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a b s t r a c t

A

 

family

 

of

 

sinus

 

models

 

is

 

presented

 

for

 

the

 

analysis

 

of

 

laminated

 

beams

 

in

 

the

 

framework

 

of

 

free

 

vibra-
tion.

 

A

 

three-noded

 

finite

 

element

 

is

 

developed

 

with

 

a

 

sinus

 

distribution

 

with

 

layer

 

refinement.

 

The

 

transverse

 

shear

 

strain

 

is

 

obtained

 

by

 

using

 

a

 

cosine

 

function

 

avoiding

 

the

 

use

 

of

 

shear

 

correction

 

factors.

 

This

 

kinematic

 

accounts

 

for

 

the

 

interlaminar

 

continuity

 

conditions

 

on

 

the

 

interfaces

 

between

 

the

 

layers,

 

and

 

the

 

boundary

 

conditions

 

on

 

the

 

upper

 

and

 

lower

 

surfaces

 

of

 

the

 

beam.

 

A

 

conforming

 

FE

 

approach

 

is

 

carried

 

out

 

using

 

Lagrange

 

and

 

Hermite

 

interpolations.

 

It

 

is

 

important

 

to

 

notice

 

that

 

the

 

number

 

of

 

unknowns

 

is

 

independent

 

of

 

the

 

number

 

of

 

layers.

 

Vibration

 

mechanical

 

tests

 

for

 

thin

 

and

 

thick

 

lami-
nated

 

and

 

sandwich

 

beams

 

are

 

presented

 

in

 

order

 

to

 

evaluate

 

the

 

capability

 

of

 

these

 

new

 

finite

 

elements

 

to

 

give

 

accurate

 

results

 

with

 

respect

 

to

 

elasticity

 

or

 

finite

 

element

 

reference

 

solutions.

 

Both

 

convergence

 

velocity

 

and

 

accuracy

 

are

 

discussed

 

and

 

these

 

new

 

finite

 

elements

 

yield

 

very

 

accurate

 

results

 

at

 

a

 

low

 

computational

 

cost

 

for

 

various

 

boundary

 

conditions.

 

In

 

particular,

 

the

 

two

 

models

 

including

 

the

 

trans-
verse

 

normal

 

effect

 

have

 

the

 

capability

 

to

 

take

 

into

 

account

 

the

 

thickness

 

mode

 

shape.

1. Introduction

Considering the increasing applications of composite and sand-
wich structures in the industrial field due to their high specific
strength and stiffness, it is important to develop advanced and
accurate models to design. In this framework, accurate knowledge
of deflection and stresses is required to take into account effects of
the transverse shear deformation due to the low ratio of transverse
shear modulus to axial modulus, or failure due to delamination. . .

In fact, they can play an important role on the behaviour of struc-
tures in services, which leads to evaluate precisely their influence
on local stress fields in each layer or on natural frequencies.

The aim of this paper is to construct and evaluate a family of fi-
nite elements to analyze laminated beams in elasticity in relation
to small displacements, so as to obtain the accurate predictions
of frequencies in free vibration case. In particular, we put the
emphasis on the influence of transverse normal effects, especially
for very thick beams.

According to published research, various theories in vibrational
mechanics for composite or sandwich structures (beams and plates
for the present scope) have been developed. The following classifi-
cation is associated with the dependency on the number of degrees
of freedom (dofs) with respect to the number of layers:

� The Equivalent Single Layer approach (ESL): the number of
unknowns is independent of the number of layers, but the trans-
verse shear and normal stresses continuity on the interfaces
between layers are often violated. The first work for one-layer
isotropic plates was proposed in [1]. Then, we can distinguish
the classical laminate theory [2] (it is based on the Euler–
Bernoulli hypothesis and leads to inaccurate results for compos-
ites and moderately thick beams, because both transverse shear
and normal strains are neglected), the first order shear deforma-
tion theory [3–9], and higher order theories [10]. In this later,
hyperbolic [11], exponential [11,12], parabolic [13], cubic
[14–16,13,17], polynomial functions [18–20] are used in the
expansion of the in-plane displacement component. Some of
these theories also include the transverse normal effect with
non-constant polynomial expressions of the out-of-plane dis-
placement [21,19,22,17]. Most of these approaches are based
on a displacement formulation; nevertheless, mixed formula-
tions are also carried out. In this framework, finite element
[14,21,10,16,13], analytical [11,15,17,12], or state-space [5,23]
solution are carried out.

� The Layerwise approach (LW): The number of dofs depends on
the number of layers. This theory aims at overcoming the
restriction of the ESL concerning the discontinuity of out-
of-plane stresses on the interface layers. This approach was
introduced in [24,25], and also used in [26–28]. In recent contri-
butions, various orders of expansion for the in-plane displace-
ment are chosen: trigonometric [29], linear [30], quadratic
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[31], cubic [32,33]. Some of them take into account the trans-
verse normal effect [32] with a mixed approach. Special studies
dedicated to the sandwich beam can be cited [34,35]. The trans-
verse displacement is constant in faces and quadratic in core.
See also [36].

In this framework, refined models have been developed in order
to improve the accuracy of ESL models avoiding the additional
computational cost of LW approach. Based on physical consider-
ations and after some algebraic transformations, the number of un-
knowns becomes independent of the number of layers. [27] has
extended the work of [37] for symmetric laminated composites
with arbitrary orientation and a quadratic variation of the trans-
verse stresses in each layer. A family of models, denoted zig-zag
models, was first employed in [38], then in [39,31,40]. More
recently, it was also modified and improved by some authors
[41–46] with different order of kinematics assumptions, taking
into account the transverse normal strain.

This above literature deals with only some aspects of the broad
research activity about models for layered structures and corre-
sponding finite element formulations. An extensive assessment of
different approaches has been made in [47–51]. About the partic-
ular point of the evaluation of transverse normal stresses, see
[52,53]. A survey of developments in the vibration analysis of lam-
inated composite beams is compiled in [54], see also [55].

In this work, a family of finite elements for rectangular lami-
nated beam analysis is built, in order to have a low cost tool, effi-
cient and simple to use. In fact, our approach is associated with the
ESL theory. These elements are totally free of shear locking and are
based on a refined shear deformation theory [56] avoiding the use
of shear correction factors for laminates. Our elements are based
on the sinus model [57] and the important feature is the capability
of the model to include the transverse normal effect. So, the trans-
verse displacement is written under a second order expansion
which avoids the Poisson locking mechanism (see [58]). For the
in-plane displacement, the double superposition hypothesis from
[59] is used: three local functions are added to the sinus model. Fi-
nally, this process yields to only six or seven independent general-
ized displacements. It should be noted that all interface and
boundary conditions are exactly satisfied for displacements and
transverse shear stress. Therefore, this approach takes into account
physical meaning.

As far as the interpolation of these finite elements is concerned,
our elements are C0-continuous except for the transverse displace-
ment associated with bending which is C1.

In this article, the mechanical formulation for the different
models is described. For each of these approaches, the associated
finite element is given. They are illustrated by numerical tests
which have been performed upon various laminated and sandwich
beams. A parametric study is given to show the effects of different
parameters such as length to thickness ratio and number of de-
grees of freedom. The accuracy of computations are also evaluated
by comparisons with an exact 2D elasticity solution, two-dimen-
sional computations using commercial finite element software,
three other sinus models [60] and also results available in litera-
ture. Different boundary conditions are also evaluated. Through
these examples, the influence of transverse normal effect is
highlighted.

2. Resolution of the mechanical problem

2.1. The governing equations

Let us consider a beam occupying the domain B ¼ ½0; L��
� h

2 6 z 6 h
2

� �
� � b

2 6 x2 6
b
2

� �
in a Cartesian coordinate ðx1; x2; zÞ.

The beam has a rectangular uniform cross section of height h,
width b and is assumed to be straight. The beam is made of NC lay-
ers of different linearly elastic materials. Each layer may be as-
sumed to be orthotropic in the beam axes. The x1 axis is taken
along the central line of the beam whereas x2 and z are the two
axes of symmetry of the cross section intersecting at the centroid,
see Fig. 1. As shown in this figure, the x2 axis is along the width of
the beam. This work is based upon a displacement approach for
geometrically linear elastic beams.

2.1.1. Constitutive relation
Each layer of the laminate is assumed to be orthotropic. Using

matrix notation, the elastic stress–strain law of the kth layer is gi-
ven by:

rðkÞ11

rðkÞ33

rðkÞ13

2
664

3
775 ¼

CðkÞ11 CðkÞ13 0

CðkÞ33 0

symm CðkÞ55

2
664

3
775

eðkÞ11

eðkÞ33

eðkÞ13

2
664

3
775 i:e: ½rðkÞ� ¼ ½CðkÞ�½eðkÞ� ð1Þ

where we denote: the stress tensor ½r� ; the strain tensor ½e�; Cij are
the three-dimensional stiffness coefficients.

2.1.2. The weak form of the boundary value problem
Using the above matrix notation and for admissible virtual dis-

placement ~u� 2 U�, the variational principle is given by:
find ~u 2 U (space of admissible displacements) such as:

�
Z
B

½eð~u�Þ�T ½rð~uÞ�dBþ
Z
B

½u��T ½f �dBþ
Z
@BF

½u��T ½F�d@B

¼
Z
B

q½u��T ½€u�dB 8~u� 2 U� ð2Þ

where ½f � and ½F� are the prescribed body and surface forces applied
on @BF . eð~u�Þ is the virtual strain, and q is the mass density.

The variational principle Eq. (2) provides a convenient frame-
work to develop finite element approximations.

2.2. The displacement field for laminated beams

Based on the sinus function (see [61,62]), two models which
take into account the transverse normal deformation are presented
in this section.

In the following, we can distinguish:

� The refined sinus model with 2nd order expansion for the trans-
verse displacement (denoted SinRef-6p) where the refinement is
added in each layer.

� The refined sinus model (denoted SinRef-7p) with one more
unknown than the previous one for the in-plane displacement.

They are based on both

� Various works on beams, plates and shells, cf. Ref.
[63,56,57,61,64–66] concerning the refined theory.

� The so-called 1,2-3 double-superposition theory developed by Li
and Liu [59].

Fig. 1. The laminated beam and coordinate system.



It also follows works about local–global approach studied in
[67–69].

These refined models (see [60]) take into account the continuity
conditions between layers of the laminate for both displacements
and transverse shear stress, and the free conditions on the upper
and lower surfaces owing to the Heaviside function.

The kinematics of the two models ([70]) is assumed to be of the
following particular form:

(1) The SinRef-6p model:

u1ðx1; x2; zÞ ¼ uðx1Þ � z w0ðx1Þ;1 þ f ðzÞðx3ðx1Þ þw0ðx1Þ;1Þ

þ
PNC

k¼1

�uðkÞlocðx1; zÞ þ ûðkÞlocðx1; zÞ
� �

ðHðz� zkÞ � Hðz� zkþ1ÞÞ

u3ðx1; x2; zÞ ¼ w0ðx1Þ þ zw1ðx1Þ þ z2w2ðx1Þ

8>>><
>>>:

ð3Þ

(2) The SinRef-7p model:

u1ðx1; x2; zÞ ¼ uðx1Þ þ z vðx1Þ þ f ðzÞðx3ðx1Þ þw0ðx1Þ;1Þ

þ
PNC

k¼1

�uðkÞlocðx1; zÞ þ ûðkÞlocðx1; zÞ
� �

ðHðz� zkÞ � Hðz� zkþ1ÞÞ

u3ðx1; x2; zÞ ¼ w0ðx1Þ þ zw1ðx1Þ þ z2w2ðx1Þ

8>>><
>>>:

ð4Þ

where H is the Heaviside function defined by

Hðz� zkÞ ¼ 1 if z P zk

Hðz� zkÞ ¼ 0 if not

�
ð5Þ

In the classic approach, w0 is the bending deflection following
the z direction, while u is associated with the uniform extension
of the cross section of the beam along the central line, and x3 is
the shear bending rotation around the x2 axis.

It should be noted that the kinematic constraint concerning the
relation with the derivative of the deflection ðvðx1Þ ¼ �w0ðx1Þ;1Þ is
relaxed in the SinRef-7p model.

The local functions �uðkÞloc and ûðkÞloc based on the Legendre polyno-
mial can be written as:

�uðkÞlocðx1; zÞ ¼ fkuk
31ðx1Þ þ � 1

2þ
3f2

k
2

� �
uk

32ðx1Þ

ûðkÞlocðx1; zÞ ¼ � 3fk
2 þ

5f3
k

2

� �
uk

33ðx1Þ

8><
>: ð6Þ

The coordinate system is precised on Fig. 2. A non-dimensional
coordinate is introduced by: fk ¼ akz� bk; ak ¼ 2

zkþ1�zk
; bk ¼ zkþ1þzk

zkþ1�zk
.

In the context of the sinus model, we have:

f ðzÞ ¼ h
p

sin
pz
h

ð7Þ

and the derivative of this function will represent the transverse
shear strain distribution due to bending.

Remarks: from Eq. (3), classical beam models can be deduced
without the local functions and the two higher-order terms of
the transverse displacement:

– Euler–Bernoulli

f ðzÞ ¼ 0

– Timoshenko

f ðzÞ ¼ z

– Sinus model

f ðzÞ ¼ h
p

sin
pz
h

Hence, it is not necessary to introduce transverse shear correc-
tion factors.

At this stage, 3� NC þ 5 and 3� NC þ 6 generalized displace-
ments are included in Eqs. (3) and (6) (sinRef-6p model) and Eqs.
(4) and (6) (sinRef-7p model), respectively.

The following part is dedicated to the obtention of relations be-
tween kinematic unknowns from

� Lateral boundary conditions.
� Interlaminar continuity conditions (displacement, transverse

shear stress).

In the following, we only focus on the SinRef-7p model. The
same procedure can be carried out for the SinRef-6p model by set-
ting vðx1Þ ¼ �w0ðx1Þ;1.

2.2.1. Continuity conditions and free conditions
From the displacement field Eq. (4), some continuity conditions

on displacements and interlaminar stress must be imposed. For an
interface layer k 2 f2; . . . ;NCg, we have

� Displacement continuity conditions as in [67] i.e.:

�uðkÞlocðx1; zkÞ ¼ �uðk�1Þ
loc ðx1; zkÞ k ¼ 2; . . . ;NC ð8Þ

ûðkÞlocðx1; zkÞ ¼ ûðk�1Þ
loc ðx1; zkÞ k ¼ 2; . . . ;NC ð9Þ

� Transverse shear stress continuity between two adjacent layers:

rðkÞ13 ðx1; zþk Þ ¼ rðk�1Þ
13 ðx1; z�k Þ k ¼ 2; . . . ;NC ð10Þ

So, 3� ðNC � 1Þ conditions are imposed, which allow to reduce
the number of unknowns to nine generalized displacements.

Free conditions of the transverse shear stress on the upper and
lower surfaces must also be verified. So, we have:

rð1Þ13 x1; z ¼ �
h
2

� �
¼ 0 and rðNCÞ

13 x1; z ¼
h
2

� �
¼ 0 ð11Þ

Finally, the number of generalized displacements is reduced to
seven, which is independent of the number of layers.

2.2.2. Relation between the generalized displacements
Using the displacement notation introduced in Eq. (6), the con-

ditions Eqs. (8)–(11) can be written under a linear system which
yields relations between uj

31ðj – 1Þ; uj
32; uj

33; j ¼ 1; . . . ;NC and u1
31.

This relation can be written under the following form:

uj
3iðx1Þ ¼ bj

iðx3ðx1Þ þw0ðx1Þ;1Þ þ gj
iðvðx1Þ þw0ðx1Þ;1Þ þ dj

iu
1
31ðx1Þ

þ kj
iw1ðx1Þ;1 þ lj

iw2ðx1Þ;1; j ¼ 1; . . . ;NC i ¼ 1;2;3

with d1
1 ¼ 1; b1

1 ¼ g1
1 ¼ k1

1 ¼ l1
1 ¼ 0 ð12Þ

Fig. 2. Coordinate system of laminated beam.



where bj
i; dj

i; kj
i; lj

i , and gj
iði ¼ 1;2;3Þ are the coefficients deduced

from this linear system.
Finally, the seven unknowns become u, w0, x3; v ; w1; w2 and

u1
31. It is to be noted that the SinRef-6p model involves six un-

knowns u; w0; x3; w1; w2 and u1
31

	 

.

2.2.3. Matrix expression for the weak form
From the weak form of the boundary value problem Eq. (2), and

using Eq. (14), an integration throughout the cross section is per-
formed analytically in order to obtain an unidimensional formula-
tion. Therefore, the right term of Eq. (2) can be written under the
following:

Z
B

q½u��T ½€u�dB ¼
Z L

0
E�u
� �T ½m� ½€Eu� dx1

with ½m� ¼
Z

X
q½FuðzÞ�T ½FuðzÞ� dX ð13Þ

where X represents the cross section � h
2 6 z 6 h

2

� �
� � b

2 6 x2 6
b
2

� �
,

½u�T ¼ ½FuðzÞ�½Eu� with ½Eu�T

¼ u..
.
w0w0 ;1

..

.
x3

..

.
u1

31
..
.
v ..

.
w1w1;1

..

.
w2w2;1

� �
ð14Þ

and ½FuðzÞ� is a matrix which only depends on the transverse dis-
placement component and is deduced from Eqs. (12), (3) and (4).

Same calculations for the first left term of Eq. (2) are carried out
to calculate the stiffness matrix, it is detailed in Appendix A.

In Eq. (13), the matrix ½m� is the integration throughout the
cross section of the material characteristics of the beam. The inter-
est of the choice of the Legendre polynomials can be emphasized in
the calculation of the matrix ½m� owing to their properties of
orthogonality.

2.3. The finite element approximation

This section is dedicated to the finite element approximation of
the generalized displacement, see matrices ½Eu�, and E�u

� �
, Eq. (14).

It is briefly described, and the reader can obtain a detailed descrip-
tion in [57,60].

2.3.1. The geometric approximation
Given the displacement field constructed above for sandwich

and laminated beams, a corresponding finite element is developed
in order to analyze the behaviour of laminated beam structures un-
der combined loads. Let us consider the eth element Lh

e of the mesh
[Lh

e . This element has three nodes, denoted by ðgjÞj¼1;2;3, see Fig. 3. A
point with coordinate x1 on the central line of the beam will be as
follows:

x1ðnÞ ¼
X2

j¼1

NljðnÞ xe
1ðgjÞ ð15Þ

where NljðnÞ are Lagrange linear interpolation functions and xe
1ðgjÞ

are Cartesian coordinates (measured along the x1 axis) of the node

gj of the element Lh
e . n is an isoparametric or reduced coordinate and

its variation domain is [�1,1].

2.3.2. Interpolation for the beam element
The finite element approximations of the assumed displace-

ment field components are hereafter symbolically written as
uh

i ðx1; x2; zÞ where the superscript h refers to the mesh [Lh
e .

From the kinematics (see Eq. (4)), the transverse displacement
wh

0 must be C1–continuous; whereas the rotation xh
3, the extension

displacement uh;vh and u1
31 can be only C0–continuous. Therefore,

the generalized displacement wh
0;w

h
1, and wh

2 are interpolated by
the Hermite cubic functions NhjðnÞ.

According to the transverse shear locking phenomena, the other
shear bending generalized displacements, rotation xh

3, are interpo-
lated by Lagrange quadratic functions denoted NqjðnÞ. This choice
allows the same order of interpolation for both wh

0;1 and xh
3 in

the corresponding transverse shear strain components due to
bending, thus avoiding transverse shear locking according to the
field compatibility approach [71].

Finally, traction uh; vh and u1
31 are interpolated by Lagrange qua-

dratic functions.

2.3.3. Elementary matrices
In the previous section, the finite element approximations were

defined, and elementary mass Me
uu

� �
matrix can be deduced from

Eq. (13). It has the following expression:

Me
uu

� �
¼
Z

Le

½N�T ½m� ½N�dLe ð16Þ

where ½N� are deduced expressing the generalized displacement
vectors, see Eq. (14), from the elementary vector of degrees of free-
dom (dof) denoted ½qe� by:

½Eu� ¼ ½N� ½qe� ð17Þ

The matrix ½N� contains only the interpolation functions.
The same technique can be used defining the elementary

mechanical load vector and the elementary rigidity matrix, de-
noted Be

u

� �
and Ke

uu

� �
respectively, but it is not detailed here.

3. Numerical examples: free vibration tests

Some examples of sandwich and laminated beams are used to
evaluate these finite elements. It should be noted that this sinus
family has been already evaluated in the static case [70]. It has
shown good features for all the standard requirements: it has a
proper rank without any spurious energy modes, and it does not
imply shear locking.

Here, we focus on the dynamic analyses which are carried out in
the free vibration case. It concerns large variety of boundary condi-
tions with wide range of length to thickness ratios for symmetric,
unsymmetric and different types of sandwich beams. These exam-
ples are taken from [12,72,73,18,36]. The results are compared
with the ANSYS solution with a very refined mesh, exact 2D
solution or theories available from the literature. Some of these

Fig. 3. Description of the laminated beam finite element d.o.f. – SinRef-6p (left) – SinRef-7p (right).



examples are extended to a very thick beam to assess these finite
elements.

3.1. Convergence study for the SinRef-7p model [73]

First, a convergence study with respect to the mesh is carried
out. A symmetric three layers beam is considered with an aspect
ratio S ¼ 10. It is detailed below:

Geometry: composite cross-ply beam (0�/90�/0�) and length to
thickness ratio S = 10, three layers of equal thickness.
Boundary conditions: simply supported beam.
Material properties:

EL ¼ 181 GPa; ET ¼ 10:3 GPa; GLT ¼ 7:17 GPa;
GTT ¼ 2:87 GPa; mLT ¼ 0:25; mTT ¼ 0:33

where L and T refer to the fiber and transverse direction
respectively.

The same study is carried out with the commercial code ANSYS
[74]. A very refined mesh with a 2D approach is considered as a ref-
erence. The mesh of 1275 dofs is shown in Fig. 4.

Table 2 shows the quick convergence, and a N = 8 mesh seems
to be sufficient to model the laminated composite beam for a dy-
namic analysis. The % error is very low for the first six frequencies.

3.2. symmetric laminated composite [12,72]

The example is issued from [12] and [72]. It deals with a sym-
metric laminated composite with the following characteristics:

Geometry: the beam studied has a length of L ¼ 6:35 m, and a
thickness h ¼ 0:2794 m (thin S � 22:7), and h ¼ 2:794 m (thick
S � 2:2). It possesses three layers at (90�/0�/90�), with thickness
(0.25 h/0.5 h/0.25 h).
Boundary conditions: simply supported beam.
Material properties: The material used is boron epoxy which has
the following mechanical properties:

E11 ¼ 241:5 GPa; E22 ¼ E33 ¼ 18:89 GPa; G12 ¼ G13 ¼ 5:18 GPa

G23 ¼ 3:45 GPa; m12 ¼ m13 ¼ 0:24; m23 ¼ 0:25; q ¼ 2015 kg=m3:

Mesh: N = 8.
Results: the mode shapes are precised as: bend, sh, t/c, thic
for bending, shear, axial traction/compression and thickness
mode respectively.The notation of sinus models are given in
Table 1.

Tables 3 and 4 present numerical values of frequencies for the
thin and very thick beam. These results show the excellent agree-
ment with reference values for eight and seven natural frequen-
cies. Results of the SinRef-c model are better than those of the
Sin and Sin-c models, especially for the thick beam. The maximal
% error does not exceed 2.9, whereas the two others have an error
of 17% and 14% respectively. The SinRef-7p model seems to be the
best model among the sinus family with a maximal % error equal to
1.6 regardless of the slenderness.

X
Y
Z

Fig. 4. Mesh with 1275 dofs (ANSYS).

Table 1
Table of principal notation.

½r� Stress tensor
½e� Strain tensor
Cij Elastic stiffness modulus
Me

uu

� �
Elementary mass matrix

½Eu�; ½Es� Generalized displacement vector
½N� Interpolation functions vector
½qe� Degrees of freedom elementary vector
~u Displacement vector
L Length of the beam
b Width of the beam
h; hf ; hc Height of the beam, face, and core respectively
NC Number of layers
N Number of elements
t Time
S Length to thickness ratio
ak Continuity coefficients for the Sin-c model

dk
i ; bk

i

� �
i¼1;2;3

Continuity coefficients for the SinRef-c model

Sin Sinus model without continuity requirements [61]
Sin-c Sinus model with continuity requirements
SinRef-c Refined sinus model with continuity requirements
SinRef-6p Refined sinus model with continuity requirements including

six unknowns
SinRef-7p Refined sinus model with continuity requirements including

seven unknowns

Table 2
Mesh convergence study for the SinRef-7p model – natural frequencies – three-layers
(0�/90�/0�) – S = 10.

N Frequencies (Hz)

2 (38 dofs) Error (%) 4 (66 dofs) Error (%) 8 (122 dofs) Error (%)

Bend 38.15 0.4 38.04 0.1 38.04 0.1
Bend 115.67 4.4 110.99 0.2 110.81 0.0
Bend 211.29 11.8 190.07 0.6 188.99 0.0
Bend – – 275.97 2.5 269.12 0.0
Bend 345.01 1.8 365.80 4.1 351.50 0.0
t/c 391.33 2.6 389.96 2.3 389.86 2.2

Table 3
Natural frequencies – three-layers (90�/0�/90�) – S � 22:7.

Frequencies (Hz) thin beam

Sin Error (%) Sin-c Error (%) SinRef-c Error (%) SinRef-6p Error (%) SinRef-7p Error (%) Ansys

Bend 14.97 0.2 14.98 0.3 14.97 0.2 14.97 0.2 14.96 0.2 14.93
Bend 57.85 0.3 57.94 0.4 57.80 0.2 57.83 0.3 57.69 0.0 57.67
Bend 123.55 0.5 123.96 0.8 123.33 0.3 123.45 0.4 122.90 0.0 122.90
Bend 206.18 0.8 207.23 1.3 205.65 0.5 205.95 0.7 204.59 0.0 204.50
Bend 300.71 0.9 302.75 1.8 299.77 0.8 300.39 1.1 297.90 0.2 297.23
Bend 403.60 1.5 406.91 2.4 402.29 1.2 403.35 1.5 399.56 0.6 397.28
Bend 512.67 2. 517.43 3. 511.15 1.7 512.78 2.1 507.72 1.1 502.19
sh 640.06 1.5 632.94 0.4 634.37 0.6 634.37 0.7 634.37 0.7 630.25



It should be noted that the values of the natural frequencies are
always overestimated when compared to ANSYS finite element
solution.

3.3. Free vibration of symmetric and anti-symmetric lay-up [73]

In this section, two stacking sequences of laminated composite
are considered.

Geometry: composite cross-ply beam (0�/90�/0�), (0�/90�) and
length to thickness ratio S = 2, S = 5, S = 10, S = 20.
Boundary conditions: free vibration of a simply supported beam.
Material properties: same material properties as in Section 3.1.
Results: the results are presented under a non-dimensional
natural frequency as follows: �x ¼ xLSðq=Y0Þ1=2, with Y0 ¼
10:3 GPa; q ¼ 1578 kg=m3.

They are compared with exact two-dimensional elasticity
solution from [73] and results computed from ANSYS.

The shape modes for the thick symmetric and anti-symmet-
ric beams are illustrated in Figs. 5 and 6.

It can be noticed that the natural frequencies given in Table 5 by
the refined models for the symmetric lay-up are in excellent agree-
ment with the reference solution for S P 5. The errors are less than
2%, excepted for thickness mode frequencies. The SinRef-c model
improves results computed from the Sin and Sin-c models regard-
less of the length to thickness ratio. However, it is also observed
that the two later models provide satisfactory results for moder-
ately thick cases.

The effect of the transverse normal stress is significant for the
very thick beam. On the one hand, the SinRef-6p and SinRef-7p
models give accurate results for S ¼ 2 compared with the SinRef-
c model. On the other hand, they allow to exhibit thickness-stretch
modes even if the corresponding error seems high. In fact, Fig. 5
shows that the fifth mode shape is symmetrical.

As far as the anti-symmetric lay-up (0�/90�) is concerned, the
errors given in Table 6 vary from 0.% to 1.8% for the SinRef-7p

Table 4
Natural frequencies – three-layers (90�/0�/90�) – S � 2:2.

Frequencies (Hz) thick beam

Sin Error (%) Sin-c Error (%) SinRef-c Error (%) SinRef-6p Error (%) SinRef-7p Error (%) Ansys

Bend 82.81 0.7 83.66 1. 82.78 0.7 83.11 1.1 82.36 0.2 82.17
Bend 195.62 0.2 195.67 0.3 195.83 0.3 196.82 0.8 196.45 0.6 195.22
sh 277.98 1.3 274.94 0.2 274.31 0. 274.31 0.0 274.29 0.0 274.31
Bend 319.36 2.9 313.36 1. 311.73 0.5 312.92 0.9 312.91 0.9 310.07
Bend 460.18 8.4 442.07 4.1 428.96 1. 429.48 1.2 429.43 1.2 424.311
Bend 515.41 17.4 501.47 14.2 451.63 2.9 450.69 2.7 439.22 0.1 438.81
Bend 621.47 15.6 585.51 8.9 547.42 1.8 546.29 1.7 546.14 1.6 537.42

Fig. 5. Shape modes for the symmetric beam (0�/90�/0�) – S = 2 – SinRef-7p.

Fig. 6. Shape modes for the unsymmetric beam (0�/90�) – S = 2 - SinRef-7p.



model. The improvement is really significant compared with the
four other models, especially for the very thick beam where
the Sin and Sin-c models give very poor results. Nevertheless, the

SinRef-7p results are very close to the SinRef-6p frequencies.
Again, only two models have the capability to represent thickness
mode shape (cf. Fig. 6) as they assume quadratic variation of

Table 5
Natural frequencies – (0�/90�/0�).

S Natural frequencies �x

Sin Error (%) Sin-c Error (%) SinRef-c Error (%) SinRef-6p Error (%) SinRef-7p Error (%) Ansys Exact 2D [73]

2 Bend 3.50 1.6 3.55 3.4 3.53 2.4 3.45 0.2 3.45 0.1 3.45 –
sh 7.48 6.7 7.03 0.3 11.08 58.1 7.01 0.0 7.01 0.0 7.01 –
Bend 8.17 6.3 9.10 18 8.16 6.2 7.70 0.2 7.69 0.1 7.68 –
Bend 14.31 19.2 17.11 42 13.02 8.5 12.08 0.7 12.08 0.6 12.00 –
Thic – – – – – – 14.59 0.0 14.59 0.0 14.59 –
Bend 22.19 37 27.62 70 18.03 11.3 16.48 1.7 16.45 1.6 16.20 –
Thic – – – – – – 17.22 9.1 17.22 9 18.94 –

5 Bend 6.94 1.9 6.82 0.2 6.81 0.2 6.82 0.3 6.81 0.1 6.81 6.806
Bend 16.80 1.6 16.79 1.6 16.54 0.1 16.56 0.2 16.53 0.0 16.52 16.515
Bend 27.17 1.6 28.07 5. 26.73 0.04 26.75 0.1 26.72 0.0 26.72 26.688
Bend 38.51 3.1 41.35 10.7 37.32 0.02 37.34 0.0 37.31 0.0 37.33 37.255
Thic – – – – – – 47.87 9.4 47.87 9.4 43.75 –
sh 46.76 6.7 43.93 0.3 43.80 0.01 43.80 0.0 43.79 0.0 43.80 –
Bend 47.86 0.6 47.86 0.6 48.18 0.4 48.21 0.1 48.18 0.0 48.18 48.035
Bend 51.24 13.3 57.13 3.3 59.26 0.2 59.25 0.2 59.22 0.2 59.11 58.876

10 Bend 9.44 1. 9.34 0. 9.36 0.1 9.36 0.2 9.36 0.1 9.34 9.343
Bend 27.76 1.9 27.29 0.1 27.25 0.1 27.30 0.2 27.25 0.0 27.24 27.224
Bend 47.36 1.9 46.78 0.6 46.53 0.1 46.56 0.2 46.48 0.0 46.47 46.416
Bend 67.29 1.6 67.23 1.6 66.25 0.1 66.30 0.2 66.19 0.0 66.19 66.058
Bend 87.77 1.5 89.13 3.1 86.51 0.1 86.57 0.2 86.45 0.0 86.43 86.169
t/c 95.73 2. 95.73 2. 95.90 2.2 95.88 2.2 95.88 2.2 93.78 –
Bend – 113.04 5.4 107.38 0.1 107.45 0.2 107.33 0.1 107.20 106.75

20 Bend 10.67 0.2 10.64 0. 10.65 0.1 10.66 0.2 10.65 0.1 10.64 10.64
Bend 37.78 1. 37.39 0. 37.45 0.1 37.46 0.2 37.43 0.1 37.40 37.374
Bend 72.98 1.5 71.87 0. 71.94 0.1 71.97 0.2 71.87 0.0 71.85 71.744
Bend 111.23 1.9 109.35 0.1 109.30 0.1 109.37 0.2 109.18 0.0 109.15 108.89
Bend 150.57 2. 148.21 0.4 147.83 0.2 147.94 0.3 147.67 0.1 147.54 147.04
Bend 190.54 2.1 188.26 0.9 187.19 0.3 187.31 0.4 186.97 0.2 186.53 185.68
t/c 191.47 0.4 191.47 0.4 191.81 0.6 191.81 0.7 191.81 0.7 190.52 –

Table 6
Natural frequencies – anti-symmetric lay-up (0�/90�).

S Natural frequencies �x

Sin Error (%) Sin-c Error (%) SinRef-c Error (%) SinRef-6p Error (%) SinRef-7p Error (%) Ansys

2 Bend 3.50 9 3.55 11 3.24 1.2 3.25 1.6 3.22 0.7 3.20
Bend 7.48 1.5 9.10 23 7.87 6.8 7.67 4.0 7.58 2.9 7.37
sh 14.31 84 7.03 9 7.76 0.0 7.76 0.0 7.76 0.0 7.76
Bend 19.18 116 19.18 116 8.94 1.1 8.90 0.6 8.89 0.5 8.85
Bend 25.16 129 27.62 152 12.87 17.7 11.63 6.3 11.50 5.1 10.94
Thic – – – – – – 14.46 13.6 14.33 12.6 12.73
Thic – – – – – – 14.00 2.2 13.97 1.9 13.71

5 Bend 4.83 1 4.87 2 4.78 0.2 4.80 0.4 4.78 0.2 4.77
Bend 15.19 4 15.60 6 14.71 0.6 14.78 1.1 14.67 0.4 14.61
Bend 27.30 7 28.64 12 25.87 1.8 25.90 1.9 25.65 0.9 25.40
tc 38.12 7 36.39 3 35.56 0.4 35.52 0.3 35.45 0.1 35.42
Bend 40.29 12 43.09 19 37.42 4 37.09 3.0 36.68 1.8 36.02
sh 54.15 11 50.29 3 48.52 0. 48.53 0.0 48.51 0.0 48.52

10 Bend 5.30 0.3 5.32 0.5 5.29 0.1 5.30 0.2 5.30 0.1 5.29
Bend 19.33 1 19.49 2 19.14 0.1 19.20 0.4 19.14 0.1 19.12
Bend 38.67 2 39.33 4 37.87 0.2 38.03 0.7 37.83 0.1 37.77
Bend 60.91 4 62.57 7 58.97 0.6 59.24 1.1 58.81 0.4 58.60
Bend 84.87 6 88.13 9 81.26 1 81.53 1.6 80.81 0.7 80.22
tc 90.06 2 88.92 0.5 88.65 0.2 88.63 0.2 88.55 0.1 88.44

20 Bend 5.45 <0.1 5.46 0.1 5.45 0.1 5.46 0.1 5.46 0.1 5.45
Bend 21.23 0.3 21.28 0.4 21.20 0.1 21.22 0.2 21.20 0.1 21.18
Bend 45.86 0.7 46.08 1 45.62 0.1 45.71 0.3 45.63 0.2 45.55
Bend 77.58 1 78.23 2 76.81 0.3 77.03 0.6 76.80 0.3 76.59
Bend 114.86 2 116.31 3 113.11 0.6 113.52 1.0 113.05 0.6 112.40
Bend 156.58 3 159.32 5 153.29 1 153.95 1.6 153.13 1.1 151.48
tc 188.63 0.4 188.09 0.1 188.26 0.2 188.25 0.2 188.20 0.2 187.89



transverse displacement through the thickness. The fifth and sixth
modes clearly illustrate the effect of transverse normal deforma-
tion. It can be noticed that these modes are not symmetrical.

3.4. Free vibration of sandwich beam

3.4.1. Three-layer sandwich beam [73]
The first example of sandwich beam has the following

characteristics:

Geometry: the three-layer sandwich beam has graphite-epoxy
faces and a soft core with thickness 0.1 h/0.8 h/0.1 h and length
to thickness ratio S = 2, S = 5, S = 10, S = 20.
Boundary conditions: simply supported beam.
Material properties: Face: E11 ¼ 131:1 GPa, E22 ¼ E33 ¼ 6:9 GPa
G12 ¼ 3:588 GPa, G13 ¼ 3:088 GPa; G23 ¼ 2:3322 GPa, m12 ¼ m13 ¼
0:32, m23 ¼ 0:49; qf ¼ 1000 kg=m3. Core : E11 ¼ 0:2208 MPa,
E22 ¼ 0:2001 MPa, E33 ¼ 2760 MPaG12 ¼ 16:56 MPa, G13 ¼
545:1 MPa, G23 ¼ 455:4 MPa, m12 ¼ 0:99; m13 ¼ 0:00003; m23 ¼
0:00003, qc ¼ 70 kg=m3.
Results: results are presented under a non-dimensional natural
frequency as follows:

�x ¼ xLSðqf =Y0Þ1=2 with Y0 ¼ 6:9GPa� Cf : Table 7

As far as the sandwich beam with S P 5 is concerned, Table 7
shows that the refined sinus models yield accurate results in all
cases. The magnitude of the relative error never exceed 3.6%
and 5.8 % for the three refined sinus and sinus models
respectively.

Then, the five models are able to estimate accurately the natural
frequencies of a sandwich beam. In our case, the SinRef-7p model
gives the best results. For example, the % error is less than 0.2 for
S ¼ 5, and is equal to 4% for the thickness mode. We can also put
the emphasis on the effect of the relation between w0ðx1Þ;1 and
vðx1Þ for the SinRef-7p and SinRef-6p models. The accuracy on fre-
quencies is improved with one more unknown.

For S ¼ 2, remarks of Section 3.3 are identical. It should be noted
that the Sin and Sin-c models allow to estimate correctly the first
three frequencies. Nevertheless, the estimation of frequencies is
improved owing to the transverse normal effect in the SinRef-6p
and SinRef-7p models.

Fig. 7 illustrates three thickness mode shapes occurring in this
very thick case. Moreover, these models are shown to provide bet-
ter accuracy than the zig-zag model described in [73]. In this refer-
ence, we also notice the difficulty to estimate the frequencies of
thickness modes.

Finally, it can be observed that the use of more unknown func-
tions in the formulation seems to make the beam more flexible.

Fig. 7. Thickness mode shape for the sandwich beam – S = 2 – SinRef-7p.

Table 7
Natural frequencies – sandwich beam.

S Natural frequencies �x

Sin Error (%) Sin-c Error (%) SinRef-c Error (%) SinRef-6p Error (%) SinRef-7p Error (%) Ansys Exact 2D [73]

2 Bend 3.67 4 3.57 1.3 3.65 3.5 3.64 3 3.53 0.2 3.53 –
sh 5.54 3.7 5.34 0.0 5.48 2.5 5.48 2.5 5.34 0.1 5.34 –
Bend 7.99 5.4 8.03 5.9 7.88 3.8 7.74 2 7.60 0.2 7.58 –
Thic – – – – – 11.07 4 11.07 4 11.61 –
Thic – – – – – 9.40 19 9.40 19 11.66 –
Bend 13.22 10 13.77 14 12.46 3.9 12.08 0.7 11.97 0.2 11.99 –
Thic – – – – – – 15.00 24 15.00 24 12.09 –
Bend 19.61 18 21.08 27 17.22 4.1 16.49 0.3 16.45 0.5 16.53 –

5 Bend 8.09 3.4 7.85 0.3 8.04 2.7 8.05 2.9 7.83 0.1 7.82 7.82
Bend 17.96 3.9 17.43 0.8 17.86 3.3 17.83 3.2 17.31 0.1 17.28 17.27
Bend 28.01 4. 27.42 1.8 27.88 3.5 27.71 2.9 26.97 0.2 26.93 26.90
sh 34.66 3.7 33.42 0. 34.22 2.4 34.22 2.5 33.37 0.1 33.40 –
Bend 38.62 4.3 38.27 3.4 38.35 3.6 37.91 2.4 37.06 0.1 37.01 36.93
Bend 50.06 5.2 50.32 5.8 49.31 3.6 48.46 1.9 47.58 0.1 47.55 47.39
Thic – – – – – – 55.39 4 55.39 4 58.02 –

10 Bend 12.49 2.1 12.25 0.1 12.45 1.7 12.47 1.9 12.26 0.1 12.23 12.23
Bend 32.37 3.4 31.41 0.3 32.16 2.7 32.21 2.9 31.33 0.1 31.30 31.29
Bend 52.17 3.8 50.53 0.5 51.82 3.1 51.84 3.1 50.31 0.1 50.26 50.21
Bend 71.90 3.8 69.77 0.8 71.48 3.2 71.37 3.1 69.26 0.1 69.21 68.09
Bend 91.88 3.9 89.52 1.2 91.43 3.4 91.08 3.0 88.51 0.1 88.41 88.18
Bend 112.43 4. 110.11 1.9 111.91 3.5 111.20 2.9 108.25 0.2 108.02 107.61
t/c 121.04 0.8 121.04 0.8 121.36 1.1 121.11 0.9 121.11 0.9 120.03 –

20 Bend 15.50 0.8 15.39 0. 15.51 0.8 15.52 0.9 15.41 0.2 15.38 15.38
Bend 49.99 2. 49.04 0.1 49.82 1.7 49.88 1.8 49.04 0.1 48.98 48.94
Bend 89.53 2.8 87.18 0.2 89.03 2.3 89.16 2.5 87.07 0.1 87.01 86.90
Bend 169.56 3.6 164.26 0.4 168.41 2.9 168.55 3.0 163.69 0.1 163.58 163.12
Bend 209.45 3.8 202.88 0.6 208.08 3.1 208.10 3.2 201.94 0.1 201.64 200.87
t/c 242.08 0.2 242.06 0.2 242.73 0.4 242.64 0.4 240.59 0.4 241.61 –



3.4.2. Five-layer sandwich beam [18]
In this part, a five-layer sandwich beam is concerned. It is de-

scribed in the following.

Geometry: the five-layer sandwich beam with three stiff isotro-
pic layers at top/bottom/middle and two soft cores sandwiched
in between (face/core/face/core/face): hc ¼ 10:16 mm, hf ¼
0:508 mm� L ¼ 508 mm, width ¼ 25:4 mm, h ¼ 21:844 mm�
S � 2:5; 5; 25
Boundary conditions: simply supported beam.
Material properties: isotropic face: Ef ¼ 68:97� 103 MPa;
m ¼ 0:3 q ¼ 2:7155� 102 kg=m3; isotropic core: Gc ¼ 34:485
MPa; m ¼ 0:3; q ¼ 67:8840 kg=m3.

The natural frequencies obtained from the present investigation
are compared in Table 8 with two reference solutions (from [18]
and the commercial code). Again, the SinRef-7p model yields very
accurate results even for a very thick case. The main improvement
occurs between the SinRef-6p and SinRef-7p models what shows
the importance of the additional unknown vðx1Þ. For this example,
we also observe the necessity to satisfy the continuity of the trans-
verse shear stress at the layer interfaces. This effect is particularly
high (Cf Sin and Sin-c results).

3.5. Influence of boundary conditions

Free vibrations of beams with arbitrary boundary conditions are
studied. Under the considerations of Sections 3.2, 3.3 and 3.4, only
the SinRef-7p model is applied for the determination of frequen-
cies, namely the most accurate theory among the ones already
tested. These results are compared with higher-order shear defor-
mation theory from [11]. It should be noted that these theories do

not ensure the continuity of the transverse shear stress on the
interfaces between the layers for the unsymmetric beam. This lim-
itation does not exist in our approach.

The considered test has the following characteristics:

Geometry: composite cross-ply beam (0�/90�/0�) and (0�/90�)
with S = 5, and layers of equal thickness.
Boundary conditions: clamped/clamped (CC), free/free (FF), sim-
ply supported/free (SF), clamped/simply supported (CS), simply
supported/simply supported (SS), clamped/free (CF) beam.
Material properties:

E1=E2 ¼ 40; G12 ¼ G13 ¼ 0:6E2; G23 ¼ 0:5E2;

m12 ¼ 0:25

Results: the natural frequencies are normalized as �x ¼
xL2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq=E2Þ
p

=h. A comparison with the published numerical
results from [11] is carried out. It implies two models:

HSDBT Hyperbolic shear deformation beam theory
PSDBT Parabolic shear deformation beam theory

the indices ds or cs stand for discontinuity and continuity inter-
laminar stress respectively.

The results for different stacking sequences are given in Table 9.
As one can observe for the symmetric beam, the frequencies for the
SinRef-7p model are always upper than these of the two other
models, excepted for the CC condition. Concerning the unsymmet-
ric case, results are always lower than the two other discontinuous
models, and the difference is about 10%. This fact is already ob-
served by [11] between continuous and discontinuous models.
Nevertheless, as for Section 3.3, we can say that the present model
exhibits the most reliable performance.

Table 8
Frequencies – five-layer sandwich beam [18].

S Frequencies (Hz)

Sin Error (%) Sin-c Error (%) SinRef-c Error (%) SinRef-6p Error (%) SinRef-7p Error (%) ANSYS Ref. [18]

�2.5 931.13 344 203.25 2.9 225.17 7.6 226.03 8.0 203.55 2.8 209.31 –
2366.8 451 417.42 2.7 468.20 9.1 468.20 9.1 419.67 2.2 429.12 –
2519.5 442 482.77 4 469.70 1.2 475.62 2.5 463.90 0.0 464.01 –
2769.3 318 645.38 2.5 739.50 11.7 757.36 14.4 652.69 1.4 661.86 –

�5 297.24 200 97.91 1.5 107.32 7.9 107.47 8.1 97.96 1.5 99.45 –
931.32 350 203.25 1.6 225.17 9.0 226.04 9.4 203.55 1.5 206.67 –
1259.8 300 309.13 1.6 345.07 9.8 347.72 10.7 310.13 1.3 314.16 –
1647.8 288 417.43 1.5 468.20 10.5 468.20 10.5 419.86 0.9 423.80 –
2366.9 410 482.77 4 470.01 1.3 475.95 2.6 463.86 0.0 464.01 –
2519.6 369 529.24 1.4 602.06 12.2 613.15 14.2 534.28 0.4 536.69 –
2769.3 323 645.49 1.3 743.36 13.7 761.76 16.5 655.11 0.2 653.79 –

�25 13.43 23 11.26 3 11.58 6 11.59 6 11.26 3.2 10.90 10.91
52.80 65 32.58 1.7 34.64 7 34.66 7 32.59 1.2 32.02 32.20
115.59 113 54.74 1 59.21 8 59.25 8 54.77 0.2 54.23 54.65
198.34 160 76.50 0.5 83.50 8 83.59 8 76.58 0.2 76.09 76.74
251.95 158 97.92 0.3 107.49 9 107.65 9 98.10 0.4 97.61 98.47
297.39 150 119.13 0.1 131.37 9 131.63 9 119.52 0.4 118.94 119.96

Table 9
Comparison of frequencies for composite beams with (0�/90�/0�) and (0�/90�) layouts.

Models FF CC SF CS SS CF

(0�/90�/0�) PSDBTcs [11] 18.976 11.446 13.206 10.032 8.968 4.158
HSDBTcs [11] 18.955 11.427 13.195 10.021 8.964 4.157
SinRef-7p 19.123 11.100 13.472 10.000 9.201 4.189

(0�/90�) PSDBTds [11] 13.000 10.103 9.221 8.068 6.144 2.384
HSDBTds [11] 12.849 10.059 9.162 8.037 6.124 2.383
SinRef-7p 11.709 8.743 8.413 7.153 5.671 2.289



In all cases, the highest frequencies occur for the FF boundary
condition.

3.6. Comparison with results available in the literature

In this paragraph, the most enriched model (SinRef-7p) is com-
pared with results available in the literature. Unsymmetric beams
are chosen from [20].

The finite element is tested with a deep laminated sandwich
beam composed of two face sheets of (0/90) lay-up at the top
and bottom with core sandwiched in between (0�/90�/core/0�/90�).

Geometry: five-layer sandwich beam with soft core: hc=hf ¼ 10.
Boundary conditions: simply supported beam.
Material properties:

Face sheets: E1f ¼ 131 GPa; E2f ¼ E3 f ¼ 10:34 GPa, m12 ¼
m13 ¼ 0:22, m23 ¼ 0:49; G12 f ¼ G23 f ¼ 6:895 GPa, G13 f ¼
6:205 GPa, qf ¼ 1627 kg=m3.
Isotropic core: Gc ¼ 3:45 MPa; m ¼ 0:; Ec ¼ 6:89 MPa;
qc ¼ 97 kg=m3.

Results: the natural frequencies are normalized as �x ¼
xL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqf =E2 f Þ

q
=h. The results of four other models are given

from [20]:
� GLHT (6 parameters) analytical results based on global–local

higher order theory [59].
� ZZT (3 parameters) zig-zag theory satisfying the continuity of

transverse shear stress at interfaces [40].
� HSDT-33 third order theory for in-plane and transverse

displacements.
� HSDT-Reddy (3 parameters) Reddy’s model.

The comparison of non-dimensional frequencies with the avail-
able results from [20] are given in Table 10 for thick and semi-thick
beams. In all cases, we observe that the SinRef-7p models give re-
sults very close to the GLHT model which is considered as a refer-
ence in [20]. We can also notice that the increasing of the order
expansion of the transverse displacement is not sufficient to get
good results. In fact, the frequencies of the HSDT-33 model are very
overestimated. It is more important to ensure the continuity of the
transverse shear stress.

4. Conclusion

In the framework of a sinus family, two numerical models have
been presented and assessed through a wide variety of stacking se-
quences, length to thickness ratios, and boundary conditions in
free vibration analysis. Special attention is pointed towards the

transverse normal stress effect which plays an important role in
thick cases. It is a three-node multilayered beam finite element
with a parabolic distribution of transverse displacement. Based
on sinus equivalent single layer model, a third order kinematic
per layer is added, improving the shear bending description for
thick beams. There is no need for transverse shear correction fac-
tors and all the interface and boundary conditions are exactly sat-
isfied. So, this approach has a strong physical meaning. Finally, the
number of unknowns is independent of the number of layers.

All these different examples prove the efficiency of the family of
refined sinus models for laminated composite and sandwich beams
in the field of finite element. Few elements are needed to obtain
good results. The new models have very good capability for a wide
area of applications. In particular, for the very thick case ðS ¼ 2Þ,
the SinRef-7p model which take into account the transverse nor-
mal effect yields very accurate results for both frequencies and
mode shapes. Nevertheless, for the thin beam, it seems that the
Sin-c model presents a good compromise between the accuracy
and the computational cost.

A. Matrix expression for the weak form

The expressions of the strains can be described using a matrix
notation:

½e� ¼ ½FsðzÞ�½Es�

with ½Es�T ¼ u;1 ..
.

w0;1 w0;11
..
.
x3 x3;1

..

.
u1

31 u1
31;1

..

.
v v ;1

�

..

.
w1 w1;1 w1;11

..

.
w2 w2;1 w2;11

�
ðA:1Þ

and ½FsðzÞ� depends on the normal coordinate z.
From the weak form of the boundary value problem Eq. (2), and

using Eq. (A.1), an integration throughout the cross section is per-
formed analytically in order to obtain an unidimensional formula-
tion. Therefore, the first left term of Eq. (2) can be written under
the following form:
Z
B

½eð~u�Þ�T ½rð~uÞ�dB ¼
Z L

0
E�s
� �T ½k�½Es�dx1 with

½k� ¼
Z

X
½FsðzÞ�T ½C�½FsðzÞ�dX ðA:2Þ

where ½C� is the constitutive law given in Section 2.1.1.
In Eq. (A.2), the matrix ½k� is the integration throughout the

cross section of the beam material characteristics.
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