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Refined Sine Theory Including Transverse Normal Stress
in Cylindrical Bending

P. VIDAL and O. POLIT

LEME, Universite´ Paris Ouest, Ville d’Avray, France 

Two new sine models including the transverse normal deformation are presented for the analysis of laminated plates with a cross-ply 
layout in cylindrical bending. A layer refinement for each component of the displacements is considered. The transverse shear strain 
is obtained by using a cosine function avoiding the use of shear correction factors. This kinematics accounts for the interlaminar 
continuity conditions on the interfaces between the layers for the transverse normal and shear stresses, and the boundary conditions 
on the upper and lower surfaces of the plate. Note that the number of unknowns is independent of the number of layers. The 
main topics are focused on the evaluation of the transverse normal and shear stresses by the constitutive relation. Mechanical and 
thermomechanical results within a closed-form solution technique are compared to elasticity reference solutions for thin and very 
thick plates.
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1. Introduction

Composite and sandwich structures are widely used in indus-
try due to their excellent mechanical properties, especially their
high specific stiffness and strength. In this context, they can
be subjected to severe mechanical and thermal conditions. For
composite design, an accurate knowledge of displacements
and stresses is required. Hence, it is important to take into
account effects of the transverse shear deformation due to a
low ratio of transverse shear modulus to axial modulus, or
failure due to delamination. In fact, such effects can play an
important role in the behavior of structures, and it is desirable
to evaluate precisely their influence on local stress fields in
each layer.

The aim of this article is to develop two models including
the transverse normal deformation, so as to obtain accurate
predictions for the behavior of laminated composite plates
in cylindrical bending subjected to mechanical and thermal
loading. This analysis is limited to the elasticity area in relation
to small displacements. In this context, we put the emphasis
on the need to take into account transverse normal effects, in
particular for thermal conditions and for thick structures [1, 2].

Several theories exist in the literature for composite and
sandwich structures (beams and plates for the present scope).
They have been extended to thermomechanical problems
as well. The following classification is associated with the
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dependence on the number of degrees of freedom (DOFs)
with respect to the number of layers:

• The Equivalent Single Layer approach (ESL): The number
of unknowns is independent of the number of layers, but
continuity of transverse shear and normal stresses is of-
ten violated at layer interfaces. We can distinguish classical
laminate theory [3], first order shear deformation theory [4],
composite laminates [5], and higher order theories [6–9]. In
this family, some studies take into account transverse nor-
mal deformation ([10–16] with a higher order theory). In
the framework of thermomechanical problems, different
approaches have been developed: mixed [17] and displace-
ment [18–21] formulations.

• The Layerwise approach (LW): The number of DOFs de-
pends on the number of layers. This theory aims at over-
coming the ESL shortcoming of allowing discontinuity of
out-of-plane stresses on the interface layers. This approach
was introduced in [22, 23]. For recent contributions, see
[24–26].

Again, some models taking into account the transverse
normal stress and strain have been developed: [2, 27] within
a displacement based approach and [16, 28] within a mixed
formulation. For thermomechanical analysis, readers can
refer to [21] (for the displacement approach) and [29, 30]
(for the mixed one).

In this framework, refined models have been developed in
order to improve the accuracy of ESL models while avoid-
ing the computational burden of the LW approach. Based
on physical considerations and after some algebraic transfor-
mations, the number of unknowns becomes independent of



the number of layers. Whitney [31] has extended the work of
Ambartsumyan [32] for symmetric laminated composites with
arbitrary orientation and a quadratic variation of the trans-
verse stresses in each layer. A family of models, called zig-
zag models, was first employed in [33], then in [34–36]. More
recently, it was modified and improved in [29, 37–41] with
different-order kinematics assumptions, taking into account
transverse normal strain.

Another way to improve the accuracy of results consists
in a post-processing method (see [42–44]). It is based on the
equilibrium equations and can be carried out in the framework
of an ESL approach. The continuity of the transverse shear
stresses is satisfied.

The literature just cited deals with only some aspects of the
broad research activity about models for layered structures. An
extensive assessment of different approaches has been made
in [45–49]. About the particular point of the evaluation of
transverse normal stresses, see [50, 51].

In this work, two new models for laminated plate in cylindri-
cal bending analysis are built, in order to have a low cost tool,
that is efficient and simple to use. Our approach is associated
with the ESL theory. The models are based on a refined shear
deformation theory [52] avoiding the use of shear correction
factors for laminates. They are based on the sine model [53].
The important new feature is the capability of the model to
include the transverse normal deformation and stress. So, the
transverse displacement is written under an mth-order expan-
sion with a layer refinement, which avoids the Poisson locking
mechanism [54]. For the in-plane displacement, the double su-
perposition hypothesis from [55] is used: three local functions
are added to the sine model. Finally, this process yields to a
number of generalized displacements which is independent of
the number of layers. All interface and boundary conditions
are exactly satisfied for displacements, transverse shear and
normal stresses. Therefore, this approach takes into account
physical meaning.

This article is organized as follows. First, the mechanical
and thermomechanical formulations for the different models
are described. The continuity conditions are detailed. Then,
numerical tests are performed upon various laminated plates,
and in particular for very thick plates. A parametric study
is given to show the effects of different parameters such as
the length-to-thickness ratio. The accuracy of computations
is also evaluated by comparison with an exact 3D theory for
laminates in bending [18, 56]. We put the emphasis on the
direct calculation of the transverse shear and normal stresses
from the constitutive relations.

Finally, other numerical examples are presented to demon-
strate the effectiveness of the proposed models in coupled
analysis. Computations for very thick plates of laminated com-
posites are compared to exact 2D elasticity solutions under
thermomechanical loading.

2. Resolution of the Thermomechanical Problem

2.1. The Governing Equations for Thermomechanics

Let us consider a plate occupying the domain B = [0, L] ×
[− b

2 ≤ x2 ≤ b
2 ] × [− h

2 ≤ z ≤ h
2 ] in a Cartesian coordinate

x1

z L

h

x2

Fig. 1. The laminated plate and co-ordinate system.

(x1, x2, z). The structure has a uniform thickness of height
h. The plate is made of NC layers of different linearly elastic
materials. Each layer may be assumed to be orthotropic in
the plate axes. The plane (x1, x2) is the middle surface of the
plate, and z is the transverse axis, see Figure 1. This work is
based upon a displacement approach for geometrically linear
elastic plates.

2.1.1. Constitutive Relation
Each layer of the laminate is assumed to be orthotropic. Using
matrix notation, the thermoelastic stress-strain law of the kth

layer is given by
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i.e., [�(k)] = [C(k)][ε(k)], (1)

where �T is the temperature rise, [�] is the stress tensor, [ε]
is the strain tensor, the Ci j are the 3D stiffness coefficients,
and �i j are the thermal expansion coefficients obtained af-
ter a transformation from the material axes to the Cartesian
coordinate system.

2.1.2. The Weak Form of the Boundary Value Problem
Using the above matrix notation and for admissible virtual
displacement �u∗ ∈ U∗, the variational principle is defined by:
find �u in the space U of admissible displacements such that

−
∫
B

[ε(�u∗)]T [�(�u)] dB +
∫
B

[u∗]T [ f ]dB+
∫

∂BF

[u∗]T [F ] d∂B

=
∫
B

� [u∗]T [ü] dB, ∀�u∗ ∈ U∗, (2)

where [ f ] and [F ] are the prescribed body and surface forces
applied on ∂BF . ε(�u∗) is the virtual strain, and � is the mass
density.

2.2. The Displacement Field for Laminated Plates in
Cylindrical Bending

Based on the sine function (see [57]), two models which take
into account the transverse normal deformation are presented
in this section. They are based on both various works on



beams, plates and shells ([53, 57–60]), covering the refined the-
ory, and the so-called 1,2-3 double-superposition theory devel-
oped in [55]. It also follows the local-global approach studied
in [61, 62]. These refined models (see [63]) take into account the
continuity conditions between layers of the laminate for both
displacements and transverse shear stress, and the free condi-
tions on the upper and lower surfaces owing to the Heaviside
function. Here, the previous model [1] is improved by inco-
porating a refinement in the transverse displacement for each
layer. It allows us to include the continuity of the transverse
normal stress.

The kinematics of the two models is assumed to be of the
following particular form, where the prime stands for the dif-
ferentiation with respect to x1 and H is the Heaviside step
function (H(z) = 1 if z ≥ 0 and H(z) = 0 otherwise):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(x1, x2, z)= v0(x1) + z v1(x1) + f (z)(�2(x1) + w0(x1)′)
+ g(z)v2(x1)

+
NC∑
k=1

(
ū(k)

loc(x1, z) + û(k)
loc(x1, z)

)
�Hk

u3(x1, x2, z)=
m∑

i=0

ziwi (x1)

+
NC∑
k=1

(
g1

(k)
w (z)wk

31(x1)+g2
(k)
w (z)wk

32(x1)
)

�Hk,

(3)

where �Hk = (H(z − zk) − H(z − zk+1)) and g(z) = z2.
In the classic approach, w0 is the bending deflection follow-

ing the z direction, while v0 is associated with the membrane
displacement of a point of the middle surface, and �2 is the
shear bending rotation around the x2 axis.

The local functions ū(k)
loc and û(k)

loc are based on the first few
Legendre polynomials such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ū(k)
loc(x1, z) = �kuk

31(x1) +
(

−1
2

+ 3� 2
k

2

)
uk

32(x1)

û(k)
loc(x1, z) =

(
−3�k

2
+ 5� 3

k

2

)
uk

33(x1).

(4)

The local transverse functions are expressed as follows:

{
g1

(k)
w (z) = � m

k

g2
(k)
w (z) = � m+1

k ,
(5)

where m is the power associated to the transverse displacement
in Eq. (3). The coordinate system is precised on Figure 2. A
nondimensional transverse coordinate has been introduced by
�k = akz − bk, with ak = 2

zk+1−zk
, bk = zk+1+zk

zk+1−zk
.

In the context of the sine model, we have f (z) = h
�

sin �z
h ,

and the derivative of this function will represent the trans-
verse shear strain distribution due to bending. Hence, it is not
necessary to introduce transverse shear correction factors.

At this stage, 5 × NC + 5 + m generalized displacements
are included in Eq. (3).

+1

layer (k)

layer (1)

...
...

layer (NC)

−1

zNC+1

zNC

zk+1

zk

z2

x1

z1z

ζk

Fig. 2. Transverse coordinate of laminated beam.

2.2.1. Stress and Displacement Continuity Conditions and
Free Surface Conditions

We next turn to the task of deriving relations between the
kinematic unknowns from:

• lateral boundary conditions, and
• interlaminar continuity conditions for displacements,

transverse shear and normal stresses.

For an interface layer k ∈ {2, . . . , NC}, we have:

• Displacement continuity conditions as in [61]:

ū(k)
loc(x1, zk) = ū(k−1)

loc (x1, zk) k = 2, . . . , NC, (6)

û(k)
loc(x1, zk) = û(k−1)

loc (x1, zk) k = 2, . . . , NC. (7)

• Transverse displacement continuity conditions between two
adjacent layers:

u3
(
x1, x2, z+

k

) = u3
(
x1, x2, z−

k

)
k = 2, . . . , NC. (8)

• Transverse shear stress continuity between two adjacent
layers:

�
(k)
13

(
x1, z+

k

) = �
(k−1)
13

(
x1, z−

k

)
k = 2, . . . , NC. (9)

• Transverse normal stress continuity between two adjacent
layers:

�
(k)
33

(
x1, z+

k

) = �
(k−1)
33

(
x1, z−

k

)
k = 2, . . . , NC. (10)

So, 5 × (NC − 1) conditions are imposed, which allow us
to reduce the number of unknowns to 10 + m generalized
displacements.

Boundary conditions of the transverse shear and normal
stresses on the upper and lower surfaces must also be verified.
So, we have

�
(1)
13

(
x1, z = −h

2

)
= 0 and �

(NC)
13

(
x1, z = h

2

)
= 0, (11)

�
(1)
33

(
x1, z = −h

2

)
= 0 and �

(NC)
33

(
x1, z = h

2

)
= pu(x1).

(12)



Furthermore, two models are distinguished by satisfying or
not the following conditions on the derivative of the transverse
normal stress on the upper and lower surfaces:

�
(1)
33,z

(
x1, z = −h

2

)
= 0 and �

(NC)
33,z

(
x1, z = h

2

)
= 0 (13)

These two models are denoted “SinRefs33c-(m+6)p” and
“SinRefs33c-ud-(m+4)p,” respectively, relative to previous ar-
ticles [1]. The novelty is about the introduction of �33 and the
order of expansion of the transverse displacement. Further-
more, the difference between these two models consists in the
additional constraint defined in Eq. (13). The SinRefs33c-ud-
(m+4)p model satisfies this one. Finally, the number of gener-
alized displacements is reduced to m + 6 and m + 4, which is
independent of the number of layers.

2.2.2. Relation between the Generalized Displacements
As in [27], the terms related to the refinement layer in u3
are neglected in the expression of ε13 because they have no
influence on the transverse shear strain. So, Eqs. (6), (7), (9),
and (11) can be written under a (3 ∗ NC − 1) × (3 ∗ NC −
1) linear system. The resolution of this system drives to the
following relation between the generalized unknowns:

uk
3i (x1) = �k

i (�2(x1) + w0(x1)′)
+ 	k

i (v1(x1) + w0(x1)′) + 
k
i u1

31(x1)

+ �k
i v2(x1) +

m∑
j=1

�k
i jw j (x1)′, k = 1, . . . , NC,

i = 1, 2, 3, (14)
with


1
1 = 1, �1

1 = 	1
1 = �1

1 j = �1
1 = 0,

where �k
i , 
k

i , �k
i j , �k

i , and 	k
i (i = 1, 2, 3) are the continuity

coefficients. For more details about the determination of these
coefficients, see [63].

Now, we must take into account the relations involving
the transverse displacement and the transverse normal stress.
Equations (8), (10), and (12) for the SinRefs33c-(m+6)p, and
Eqs. (8), (10), (12), and (13) for the SinRefs33c-ud-(m+4)p
can be written under a (2 ∗ NC) × (2 ∗ NC) and (2 ∗ NC +
2) × (2 ∗ NC + 2) linear system respectively. It allows us to
express wk

3�, � = 1, 2, k = 1, . . . , NC with respect to the other
generalized unknowns as

wk
3� = C�

v′
0

(k)
v′

0 + C�
v′

1

(k)
v′

1 + C�
v′

2

(k)
v′

2 + C�
�′

2

(k)�′
2 + C�

u1
31

′
(k)u1

31
′

+
m0∑
j=1

C�
w j

(k)
w j +

m0∑
j=0

C�
w′′

j

(k)
w′′

j + C�
p

(k) pu, (15)

with m0 = m (for SinRefs33c-(m+6)p), m0 = m − 2 (for
SinRefs33c-ud-(m+4)p).

For the SinRefs33c-ud-(m+4)p model, we also have two
other relations that are deduced from Eq. (13):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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1
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v′

2
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�′

2

(k)
�′

2 + C3
u1

31
′
(k)u1

31
′

+
m−2∑
j=1

C3
w j

(k)
w j +

m−2∑
j=0

C3
w′′

j

(k)
w′′

j + C3
p

(k)
pu

wm = C4
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0
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v′

0 + C4
v′

1
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v′

1 + C4
v′

2

(k)
v′
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31
′
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w j +
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C4
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(k)
w′′
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p

(k)
pu, (16)

where C j
×

(k)
are the continuity coefficients associated to the

transverse normal stress and the out of plane displacement.
In Eqs. (15) and (16), the dependencies with respect to x1 and
z are omitted.

Finally, the general expression of the displacements can be
deduced for the two models under a unified formulation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(x1, x2, z) = L0(z)v0(x1) + L1(z)v1(x1) + L3(z)�2(x1)
+L2(z)v2(x1) + L4(z)u1

31(x1)

+
m0∑
j=0

L5 j (z)w j (x1)′

u3(x1, x2, z) = G0(z)v0(x1)′ + G1(z)v1(x1)′ + G3(z)�2(x1)′

+G2(z)v2(x1)′ + G4(z)u1
31(x1)′

+
m0∑
j=0

(G5 j (z)w j (x1) + G6 j (z)w j (x1)′′
)

+G7(z)pu(x1). (17)

The expressions of L×, G× are deduced from Eqs. (3), (14),
(15), (16), and (17). Note that they are different for the two
models.

2.3. Closed-Form Solution

A standard procedure is carried out to solve the problem.
The thickness assumptions are introduced into the variational
equation (Eq. (2)). Then, the variation with respect to the
thickness coordinate is eliminated by integrating over each
layer thickness. The strong form of the governing partial dif-
ferential equations is obtained by integrating by parts the ap-
propriate terms. Here, we will restrict the verification studies
to problems for which a closed-form solution can be found.
This means that the structural response can be explicitly writ-
ten in a form which exactly satisfies all boundary conditions
and the field equations. By restricting the problems to simply-
supported plates consisting of an arbitrary number of or-
thotropic layers with a cross-ply lay-up, the general solution
with a single term of the infinite series expansion is written in
the form:

{
v0, v1, v2, �2, u1

31

}
(x1) = {

V0, V1, V2,�2, U1
31

}
cos

(
n�x1

L

)
,

wi (x1) = Wi sin
(

n�x1

L

)
, i = 1, . . . , m0, (18)

where n is the number of half-waves in the x1 direction.



Table 1. w̄ (L/2, 0), �̄11(L/2, −h/2), �̄13 max for different values of S—2 layers (0◦/90◦)

S Exact SinRefs33c-ud-9p Err SinRefs33c-9p Err

2 w̄(L/2, 0) 10.849 10.750 0.9% 10.706 1.3%
�̄11|−h/2 −8.805 −8.798 0.08% −9.932 12 %
�̄13 max 1.164 1.210 3.9% 1.251 7 %

4 w̄(L/2, 0) 4.695 4.685 0.2% 4.683 0.2%
�̄11|−h/2 −30.029 −30.734 2.3% −30.762 2.4%
�̄13 max 2.706 2.763 2.1% 2.764 2.1%

10 w̄(L/2, 0) 2.953 2.953 0.02% 2.952 0.02%
�̄11|−h/2 −176.528 −177.041 0.3% −177.047 0.3%
�̄13 max 7.266 7.383 1.6% 7.384 1.6%

The external loading is assumed as pu(x1) = p0 sin( n�x1
L ).

Introducing the above functions into the 1D governing
equation, the following system is obtained:

[K][q] = [F], (19)

with [q]T = [V0 V1 V2 �2 U1
31 W0 · · · Wm0 ]. The calculation of

[K] is given in the appendix.

3. Numerical Results

Several mechanical and thermomechanical tests for a large
range of slenderness ratio are presented validating the present
approach. Severe tests are considered with S = 2. They are
compared with exact solutions [56]. We put the emphasis on
the evaluation of the transverse normal and shear stresses
calculated by the constitutive relation. Previous studies have
already shown that is is necessary to take into account the
transverse nomal stress for this type of cases [1, 2, 39]. In the
following, only the SinRefs33c-9p and SinRefs33c-ud-9p mod-
els, which are the most relevant, are discussed. Note that the
order of expansion of the SinRefs33c-ud-9p model is greater
than these of the SinRefs33c-9p model (see Eq. (15)), but the
computational cost remains identical.

3.1. Mechanical Analysis

The tests are about simply supported symmetric and antisym-
metric composite plates and is issued from [56]. It is detailed
below:

Geometry: Composite cross-ply plates (0◦/90◦), (0◦/90◦/0◦),
and (0◦/90◦/0◦/90◦); length to thickness ratio from S = 2
to S = 10 (S = L

h ); All layers have the same thickness.
Boundary conditions: Simply supported plate in cylindrical

bending subjected to sinusoidal load pu(x1) = p0 sin �x1
L .

Material properties:

EL = 172.4 GPa, ET = 6.895 GPa, G LT = 3.448 GPa,

GTT = 1.379 GPa, LT = TT = 0.25,

where L refers to the fiber direction, T refers to the trans-
verse direction.

Results: The results (w̄, �̄11, �̄13) are made non-dimensional
using:

w̄ = 100ETu3(L/2, 0)
S4hp0

�̄11 = �11(L/2,±h/2)
p0

�̄13 = �13 max|x1=0

p0
. (20)

The numerical results for deflection, in-plane normal stress
and transverse shear stress are given in Tables 1, 2, and 3
for the three cases. We observe that the two models perform
quite well with respect to the exact solution even for the very

Table 2. w̄(L/2, 0), �̄11(L/2,−h/2), �̄13(0, 0) for different values of S—3 layers (0◦/90◦/0◦)

S Exact SinRefs33c-ud-9p Err SinRefs33c-9p Err

2 w̄(L/2, 0) 8.523 8.491 0.3% 8.481 0.5%
�̄11|−h/2 −6.878 −6.753 1.8% −6.775 1.5%
�̄13(0, 0) 0.534 0.532 0.3% 0.531 0.5%

4 w̄(L/2, 0) 2.887 2.886 0.03% 2.887 0.02%
�̄11|−h/2 −18.104 −18.187 0.4% −18.192 0.4%
�̄13(0, 0) 1.431 1.431 0.00% 1.430 0.07%

10 w̄(L/2, 0) 0.931 0.931 0.000% 0.931 0.005%
�̄11|−h/2 −73.630 −73.675 0.06% −73.674 0.06%
�̄13(0, 0) 4.238 4.239 0.01% 4.238 0.01%



Table 3. w̄ (L/2, 0), �̄11(L/2, −h/2), �̄13 max for different values of S—4 layers (0◦/90◦/0◦/90◦)

S Exact SinRefs33c-ud-9p Err SinRefs33c-9p Err

2 w̄(L/2, 0) 11.478 11.369 0.9% 11.391 0.7%
�̄11|−h/2 −9.053 −9.701 7 % −9.714 7 %
�̄13 max 1.061 1.063 0.1% 1.064 0.2%

w̄(L/2, 0) 4.180 4.174 0.1% 4.176 0.1%
4 �̄11|−h/2 −24.948 −25.403 1.8% −25.408 1.8%

�̄13 max 1.991 2.009 0.8% 2.008 0.8%
w̄(L/2, 0) 1.657 1.656 0.02% 1.656 0.02%

10 �̄11|−h/2 −116.554 −116.815 0.2% −116.816 0.2%
�̄13 max 5.528 5.606 1.4% 5.606 1.4%

Table 4. w̄(L/2, 0), �̄11(L/2, h/2), �̄13 max for S = 2 and S = 4—2/3/4 layers

S = 2 S = 4

NC Exact SinRefs33c-ud-9p(err) SinRefs33c-9p (err) Exact SinRefs33c-ud-9p (err) SinRefs33c-9p (err)

2 w̄ 34.455 33.069 (4%) 33.071 (4%) 42.888 42.786 (0.2%) 42.772 (0.2%)
�̄11|h/2 399.697 397.449 (0.5%) 400.149 (0.1%) 638.753 637.888 (0.1%) 638.176 (0.1%)
�̄13 max 164.987 156.244 (5%) 156.641 (5%) 136.699 137.827 (0.8%) 137.961 (0.9%)

3 w̄ 25.980 26.361 (1%) 26.438 (1.7%) 3.615 3.628 (0.3%) 3.629 (0.4%)
�̄11|h/2 746.486 833.935 (11%) 833.480 (11%) 281.110 286.647 (2%) 286.849 (2%)
�̄13 max 50.961 50.881 (0.1%) 50.875 (0.1%) 21.417 21.427 (0.04%) 21.425 (0.04%)

4 w̄ 20.065 19.640 (2%) 19.808 (1%) 20.278 20.266 (0.06%) 20.277 (0.01%)
�̄11|h/2 639.828 633.698 (0.9%) 634.243 (0.8%) 898.504 898.305 (0.02%) 898.378 (0.01%)
�̄13 max 208.733 188.006 (9%) 187.753 (10%) 134.451 135.054 (0.4%) 134.984 (0.4%)
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Fig. 3. Distribution of �̄13 (left), �̄33 (middle), and �̄11 (right) along the thickness—S = 2—three layers (0◦/90◦/0◦) (color figure
available online).
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thick case. These models give similar results except for the
two layer case where the SinRefs33c-ud-9p is better. For this
one, the error on the maximal transverse shear stress is less
than 3.9% regardless of the length to thickness ratio and the
stacking sequence. Concerning the transverse displacement,
the maximal error is 0.9%.

The variation of the normalized in-plane, transverse shear
and normal stresses through the thickness (S = 2) are pre-
sented in Figures 3 and 4 for further comparison. The varia-
tion of the transverse shear stress deduced from the constitu-
tive relation yields satisfactory distributions even for the very
thick plate, without computational cost at the post-processing
level. The accuracy of the transverse normal stress is also very
good for both symmetric and antisymmetric structures (all re-
sults are not presented here for brevity). The SinRefs33c-ud-9p
model, where the slope at the upper and lower surface is im-
posed, improves the accuracy of this result (cf. Figures 3 and 4
[middle]). Note that the two models take into account the non-
symmetrical variation of the transverse shear and the in-plane
stress through the thickness (symmetric stacking sequence).
They have the capability to capture the out-of-plane stresses.

3.2. Thermomechanical Analysis

In this section, the accuracy of the present theory is assessed
in thermomechanical analysis. The problem is the same as in

the previous section. But, the plate is subjected to a temper-
ature field as follows: T(x1, z) = Tmax

2z
h sin( �x1

L ). The thermal
expansion coefficients in the fiber and normal direction are
such that �T

�L
= 1125.

As in [30], we define the dimensionless quantities:

w̄ = hu3(L/2, z)
�LTmaxL2

�̄11 = �11(L/2, z)
�LETTmax

�̄13 = �13(0, z)
�LETTmax

. (21)

The reference results have been obtained from the thermo-
mechanical solution given in [64].

Table 4 shows that the two models are very efficient and
accurate, even for the very thick beam. For S = 4, the percent
error does not exceed 2% for all cases. In particular, the trans-
verse shear stress is very well estimated. For the very thick
case, the results remain satisfactory.

Figures 5, 6, and 7 give the distribution of the in-plane,
transverse normal, and shear stresses for the two-layer and
four-layer cases. Again, the SinRefs33c-ud-9p results are in
very good agreement with the exact solution. Note that the
transverse normal stress calculated from the constitutive rela-
tion with the two models is also well estimated even for the
very thick case. In particular, the nonsymmetrical variation is
taken into account, and the accuracy of the maximum value
is good.
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Fig. 6. Distribution of �̄13 (left), �̄33 (middle), and �̄11 (right) along the thickness—S = 2—four layers (0◦/90◦/0◦/90◦)—SinRefs33c-
ud-9p (color figure available online).
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4. Conclusion

In this article, two new numerical models, denoted
SinRefs33c-ud-9p and SinRefs33c-9p, have been presented
and evaluated through different benchmarks under mechan-
ical and thermomechanical loading. Special attention is
pointed towards the transverse normal stress effect which plays
an important role for thick structures and coupled problems.

Based on the sine equivalent single layer model, a refined
kinematic per layer for both the in-plane and transverse dis-
placements is added, improving the bending description for
thick plates. All the interface and boundary conditions are ex-
actly satisfied. So, this approach has a strong physical mean-
ing. Finally, the number of unknowns is independent of the
number of layers.

A Navier-type closed-form solution has been presented.
The present approach is applied to cross-ply laminated plates
in cylindrical bending. Several numerical evaluations have
proved that this model is satisfactory. Accurate results are
obtained for very thick cases under mechanical and thermo-
mechanical loads. So, these models are simple and efficient for
a low cost, compared to layerwise approach. This approach
allows to calculate the transverse shear and normal stresses
directly by the constitutive relation with a very satisfactory
accuracy. This study can be extended in the framework of a
finite element approach. The goal is to develop a numerical
tool that has a good compromise between the computational
cost and accuracy.
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Appendix

Expression of [K]

The expression of [K] is given for the SinRefs33c-(m+6)p
model,

[K] =
NC∑
k=1

∫ zk+1

zk

1
s2

[
[M11]T[

C(k)
11 [M11] + C(k)

13 [M13]
]

+ [M13]T[
C(k)

13 [M11] + C(k)
33 [M13]

]] + [M55]TC(k)
55 [M55]dz,

(A.1)

with

[M11] = [−s2L0(z) − s2L1(z) − s2L2(z) − s2L3(z) − s2L4(z)
− s3L50(z) . . . − s3L5m0 (z)],

[M13] = [−s2G ′
0(z) − s2G ′

1(z) − s2G ′
2(z) − s2G ′

3(z) − s2G ′
4(z)

− s3G ′
60(z) . . . − s3G ′

6m0
(z) + sG ′

5m0
(z)],

[M55] = [L0(z) − s2G0(z) L1(z) − s2G1(z) L2(z)
− s2G2(z) L3(z) − s2G3(z) L4(z) − s2G4(z)
− s3G60(z) + s(G50(z) + L′

50(z)) . . .

− s3G6m0 (z) + s(G5m0 (z) + L′
5m0

(z))].




