv and nv are material constants, R the isotropic hardening, R0 the initial yield stress, rD the deviatoric
part of the stress tensor. The symbol hxiþ indicates the positive part of x, so that hxiþ ¼ 1

2
ðxþ jxjÞ. From

this pseudo-potential, the evolution laws are derived:

d

dt
ep

�p

� �
¼ B

r
R

� �� �
¼ kvhzinvþ

rD

krDk
�1

2
4

3
5 with ep ¼ p ¼ 0 at t ¼ 0 ð7Þ

where p (the variable associated with R) is the cumulative plastic strain.

2.1.1. Remarks on the formulation of the state equations
When, as is often the case, the relation between R and p is not linear, we use a normal formulation of the

constitutive laws in the sense defined in [24]. In this way, we introduce a new set of internal variables ~RR and
~pp obtained from R and p using the following relation:

~RR ¼ b � ~pp and ~pp ¼
Z p

0

oR
op
1

b

� �1=2
dp for R ¼ R0 þ b � pa; we obtain : ~pp ¼ 2

ffiffiffi
a

p

a þ 1 � p
ðaþ1Þ=2 ð8Þ

so that the relation between ~RR and ~pp is linear whereas that between R and p is not. It should be noted
that––even though here, for the sake of simplicity, we restrict ourselves to a plasticity flow rule with iso-
tropic hardening––all the following applies to any constitutive law described by internal variables. In the
following, we will call variables ~RR and ~pp respectively R and p.
For the constitutive laws studied (which are stable in Drucker’s sense [26]), the solution to our problem is

unique and corresponds to the intersection of Ad and C.

2.2. Principles of the method of resolution

The resolution of the direct problem is carried out using the LATIN method, whose principles have been
given by Ladev�eeze [25]. This method departs from incremental methods in that it allows one to study the
whole loading in only one increment [24]. It takes the form of a global iterative method over the whole
history of loading considered. At iteration n, two estimates are produced successively:

• An estimate of the solution sn ¼ ð _eepn ; _ppn; rn;RnÞ over the whole history of the loading which verifies
the equations of Ad. It is worth noting that the conditions of belonging to this space are global but
linear.



• An estimate of the solution ŝs ¼ ð _̂eêeep; _̂pp̂pp; r̂r; R̂RÞ over the whole history of the loading which satisfies the equa-
tions of C. The conditions of belonging to this space are nonlinear but local.

The iterative process is illustrated in Fig. 1.
On the previous Fig. 1, each curve schematizes the evolution of a field ðr; e; . . .Þ on the whole time in-

terval ½0; T 	 either satisfying the evolution laws C, or the equilibrium and the state equations Ad. This figure
aims at showing that the iteration process is a global process on the whole time interval, but not a step-
by-step iterative procedure.
Therefore, each LATIN iteration is composed of a local stage and a global stage, i.e.

• the local stage: given a known element sn ¼ ð _eepn ; _ppn; rn;RnÞ of Ad, an element ŝs belonging to C is obtained
by following a given search direction. It is defined by

_̂eêeep � _eepn
�ð _̂pp̂pp � _pnpnÞ

( )
þ Hþ r̂r � rn

R̂R� Rn


 �
¼ 0 ð9Þ

where the operator Hþ is the search direction. In general, it is calculated from the previous global
stage. Different choices of search directions have already been treated for the resolution of the direct
problem. Hþ can be the elastic operator, or an operator linked to the state laws. In the context of
identification, we can use, for example, the search direction which consists of keeping r and R, which are
some values obtained at the global stage. The problem at the local stage then becomes explicit. It is
expressed as
Find ŝs ¼ ð _̂eêeep; _̂pp̂pp; r̂r; R̂RÞ such that

search direction : Hþ�1 ¼ 0; i:e: r̂r ¼ rn

R̂R ¼ Rn




evolution law :
d

dt
êep

�p̂p

� �
¼ B

r̂r
R̂R

� �� �
¼ kvhẑzinvþ

r̂rD

kr̂rDk
�1

2
4

3
5:

8>>>>><
>>>>>:

ð10Þ

The second member being known, it is sufficient to integrate the first equation over the complete
structure (at each Gauss point in the finite element method) and over the whole time history. The h-
method is used.

• the global stage: given an element ŝs ¼ ð _̂eêeep; _̂pp̂pp; r̂r; R̂RÞ in C, a new element snþ1 belonging to Ad is sought in a
given search direction. It is defined by

Fig. 1. Iterative process of the LATIN method.



_eepnþ1 � _̂eêeep

�ð _ppnþ1 � _̂pp̂ppÞ

( )
¼ H� rDnþ1 � r̂rD

Rnþ1 � R̂R

( )
: ð11Þ

The operator H� is the search direction. A so-called tangent search direction is chosen. For the 1D case,
it is expressed as

H� ¼ nv � kvhẑzinv�1þ �
1 � r̂r

jr̂rj
� r̂r
jr̂rj 1

0
BB@

1
CCA:

It depends only on the quantities determined at the previous local stage.

As a finite element scheme is used, the equilibrium equation will be satisfied only at the finite element
sense and the constitutive relation at the Gauss points.

2.3. Time/space representation of an element of Ad

For complex problems with a large number of degrees of freedom, the cost of the resolution corresponds
mainly to the determination of an element of Ad because of the global feature of the equilibrium equations.
To decrease the computational time of this stage, it has been proposed and implemented in [27] to represent
the corrections at the global stage in the form of a simple loading. This technique is efficient not only in the
case of material nonlinearity (elasto-viscoplasticity [27], damage [1]) but also geometric nonlinearity [3].
Thus, the corrections sought are expressed as follows:

DenðM ; tÞ ¼ enþ1ðM ; tÞ � enðM ; tÞ ¼
Xm
i¼1

aiðtÞ � AiðMÞ;

DrnðM ; tÞ ¼ rnþ1ðM ; tÞ � rnðM ; tÞ ¼
Xm
i¼1

biðtÞ � BiðMÞ;

DRnðM ; tÞ ¼ Rnþ1ðM ; tÞ � RnðM ; tÞ ¼
Xm
i¼1

ciðtÞ � CiðMÞ

ð12Þ

where aiðtÞ, biðtÞ, ciðtÞ are scalar functions defined on ½0; T 	 with aið0Þ ¼ bið0Þ ¼ cið0Þ ¼ 0; AiðMÞ, BiðMÞ,
CiðMÞ are fields which must satisfy the condition that Dsn belongs to S0 (homogeneous boundary condi-
tions, and r self-equilibrated).
The pair of time and space functions are built the one after another, usually one or two pairs are suf-

ficient to lead to a correct approximation of the solution of the considered iteration. Thus, the problem at
the global stage is solved only approximately, but this approximate technique supplies an element of Ad,
which is the only requirement of the method at this stage. It should be noted that, in the following, the
subscript of the time and space functions designates the global stage at which these functions are con-
structed.
In order to build the pair of time–space functions, we use an iterative technique of the fixed-point type:

(1) Given the time function, the best space function is built. It corresponds to the minimization of a residue
which has the form:

kKðM ; tÞDvðM ; tÞ � F ðM ; tÞk



where K depends on H� and Ke. This leads to a linear global problem of the same size as an elastic
problem. It is described in Appendix A. The initialization can be performed, for example, with the
loading.

(2) Using the space function calculated in (1), the best associated time functions are calculated. This in-
volves the resolution of a first-order differential equation. The determination of these functions is given
in Section 3.2 (the resulting function is used again in Stage (1) if necessary).

A complete description of the method can be found in [27]. It should be noted that the resolution cost
comes essentially from Stage (1).

2.4. Stopping criterion for the direct problem

The quality of the admissible solution to the direct problem is evaluated through the distance between the
approximation of Ad at Stage n and the approximation of C. If this distance is zero, these two approxi-
mations are identical and correspond to the unique solution to the problem. We refer to [28] for more details
on the residual which is used.

2.5. Initialization

In this study, we initialize the process by the elastic solution which gives an element of Ad. We search
ðr;U ; _eep; _pp;RÞ defined on ½0; T 	 
 X such that

Uðt;MÞ ¼ Ud; 8 t 2 ½0; T 	 8M 2 o1X;

U jt¼0¼ U 0 8M 2 X �
Z

X
r : eðU �ÞdX þ

Z
X
f
d
� U � dX þ

Z
o2X

F d � U � dS ¼ 0;

8U �=U � ¼ 0 on o1X; 8 t 2 ½0; T 	
R ¼ ep ¼ p ¼ 0;
r ¼ Ke : e ¼ Ke : ee:

ð13Þ

3. LATIN method and multi-solution strategy

3.1. Use of the time–space representation in the context of identification

To reduce significantly the cost of these analyses once a first analysis has been carried out for a set of
parameters chosen a priori, we take advantage of the possibility offered by the LATIN method to reuse the
basis of space functions built during this first resolution. The principle is the following:
Let rini be the stress solution corresponding to the initial set. This stress was represented at the end of the

iterative process described in the previous section as the product of N þ 1 time functions and N þ 1 space
functions designated here by ðBini0 ðMÞ;Bini1 ðMÞ; . . . ;BiniN ðMÞÞ. For a problem corresponding to a new set of
parameters and for the first global stages, the basis of functions ðBini1 ðMÞ; . . . ;BiniN ðMÞÞ, which corresponds
to the homogeneous boundary conditions, is used to determine iteratively the best time functions associated
with the previous set of space functions. After a certain number of iterations, if the solution error remains
too large, new pairs of time–space functions are generated as described in the previous section. This process
is repeated until convergence.



3.2. Calculation of the time functions

At each global stage, we seek to correct N time functions. The process for a global stage will be de-
scribed. In a following chapter, various means of initializing these time functions for the new set of pa-
rameters will be studied. The problem is written as a system of first-order differential equations. At the
global stage, the kinematic admissibility (i.e. D _een KA at zero) can be expressed as

8 t 2 ½0; T 	 8r� 2 S0;

Z
X

D _een : r� dX ¼ 0 ð14Þ

where S0 is defined in Section 2.3.
Given the search direction, the state laws and Eq. (14), the problem leading to the corrections of the so-

called static variables can be written in the form:
Find Drn 2 S0 and DRn such thatZ T

0

Z
X

K�1
e D _rrn : r�

�
þ b�1D _RRn � R� þ H� DrDn

DRn

� �
� r�

R�

� ��
dXdt

¼
Z T

0

Z
X

� D _̂eêeepn : r� þ D _̂pp̂ppn � R� þ H� Dr̂rDn
DR̂Rn

" #
r�

R�

� �!
dXdt 8r� 2 S0; 8R� ð15Þ

where DQ̂Qn ¼ Q̂Q� Qn, and Q represents _eep, _pp, rD and R. The details of this equation are given in Appendix
A.
By writing r� and R� in the same form as the corrections (Eq. (12)) in (15), we obtain the following

problem:

Hypothesis: ðBini1 ðMÞ; . . . ;BiniN ðMÞÞ, ðCini1 ðMÞ; . . . ;CiniN ðMÞÞ are known.
Find GðtÞ ¼ fbC1 ðtÞ; . . . ; b

C
N ðtÞ; cC1 ðtÞ; . . . ; cCN ðtÞg

T
such that

N _GGðtÞ þMGðtÞ ¼ BðtÞ 8 t 2 ½0; T 	 and Gðt ¼ 0Þ ¼ 0: ð16Þ
By using the h-method, we end up with the system

LGðtÞ ¼ F ðt � 1Þ: ð17Þ
More details are given in Appendix A, especially the resolution of (16) and the determination of the time
functions faC1 ðtÞ; . . . ; aCN ðtÞg which comes from the minimization of a residue.
Thus, by solving this linear system we obtain the correction fbC1 ðtÞ; . . . ; b

C
N ðtÞ; cC1 ðtÞ; . . . ; cCN ðtÞg

T
which

must be applied to the time functions for the new set of parameters. At the end of iteration n, an improved
solution compared to the previous iteration is obtained. For example, for stresses, we get

rnðM ; tÞ ¼ rn�1ðM ; tÞ þ DrCn ðM ; tÞ;

rnðM ; tÞ ¼ bini0 ðtÞ � Bini0 ðMÞ þ
XN
k¼1

bn�1
k ðtÞ � Binik ðMÞ þ

XN
k¼1

bCn
k ðtÞ � Binik ðMÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
correction

: ð18Þ

rn can be written as

rnðM ; tÞ ¼ bini0 ðtÞ � Bini0 ðMÞ þ
XN
k¼1

bn�1
k ðtÞ þ bCn

k ðtÞ
# $|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bnk ðtÞ

�Binik ðMÞ ð19Þ



where bn�1
k ðtÞ is the kth time function achieved at iteration n� 1, bn

kðtÞ the kth time function obtained at
iteration n, bCn

k ðtÞ the correction to the kth time function bn�1
k ðtÞ at iteration n.

Finally, according to successive corrections made at every global stage, rn can also be written

rnðM ; tÞ ¼ bini0 ðtÞ � Bini0 ðMÞ þ
XN
k¼1

b0kðtÞ
"

þ
Xn
i¼1

bCi
k ðtÞ

#
� Binik ðMÞ ð20Þ

where b0kðtÞ is the kth time function which initializes the computational method for a new set of parameters,
and bCi

k ðtÞ is the correction to the kth time function bi�1
k ðtÞ at iteration i.

Remark. This method is very close to the so-called preliminary stage technique proposed and developed by
Ladev�eeze and Bussy (see [29,30]) in order to improve the convergence rate of the LATIN method. The same
ideas are used here in a context where they are particularly interesting.

4. Methods of resolution of the inverse problem

4.1. Strategy of identification

The principles of the LATIN method described above present a high degree of flexibility (uncoupled
equations, approximation of the complete structural response over the whole considered history of loa-
ding,. . .). Thus, several strategies of identification can be considered in order to reduce computational costs.
The simplest one to implement is the identification at the local stage without taking the previous stages into
account. In fact, the only equations which must be satisfied are the evolution laws. The gradient is,
therefore, easy to calculate. Besides, the cost of this operation is relatively small compared to the global
stage. This strategy was evaluated in [31]. This study led to its rejection and emphasized the necessity to
take the admissibility conditions into account in the calculation of the gradient. Therefore, in this paper, the
identification will be carried out according to these remarks. The gradient will be calculated at the global
stage taking the previous stages into account.

4.2. Deterministic approach

The identification problem is treated as an optimization problem which can be formulated as:
Find the structural parameters k minimizing a distance function between calculation and experiments

kqðkÞ � qexpk2, where qðkÞ satisfies the direct problem. qðkÞ can represent, for instance, the strains, the
stresses, in the framework of field measurements, or the displacements; . . .
In order to solve this problem numerically, and for simplicity’s sake, we will assume that the discrete

values for the time integration and for the experimental data coincide for the calculated values and for the
observations.
The strategy of optimization considered is a B.F.G.S. algorithm [32] which is based on the evaluation of

the gradient. Therefore, we need to calculate the gradient of the distance computation/experiments, and
particularly the term dqðkÞ=dk which is not easy to calculate. The evaluation of this quantity is described in
Section 5.
In the B.F.G.S. algorithm, after gradient calculation, several direct calculations are made in order to

determine the descent step (line search). These operations can take advantage of the multi-solution aspect
of the LATIN method. The basis of space functions is constructed for the initial set of parameters. This
basis is then used for all subsequent calculations. The initialization of the associated time functions can be



performed either by using the first calculation, or by an intermediate calculation which can be, for example,
the calculation of the gradient. In some cases, the basis of space functions must be enriched by additional
functions. Thus, the B.F.G.S. algorithm is well suited to the multi-solution feature of the LATIN method.

4.3. Adaptation of the adjoint state method to the LATIN method

Another deterministic method is available to minimize a cost function under constraints by calculating
the gradient of this function with respect to parameters, i.e. the adjoint state method.
We recall that the inverse problem is formulated as the minimization of the distance computation/

experiments, designated by D, with the constraint that it satisfies the direct problem. The problem is then
written as:
Find k� such that

Dðk�Þ ¼ Dðk�;rðk�ÞÞ ¼ min Dðk; rÞ k; r satisfying rðkÞ is
solution of the direct problem:



ð21Þ

The minimization of a functional under constraints is equivalent to the determination of the saddle point of
a Lagrangian, where all variables are assumed to be independent.
The formulation of the adjoint problem is obtained by considering the stationarity conditions on the

adjoint variables and integrating these equations by part in space and in time. Thus, we obtain the adjoint
problem, which is retrogressive in time because of the final conditions which appear during the integration
by part. For more details, see the description of the distance D, the Lagrangian chosen and the resulting
problem in Appendix B. This problem is solved like the direct problem using the principles of the LATIN
method. On the one hand, the linear and local equations can be divided between the two spaces Ad and C
(see Section 2.2). On the other hand, the specific representation of the solution poses no particular problem:
one must simply express the problem in a retrogressive way using the h-method. In fact, the differential
equation (16) is still available. The main difference is that the initial condition is replaced by a final one.
Then, the resulting equation (17) is written in a retrogressive way. Thus, it is possible to benefit from the
multi-solution feature.
This method is formulated again, as in the previous paragraph, as the minimization of a cost function.

Moreover, it enables the evaluation of the gradient with respect to parameters, as we will see in Section 5.2.
This minimization can be carried out using the B.F.G.S. algorithm.

4.4. Stochastic approach: adaptation of the extended Kalman filter to the LATIN method

The stochastic method of identification used is Kalman’s filtering technique. This method enables one to
take into account the measurement noise by giving it an optimal weight. Furthermore, it presents some
interesting characteristics. On the one hand, the filtered estimation at time t is accompanied by its co-
variance matrix, which gives a measure of its uncertainty. On the other hand, this stochastic method makes
use of all a priori available information concerning the variable and the model errors. Finally, it is not
necessary to have more measurable quantities than unknowns. Appendix C gives more details on this
technique.
In this algorithm, it is necessary to estimate the quantities hðx̂xtÞ, which contain all the nonlinearities of the

problem, and the sensitivity matrix Hðx̂xtÞ. Here, x̂xt is the estimation of the model parameter over an interval
½t � 1; t	. The first quantity is obtained by direct calculation using the LATIN method with a particular
representation of the solution. For this purpose, a first calculation is carried out over the whole space and
the whole time interval for the initial set of parameters. Thus, the basis of the space functions which belong
to S0 is constructed. Then, in order to calculate hðx̂xtÞ on ½0; t	, we can either initialize the time functions on
½0; t	 using the first calculation (initial basis) or reuse the previous calculation on ½0; t � 1	 and complete the



initialization at the time t using the first calculation. Since the basis functions belong to S0, so does
the initialization. This is done in order to get a richer initialization. Then, the calculation of hðx̂xtÞ is carried
out as before by performing local stages and preliminary stages successively until convergence. As far as
the calculation of Hðx̂xtÞ is concerned, the process will be described in detail in Section 5.1. In fact, it fol-
lows the same procedure as the direct calculation. We will also see an easier way to evaluate this sensitivity
matrix.

5. Calculation of the gradient with respect to parameters

The methods described above revolve around on the gradient with respect to parameters. It has an
essential role. Thus, we try to estimate the influence of a modification of the parameters on the calculated
solution. However, this is not easily done in the case of viscoplastic behavior. In the following paragraphs,
several methods of evaluation of the gradient (direct differentiation, adjoint state, interpolation) will be
described within the scope of the LATIN method. These have already been used for nonlinear incremental
calculations. This is one of the key points of our approach which must be studied in detail.

5.1. The direct differentiation method

We saw in Section 4 that the solution to the identification problem is based on the calculation of the
gradient with respect to parameters. This presentation of the direct differentiation is tailored to our
problem, where the representation of the solution is particular. Indeed, in the context of the LATIN
method, the solutions are expressed as sum of products of time functions and space functions. For example,
the stress can be written

rnþ1ðM ; tÞ ¼ r0ðM ; tÞ þ
Xn
k¼1

bkðtÞ � BkðMÞ with m ¼ 1 ð22Þ

and in the case where the initial stress is defined by a single couple:

r0ðM ; tÞ ¼ b0ðtÞ � B0ðMÞ: ð23Þ

The gradient with respect to parameters is obtained directly:

drnþ1ðM ; tÞ
dk

¼ dr0ðM ; tÞ
dk

þ
Xn
k¼1

dbkðtÞ
dk

� BkðMÞ
�

þ bkðtÞ �
dBkðMÞ
dk

�
: ð24Þ

The other static and kinematic quantities are expressed in the same way.
The expression (24) shows that the gradient of the time and space functions with respect to the pa-

rameters must be calculated. Thus, we need to study the influence of a modification of the parameters on
these two types of functions. To obtain these quantities, we will again consider the problems at the global
stage.

5.1.1. Calculation of the gradient of the static variable corrections
We saw that Problem no. 2 (calculation of the time functions) is expressed as a system of first-order

differential equations (16). The calculation of the gradient follows the same procedure as the determination
of the time functions:

• dBðMÞ=dk and dCðMÞ=dk are known.
• The calculation of the gradient is given by



dGðtÞ
dk

¼ L�1 � dF ðt � 1Þ
dk

�
� dL
dk

� GðtÞ
�
: ð25Þ

We have here a recurrence formula on the time steps and on the LATIN iterations (with respect to the
previous local and global stages). It is worth noting that L was already inverted in the direct problem.
In Problem no. 1 (calculation of the space functions), the gradient of the time functions is considered to

be known. By considering Eq. (15) and writing r� and R� in the same form as the corrections, the spa-
cial problem can be written as KðMÞDvðMÞ ¼ F ðMÞ (dualized problem). From DvðMÞ, we deduce BiðMÞ
and CiðMÞ. So, it is important to calculate dDvðMÞ=dk so as to have dBiðMÞ=dk and dCiðMÞ=dk. The ex-
pression of the gradient of Dv with respect to parameters is derived from the dualized problem (coming
from (15)) as

dDv
dk

¼ K�1 dF
dk

�
� dK
dk

� Dv
�
: ð26Þ

Then, the gradient of the space functions with respect to the parameters can be derived from this ex-
pression. It depends on the quantities from the previous local and global stages. One should note again that
the matrix K was already inverted in the direct problem.

5.1.2. Calculation of the gradient of the strain corrections
The two subproblems in the calculation of strain corrections (cf. Appendix A) being identical to those of

the previous section, the gradient will be estimated in the same way.

5.1.3. Calculation of the gradient of the quantities in the local stage
It is worth noting that the expression of the gradient of the quantities in the previous local stage is

present in Eqs. (25) and (26), therefore, these quantities must be calculated.
The analytical calculation of the gradient of the computation/experiments distance is performed ac-

cording to the method proposed by Mahnken and Stein [8], which is adjusted to the equations governing
the local stage. It is based on the numerical scheme used, and leads to a recursive formula.
At the local stage, for a 1D problem, the behavior follows the equations:

_̂pp̂pp ¼ kvhjr̂rj � R̂R� R0invþ
_̂eêeep ¼ _̂pp̂pp sgnðr̂rÞ

(
ð27Þ

where sgnðr̂rÞ stands for sign of r̂r. With the scheme considered, the problem is written in terms of

• Gtðk; Yt; Yt�1; r̂rt; r̂rt�1; R̂Rt; R̂Rt�1Þ ¼
g1;t
g2;t


 �
¼ 0,

where Yt ¼ ½êept ; p̂pt	

and
g1;t ¼ êept � êept�1 � Dêept
g2;t ¼ p̂pt � p̂pt�1 � Dp̂pt

(
ðnumerical schemeÞ

with
Dp̂pt ¼ kv � Dthjr̂rj � R̂R� R0invþ js
Dêept ¼ Dp̂pt sgnðr̂rÞ

(

and qjs ¼ ð1� hÞ � qðt � 1Þ þ h � qðtÞ; h 2 ½0; 1	;

ð28Þ

• the search direction.

For the calculation of the derivative, we consider that



Gtðk; YtðkÞ; Yt�1ðkÞ; r̂rtðkÞ; r̂rt�1ðkÞ; R̂RtðkÞ; R̂Rt�1ðkÞÞ ¼ 0: ð29Þ
Gt depends on the parameters k implicitly. Hence, by differentiating, we obtain

dYt
dk

¼ � oGt

oYt

� ��1
� oGt

ok

(
þ oGt

oYt�1

dYt�1
dk

þ oGt

or̂rt

dr̂rt

dk
þ oGt

or̂rt�1

dr̂rt�1

dk
þ oGt

oR̂Rt

dR̂Rt

dk
þ oGt

oR̂Rt�1

dR̂Rt�1

dk

)
: ð30Þ

This expression can be viewed as a recursive formula between dYt=dk and dYt�1=dk.

• For the vertical search direction, the quantities dr̂rt=dk, dr̂rt�1=dk, dR̂Rt=dk, dR̂Rt�1=dk are known from the
previous global stage.

• oGt=oYt ¼ Id and oGt=oYt�1 ¼ ðoGt=oYtÞ � 2Id (chosen scheme).
• The other derivatives with respect to parameters, or the quantities r̂r or R̂R are calculated using the evo-
lution laws.

The calculation of the gradient of Gt with respect to two parameters is given for the vertical search
direction:

oGt

ob
¼ kv � nvDt � pnjshjrnj � b � pn � R0inv�1þ js sgnðrnÞ; ð31Þ

oGt

oR0
¼ kv � nv � Dthjrnj � b � pn � R0inv�1þ js sgnðrnÞ: ð32Þ

Thus, a time dependence occurs in the evaluation of the gradient.

Remark. It is possible to calculate the gradient for other search directions. This differs from the previous
case in the calculation of the Jacobian. Indeed, the quantity Dêep depends on the quantities êep and/or p̂p,
depending on the case.

Thus, the calculation of the gradient with respect to parameters introduced in this paper is specific to the
LATIN method. Indeed, the gradient depends (implicitly) on all the iterations in the method. Furthermore,
it is based on the process of determining the time and space functions which are used to represent the
solution. In fact, during each iteration, it is sufficient to determine the gradient of the correction which must
be applied to the static and kinematic quantities. Thus, this method takes into account the admissibility
conditions as well as the behavior. For the part related to the evolution laws, a method proposed by
Mahnken and Stein [8] was modified to suit our context.
In order to estimate the influence of the modification of parameters on the solution during the multi-

solution process, we evaluate the gradient in a way similar to that of the direct calculation. A first calcu-
lation with the initial set of parameters k0 is performed. Using the method described above, we obtain a
basis of space gradient functions ðdB0=dkjk0 ; dB1=dkjk0 ; . . . ; dBN=dkjk0Þ and the gradient of the associated
time functions. Then, for the new sets of parameters, we initialize the basis with ðdB0=dkjk0 ; dB1=dkjk0 ; . . . ;
dBN=dkjk0Þ. Once the space functions are known, the gradients of the associated time functions for this new
set are determined by solving the two subproblems in time. Hence, since this is inherent to the LATIN
calculation, the gradients of the static and kinematic quantities are estimated by improving only the gra-
dient of the time functions (preliminary stage). Sometimes, the basis of space functions may not be sufficient
to represent the solution for a new set of parameters. If so, it is necessary to complete it with new functions.
The calculation of the gradient follows the same procedure again. Thus, it should be noted that for these
calculations the gradient of the space functions in the basis is always calculated at k0, regardless of the new



sets of parameters in the subsequent calculations. All this reasoning is also valid for the strains. So, we
obtain an approximation of the gradient.
The calculation of the gradient is expressed in terms of a sum of products of space functions and time

functions. Thus, the multi-solution feature is retained in the sensitivity study, which is interesting because
the calculation of the gradient concerns only the time functions, hence a gain in comparison with the
classical incremental methods.

5.2. The adjoint state method

The solutions to the adjoint problem formulated in Section 4.3 can be expressed as a sum of products of
time functions and space functions. The calculation of the gradient depends on these adjoint quantities. It
can be written as

dD
dk

¼
Z T

0

Z
X

dK�1
e

dk
_rr : r�

"
þ o2u�

oAep ok
� A�

ep þ
o2u�

oRok
R� � o2 _ww

oð�pÞok ð � p�Þ
#
dXdt ð33Þ

if ðU ; r; ep;�p;RÞ and ðU �; r�; ep�;�p�;R�Þ are the solutions to the direct and adjoint problems respectively.
In fact, we differentiate the Lagrangian (cf. (B.3)) with respect to parameters, where all the variables are
supposed independent.
In this equation, Aep is associated with r. In our case, we also have o2w=oep ok ¼ 0.
Thus, the calculation of the gradient poses no particular problem as long as the two problems (direct and

adjoint) are solved. It is just a matter of evaluating an integral.
In this approach, we assume that the pseudo-potential u� and the free energy w are differentiable twice.

This limits the choice to a constitutive law of the viscoplastic type.
In the minimization algorithm, the basis of space functions generated by the first adjoint calculation is

reused in every gradient calculation. Therefore, it is sufficient to calculate the associated time functions in
the local and preliminary stages of the adjoint problem alternatively until convergence. The identification
problem is based on two different calculations:

• The direct problem utilizing the basis of space functions from the first calculation.
• The calculation of the gradient utilizing the so-called adjoint basis of the space functions from the first
adjoint calculation.

Since a number of direct calculations and gradients are necessary, the full benefit of the LATIN method’s
multi-solution feature can be derived in solving nearly identical direct and adjoint problems.
However, it is worth noting that this method is completely dependent on the cost function which is used.

Another one can be used (with displacements; . . .), but the adjoint problem must be reformulated.

5.3. The interpolation method

Another means of determining the gradient with respect to parameters is the interpolation method. This
has already been used in [15,17] along with a classical incremental method of resolution for the direct
problem, in the framework of the Kalman filters. Here, it is applied to the LATIN method. It is a simple
method. It allows the number of computations to be reduced, especially in the context of the LATIN
method. Our aim is to interpolate the gradient of the strains with respect to parameters. This interpolation
technique can be applied to all the methods.
For a case involvingm parameters, 3m values of strains are necessary for a quadratic function. To simplify

the notations, we consider only two parameters. Thus, the quantities are evaluated as follows (Fig. 2):



~eeðR0; bÞ ¼
X3
i¼1

X3
j¼1

NR0
i N b

j eij; where Ni ¼

Q3

j¼1
j 6¼i

ðk � kjÞ
Q3

j¼1
j 6¼i

ðki � kjÞ
with k ¼ R0 or b:

Since the strains are expressed as products of time functions and space functions, the interpolation for every
calculation is performed only on the time functions. Indeed, the space functions remain identical for all
cases. The expression of these time functions is

akðtÞ ¼
X3
i¼1

X3
j¼1

NR0
i Nb

j � aij
k ðtÞ: ð34Þ

It should be noted that this interpolation concerns the strains field.
This method is very well suited to the multi-solution technique. Indeed, as soon as the basis of space

functions for the first calculation is constructed (e11 for example), it can be utilized in the solution of the
other problems (for eij with i 6¼ 1 and j 6¼ 1) because they are nearly identical. Therefore, the calculation is
faster than with a classical method. The numerical results are given in Section 6.4.2.

6. Numerical results

6.1. Example of a cantilever beam

Every method described previously was applied numerically on the example of a cantilever beam.

The beam is subjected to a prescribed displacement at one end. The problem is illustrated below (Fig. 3):
The beam characteristics are

Fig. 2. Meshing with R0 and b.



E0 ¼ 292914 MPa; nv ¼ 2
R0 ¼ 0:7 MPa; kv ¼ 2:25
b ¼ 2; udmax ¼ 3:33e�2 m
l ¼ 1 m; tmax ¼ 0:4 s

The parameters to identify are initialized as R0 ¼ 0:3 MPa and b ¼ 1.
The constraint loading at the beam end is a monotonic with respect to time. It is represented in Fig. 4.
For the experimental data which are simulated, the strain field is used.

6.2. Results of the identification

In the examples considered, the experimental results were simulated numerically for R0 ¼ 0:7 MPa and
b ¼ 2. In addition, a measurement noise with a magnitude of 10% and a Gaussian distribution was inserted.
It is only applied to the measurements. The deterministic cases in the absence of measurement noise had
been calculated earlier in order to verify the convergence of the method. Some examples can be found in
[31].
We note that the construction of the basis for the initial values R0 ¼ 0:3 MPa and b ¼ 1 requires six

space functions for R and two functions for the stresses. The beam is discretized into 10 elements.

6.2.1. Deterministic approach
6.2.1.1. Direct differentiation method. The gradient was calculated by the direct differentiation method. The
identification of the two parameters R0 and b led to the values R0 ¼ 0:68 MPa, and b ¼ 2:06. The com-
putation/experiment distance then reached its residual value due to the measurement noise. It took four

Fig. 3. Cantilever beam.

Fig. 4. Evolution of the prescribed displacement with time.



gradient calculations and 11 direct calculations to obtain this minimum. Fig. 5 shows the evolution of these
parameters. Figs. 6–9 show the evolution of the time functions related to the stresses and strains for the new
sets of parameters Sk (see Fig. 10) against the minimization steps associated with the gradients with respect
to the parameters. We recall that in the optimization algorithm chosen (see Fig. 10) the values of the
parameters change when a gradient calculation is performed: therefore, it takes several direct calculations
associated with Ski to determine the descent step.

6.2.1.2. Adjoint state method. The final parameters obtained in the context of the adjoint state method were
R0 ¼ 0:69 MPa and b ¼ 2:02, which is satisfactory considering the measurement noise. Again, the residual
error of the cost function was reached. The comparison of these results with direct differentiation for the
same cost function shows that there are some identical solutions for the final values of the parameters as
well as for their evolution during the minimization.

6.2.1.3. Interpolation method. The results obtained are identical to those of the direct differentiation method.
The final values of the parameters are R0 ¼ 0:68 MPa and b ¼ 2:07. Again, the residual error due to the

Fig. 5. Evolution of the parameters versus time.

Fig. 6. Evolution of time functions 1 and 2 associated with the strain, for different sets of parameters of the gradient calculation.



measurement noise was reached. The total number of direct calculations and gradient calculations are still
11 and 4 respectively.
In conclusion, these three methods of gradient calculation led to similar values of the gradient, but at

very different costs.

6.2.2. The Kalman filter
6.2.2.1. Direct differentiation method. The following curves show the stabilization of the parameters with
time. The final parameters are R0 ¼ 0:69 MPa and b ¼ 1:96 (Fig. 11).
The comparison between the identified and the experimental constitutive curves at the final time step and

at two points of the structure shows good agreement (Fig. 12).

6.2.2.2. Interpolation method. Once the mesh has been built, the Kalman filter allows one to identify the
parameters by using the interpolation of the time functions. Their evolution is given in Fig. 13. These curves

Fig. 7. Evolution of time functions 3 and 4 associated with the strain, for different sets of parameters of the gradient calculation.

Fig. 8. Evolution of time functions 5 and 6 associated with the strain, for different sets of parameters of the gradient calculation.



show the stabilization of the parameters with time and their convergence towards the expected value despite
the approximation on the calculated quantities. The resulting final values are R0 ¼ 0:70 MPa and b ¼ 1:93,
which is acceptable considering the measurement noise.

6.3. Comparison of the values of the three types of gradient

The similar behavior of the results obtained previously with the three methods of gradient evaluation
can be explained by comparing the values of the gradients with respect to the two identified parameters (see

Fig. 9. Evolution of time functions 1 and 2 associated with the stress, for different sets of parameters of the gradient calculation.

Fig. 10. Optimization algorithm.



Fig. 11. Evolution of the parameters with time.

Fig. 12. Comparison between the identified and experimental strain/stress curves at x ¼ 0:179 and 0.42 m.

Fig. 13. Evolution of the parameters with time.



Fig. 14). These figures emphasize the nearly identical numerical results obtained with the three techniques.
In these examples, the values of the gradient resulting from the adjoint state can be considered as our
reference. So, the approximation which consists in using only the effect of the parameters k variation on
time functions, and not on space basis functions, is quite good.

6.4. Comparison of computation costs

6.4.1. Comparison in terms of number of iterations
The deterministic and the stochastic approaches are compared, with the gradient being estimated by the

direct differentiation method. Table 1 gives the total number of preliminary stages for the direct calculation
without taking the gradient into account. It is important to indicate that no space function was added to the
initial basis during the multi-solution. Thus, only preliminary stages were performed.
This table allows us to compare only different direct calculations. The results demonstrate the advantage

of the time/space functions of the LATIN method. These reduce the number of iterations necessary to reach
the convergence of the direct calculation because the initialization of every calculation is better. Moreover,
it is recommended to initialize the calculation associated with the parameters Ski with the previous one, i.e.
the one associated with Ski�1 (see Fig. 10) rather than the one associated with the parameters Sk. This
is demonstrated by the results obtained when the calculation associated with Sk (designated by ref.

Fig. 14. Comparison of the gradient values with respect to R0 and b for the adjoint state, direct differentiation, and interpolation
approaches.

Table 1

Comparison of the number of iterations for the deterministic approach and the Kalman filter

Deterministic approach

With time/space functions Ref. initialization: 1st computation 59 Preliminary stages

With time/space functions Ref. initialization: gradient 34 Preliminary stages

Without time/space functions 78 Iterations

Kalman filter

With time/space functions Ref. initialization: 1st computation 250 Preliminary stages

With time/space functions Ref. initialization: gradient 110 Preliminary stages

Without time/space functions 200 Iterations



initialization in Table 1) is used as the initialization for the direct calculation. The gain on the examples
considered is a factor of about 2 compared to the approach with no time/space functions.
We also notice that the Kalman filtering technique is expensive in that it requires between three and four

times as many preliminary stages.

6.4.2. Comparison in terms of number of operations
In this section, we estimate the computational cost in terms of number of operations, in order to compare

the different methods. In this context, the cost of numerical operations of the finite element analysis with the
LATIN method was evaluated (see [33]). We also utilized the fact that the LATIN method has the same
behavior in 2D as in 3D. Thus, the results for the 1D examples were extended to the 2D and 3D cases in terms
of number of iterations. The discretization is made such that the bandwidth should be minimized.
The time/space functions of the LATIN method present some advantages concerning the computational

cost. These are most noticeable on 3D calculations (also in 2D), where the gains are quite significant. They
become especially high when the number of degrees of freedom increases. We notice this if we compare the
cost of a global stage with no time/space functions, of the same with the time/space functions and of the
preliminary stage, in the case of 1D and 3D beams (Figs. 15 and 16). Therefore, the method is particularly
attractive for structural identification when structures and loadings can be complex. Moreover, multiple
nearly identical problems are solved due to the multi-solution feature. The gain would be even greater
because the cost of the preliminary stage is less than that of a global stage. For instance, for a 3D case with
35,000 d.o.f.s, the gain is about 50.
As far as the computational method for the gradient is concerned, the interpolation method is easy to

implement and can be applied to all examples. The cost of constructing a mesh is relatively small because of
the time/space functions of the LATIN method. The number of iterations is reduced: we counted 20
preliminary stages (Fig. 17), once the basis was generated. At the same time, the cost of each stage is less,
which accounts for the total gain (see Figs. 18 and 19). The gain becomes very significant as the number of
d.o.f.s increases. Furthermore, these first calculations require very little storage because they involve the
time functions for every set of parameters and a single basis of space functions. This is much less than what

Fig. 15. Cost comparison of three different stages: global stage with time/space functions, global stage without time/space functions,

preliminary stage, for a 1D beam.



is needed for the storage of stresses over the whole time and space interval for every set of parameters.
Therefore, the LATIN method presents a double advantage compared to classical methods.
The limit of the interpolation method lies in the a priori unknown values of the parameters. Thus, the

mesh must be very coarse at first to ensure that it contains the final value. Then, numerous meshes must
be built, at the risk of increasing the computational cost greatly. Furthermore, for functions with high

Fig. 16. Cost comparison of three different stages: global stage with time/space functions, global stage without time/space functions,

preliminary stage, for a 3D beam.

Fig. 17. Number of preliminary stages per direct calculation for the mesh.



gradient, the approximation would be very different from the real value of the gradient. Nevertheless, the
method described would still be advantageous compared to a classical incremental method, especially if the
number of calculations increases.
The adjoint state method has attractive features. It is less expensive than the direct differentiation method

(see Figs. 20 and 21). This would be particularly significant when a large number of parameters need to be
identified. In the gradient calculation, the adjoint quantities can be used regardless of the parameter to be
identified. On the other hand, if the cost function changes, the whole adjoint problem must be reformulated.
Besides, this method seems to be well adapted to the LATIN method, as all of its principles can be applied.
Again we see the advantage of using the particular representation of the solution.

Fig. 18. Cost of the 1D mesh.

Fig. 19. Cost of the 3D mesh.



The Kalman filters present interesting characteristics in the presence of measurement noise. Besides, it is
important to mention that they lend themselves easily to the handling of incomplete measurements: for
example, it is not necessary to carry out a projection of fields. The method also gives a measure of the
uncertainty on the identified parameters through the covariance matrix. In all results, the final covariance
was very small, which proves the quality of the identification. But the method seems more expensive than
the deterministic approach (Figs. 22 and 23). In particular, it requires that the gradients with respect to the
parameters be evaluated at every iteration. We can again emphasize the interest of the time/space functions,
which greatly decrease the computational costs.

Fig. 20. Computational cost comparison between the direct differentiation and adjoint state approaches, with time/space functions, for

a 1D beam.

Fig. 21. Computational cost comparison between the direct differentiation and adjoint state approaches, with time/space functions, for

a 3D beam.



7. Conclusion

Two approaches, one deterministic and one stochastic, were implemented. They led to the development
of sensitivity techniques (direct differentiation, adjoint state, interpolation) within the framework of the
LATIN method. These are particularly important for the two types of approach studied.
All the methods gave stable results with respect to measurement noise. They also demonstrated the

interest of the particular representation of solutions in order to benefit from the multi-solution feature of
the LATIN method. All the results clearly show a significant gain in terms of computational cost. This gain
would be particularly important as the number of d.o.f.s and the number of computations to be performed

Fig. 22. Computational cost comparison between the stochastic approach and the deterministic approach in 1D (extended Kalman

filters) with and without time/space functions.

Fig. 23. Computational cost comparison between the stochastic approach and the deterministic approach in 3D (extended Kalman

filters) with and without time/space functions.



get large. This gain concerns not only the number of iterations necessary to reach convergence (quality of
the initialization), but also the cost of each iteration. Thus, the method is completely adapted to structural
identification and will be more efficient than the classical incremental methods.
Concerning the sensitivity methods implemented, the adjoint state method seems to present advantages

in terms of cost, especially when many parameters need to be identified.
The interpolation method seems easy to implement and allows one to benefit from the advantages of the

LATIN method. But because the parameters are initially unknown it can require numerous computations.
Nevertheless, the method described here will be always less expensive than a classical incremental method.
Finally, the method used for the identification in this paper shows promising results, especially for a

large number of degrees of freedom.
At present, we are studying more realistic problems where the identification involves necessarily struc-

tural computation i.e. the case of delamination.

Appendix A. Calculation of the time and space functions

A.1. Calculation of the time functions

The calculation of the time functions is detailed. The problem is written as a system of first-order dif-
ferential equations. This system corresponding to Eq. (16) is given below:

N 1ki � _bb
C
i ðtÞ þM11

ki � bCi ðsÞ þM12
ki � cCi ðsÞ ¼ B1kðsÞ;

N 2ki � _ccCi ðtÞ þM21
ki � cCi ðsÞ þM22

ki � bCi ðsÞ ¼ B2kðsÞ
ðA:1Þ

with

N 1ki ¼
Z

X
K�1
e Cinii ðMÞ : Cinik ðMÞdX;

N 2ki ¼
Z

X

Dinii ðMÞ : Dinik ðMÞ
b

dX
ðA:2Þ

and

M11
ki ¼

Z
X
H11Cinii ðMÞ : Cinik ðMÞdX;

M12
ki ¼

Z
X
H12Dinii ðMÞ : Cinik ðMÞdX;

M21
ki ¼

Z
X
H22Dinii ðMÞ : Dinik ðMÞdX;

M22
ki ¼

Z
X
H21Cinii ðMÞ : Dinik ðMÞdX

ðA:3Þ

and

B1k ¼
Z

X
fH11Dr̂r þ H12DR̂R� D _̂eêeepg : Cinik ðMÞdX;

B2k ¼
Z

X
fH21Dr̂r þ H22DR̂Rþ D _̂pp̂ppg : Dinik ðMÞdX

ðA:4Þ



and

H� ¼ H11 H12
H21 H22

� �
: ðA:5Þ

By using the h-method, we end up with Eq. (17).

A.2. Calculation of the space functions

Here, we give some details so as to obtain Eq. (15). Then, we describe the process which allows us to
calculate the space functions.
First, we write Eq. (11) under the form

D _eepn � D _̂eêeepn
�ðD _ppn � D _̂pp̂ppnÞ

( )
¼ H� DrDn � Dr̂rDn

DRn � DR̂Rn

( )
ðA:6Þ

where

DQn ¼ Qnþ1 � Qn;

DQ̂Qn ¼ Q̂Q� Qn



and Q represents _eep, _pp, rD, and R.
Then, we use the state laws

D _een ¼ K�1
e D _rrn þ D _eepn ;

D _ppn �
D _RRn

b
¼ 0:

8<
: ðA:7Þ

By substituting D _eepn and D _ppn with the expression given by (A.6), we can formulate the following problem:
Find Drn 2 S0 and DRn such thatZ T

0

Z
X

K�1
e D _rrn : r�

�
þ b�1D _RRn � R� þ H� DrDn

DRn

� �
� r�

R�

� ��
dXdt

¼
Z T

0

Z
X

� D _̂eêeepn : r� þ D _̂pp̂ppn � R� þ H� Dr̂rDn
DR̂Rn

" #
� r�

R�

� �!
dXdt; 8r� 2 S0; 8R� ðA:8Þ

where r� and R� are replaced by the same form as the corrections, i.e.: r� ¼ b�
nðtÞBnðMÞ þ bnðtÞB�

nðMÞ and
R� ¼ c�nðtÞCnðMÞ þ cnðtÞC�

nðMÞ. By integrating this equation with regard to time, we obtain two equations.
We substitute the equation related to R� in the first to eliminate CnðMÞ. So, we deduce a dualized problem
under the form: KðMÞDvðMÞ ¼ F ðMÞ. Then, we can calculate BnðMÞ and CnðMÞ from the values of DvðMÞ.

A.3. Calculation of the time functions aðtÞ

We search Den under the form aðtÞ � AðMÞ. From the static problem, we have Drn and DRn. Then, from
the search direction, we can calculate D_~ee~eeðM ; tÞ which is not under the form aðtÞ � AðMÞ. So, we search
DenðM ; tÞ ¼ aðtÞ � AðMÞ such thatZ T

0

Z
X
Tr Kex : x�½ 	dXdt ¼ 0 8x� kinematically admissible to zero ðA:9Þ

with x ¼ _aaðtÞ � AðMÞ � D_~ee~eeðM ; tÞ. The determination of aðtÞ and AðMÞ is identical to those of the functions
bðtÞ, cðtÞ and BðMÞ, CðMÞ.



Appendix B. Adjoint state method

We will recall the principles of the adjoint state method. In particular, we define the computation/ex-
periments distance and the Lagrangian which are used and we define the resulting problem. The cost
functional is chosen as follows:

DðkÞ ¼ distance computation=experiments ¼ 100

1
2

R T
0

R
X K�1

e r � rexpð Þ : r � rexpð ÞdXdt
1
2

R T
0

R
X K�1

e rexp : rexp dXdt
: ðB:1Þ

D depends implicitly on k. The minimization under constraint is equivalent to the determination of the
saddle point of the following Lagrangian:

Lðu; r; ep;�p;R; u�; r�; ep
�
;�p�;R�; kÞ ¼

Z T

0

Ltðu; r; ep;�p;R; u�; r�; ep
�
;�p�;R�; kÞdt: ðB:2Þ

The quantities ð�Þ are the adjoint quantities. They play the same role as Lagrange multipliers:

Lðu; r; ep;�p;R; u�; r�; ep
�
;�p�;R�; kÞ

¼
Z T

0

100

(


1
2

R T
0

R
X K�1

e ðr � rexpÞ : r � rexpð ÞdXdt
1
2

R T
0

R
X K�1

e rexp : rexp dXdt
þ
Z

X
div _rrU � dX �

Z
o2X

_rrn � U � dC

þ
Z
o1X

ð _UU � _UUdÞ � r�ndC þ
Z
oXclamped

_UU � r�ndC �
Z

X
ðeð _UUÞ � K�1

e _rr � _eepÞ : r� dX

�
Z

X

_eep
�

� ou�

oAep

�
� A�

ep dX �
Z

X

�
� _pp � ou�

oR

�
� R� dX �

Z
X
ð _AAep � _rrÞ : ep

�
dX

�
Z

X

_RRþ
_oow

oð�pÞ

!
� ð � pÞ� dX

)
dt: ðB:3Þ

The existence and the unicity of the saddle point of L are not guaranteed. Nevertheless, if one exists, the
necessary conditions of Lagrangian stationarity allow one to characterize it.
By integrating these equations by part in space and in time, the problem can be written in the form:

• equilibrium equations in X:

divr� ¼ 0;

eð _UU �Þ ¼ K�1
e _rr þ _eep � normeK�1

e rð � rexpÞ with norme ¼ 100R T
0

R
X K�1

e rexp : rexp dXdt
;

_AA�
ep ¼ _rr;

_eep
� ¼ � o2u�

oA2ep
: A�

ep �
o2u�

oRoAep
R�;

� _pp� ¼ � o2u�

oR2
R� � o2u�

oAep oR
A�

ep ;

_RR� ¼ � o2w

oð�pÞ2
ð� _ppÞ�;

ðB:4Þ



• boundary conditions:

_rr�n ¼ 0 on o2X;

_UU � ¼ 0 on oXclamped and o1X;
ðB:5Þ

• final conditions at T:

divr�ðT Þ ¼ 0
eðU �ÞðT Þ ¼ K�1

e r�ðT Þ þ ep
� ðT Þ

A�
epðT Þ ¼ r�ðT Þ

�p�ðT Þ ¼ 0
ep

� ðT Þ ¼ 0
R�ðT Þ ¼ 0

8>>>>>>>><
>>>>>>>>:

in X

r�nðT Þ ¼ 0 on o2X;

U �ðT Þ ¼ 0 on oXclamped and o1X:

ðB:6Þ

For the viscoplastic model (1D):

wðr; pÞ ¼ b
2
� p2 þ r2

2E
: ðB:7Þ

Appendix C. The Kalman filter

We call xt the state vector which contains all the unknown parameters and yt the observation vector
containing the measured quantities (displacements, strains; . . .). The subscript t designates a time step.
Thus, these vectors can be time-dependent variables. For example, yt contains measurements at the time
steps of the loading process on the time interval ½t0; tend	 and at some positions in the structure. Thus, the
Kalman filter is applied to a nonlinear system which is discretized in time and in space. The time interval
½t0; tend	 is partitioned according to

St¼N
t¼1 ½t � 1; t	. During an interval ½t � 1; t	, the estimation of the model

parameters at t � 1, designated by x̂xt�1, and the measurements zt at time t are given. The extended Kalman
filter updates the estimate x̂xt�1 using the information gained from measurements zt to give a new estimate x̂xt
on the interval ½t � 1; t	.
We have the state vector as a steady feature of the system:

xt�1 ¼ xt 8 t: ðC:1Þ
The parameters are independent of time. We also assume that the only uncertainties come from mea-
surements: modeling errors are not considered.
The observation equation is given by

yt ¼ hðxtÞ þ vt with t ¼ 1; . . . ;N : ðC:2Þ

The vector h contains all the nonlinearities of the system. The vector vt describes the measurement noise. It
is a white noise, with zero expected value, characterized by its covariance matrix:

EðvtÞ ¼ 0 ðC:3Þ

and

EðvkvTt Þ ¼ dkjRCk ðC:4Þ
where E is an average operator, dkj the Kronecker’s delta, and RC the covariance matrix.



The Kalman filter can be applied to the linearization of the response function. In this case, hðxtÞ is
expanded into a Taylor series up to the first order around the estimate x̂xt�1:

yt ¼ hðx̂xt�1Þ þ
ohðx̂xt�1Þ
oxT|fflfflfflffl{zfflfflfflffl}

H x̂xt�1ð Þ

ðx̂xt � x̂xt�1Þ þ vt ðC:5Þ

where T stands for transposed.
H is called the sensitivity matrix. It requires that the response of the system be a continuous, continu-

ously differentiable function.
At time t, the extended Kalman filter improves the previous estimate x̂xt�1 by taking into account the

measurements yt at time t. The estimation equation becomes

x̂xt ¼ x̂xt�1 þ Kt ½yt � hðx̂xt�1Þ	|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
�

: ðC:6Þ

Kt is the Kalman gain matrix and � is the residual, i.e. the difference between the current response of the
system at time t and its estimate based on the filtered vector x̂xt�1 at time t � 1.

Kt is defined by

Kt ¼ Pt�1HT
t HtPt�1HT

t

#
þ RC

$�1
; ðC:7Þ

x̂xt is associated with the covariance matrix of the error estimate:

Pt ¼ Pt�1 � Pt�1HT
t HtPt�1HT

t

#
þ RC

$�1
HtPt�1: ðC:8Þ

These expressions guarantee an estimator with minimum variance.
To get an estimate at each time t, an iterative procedure is necessary:

1: initialization x̂x0t ¼ x̂xt�1;
2: calculation of x̂xit ¼ x̂xt�1 þ Ktðx̂xi�1t Þ½yt � htðx̂xi�1t Þ � Hðx̂xi�1t Þðx̂xt�1 � x̂xi�1t Þ	;
3: calculation of Ktðx̂xi�1t Þ ¼ Pt�1Hðx̂xi�1t ÞT½Hðx̂xi�1t ÞPt�1Hðx̂xi�1t ÞT þ RC	�1;
4: evaluation of Pt:

ðC:9Þ

The procedure is repeated until ððx̂xit � x̂xi�1t Þ=ðx̂xitÞÞ � TOL. Thus, we obtain x̂xt. The final estimate is given by
x̂xN .
It should be noted that the original Kalman filter was defined for certain linear cases, which is why here

we speak about the ‘‘extended’’ Kalman filter for the nonlinear case.
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