
HAL Id: hal-01366965
https://hal.science/hal-01366965

Submitted on 8 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coupling of heterogeneous kinematics and Finite
Element approximations applied to composite beam

structures
C. Wenzel, P. Vidal, M. d’Ottavio, O. Polit

To cite this version:
C. Wenzel, P. Vidal, M. d’Ottavio, O. Polit. Coupling of heterogeneous kinematics and Finite Element
approximations applied to composite beam structures. Composite Structures, 2014, 116, pp.177 - 192.
�10.1016/j.compstruct.2014.04.022�. �hal-01366965�

https://hal.science/hal-01366965
https://hal.archives-ouvertes.fr


Coupling of heterogeneous kinematics and Finite Element
approximations applied to composite beam structures
mposite
inemat
ost wit
ith diff
Sinus

lassical
the cou
ogeneo

. The s
operator for the layered structures. The results

⇑ Corresponding author. Tel.: +33 140974855.
E-mail address: philippe.vidal@u-paris10.fr (P. Vidal).
C. Wenzel, P. Vidal ⇑, M. D’Ottavio, O. Polit
Laboratoire Energétique Mécanique Electromagnétisme EA4416, Universit Paris Ouest – Nanterre La Défense, 50, rue de Sévres, 92410 Ville d’Avray, France
a b s t r a c t

In the framework of the modeling of co
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divided into non-overlapping domains w
with advanced models, such as refined
remaining global domain uses simple c
Element (FE) approximation, therefore
The present approach is assessed on hom
Multiple Point Constraints vias penalty
beam structures, the eXtended Variational Formulation
ics. The purpose is to take advantages of efficient models
hout loss of local precision. In this way, the structure is
erent kinematics. Local domains of interest are described
model, to precisely describe local behavior, while the
models. Each of the kinematics needs a suitable Finite
pling of different FE approximations is also addressed.
us and sandwich structures. It is compared with classical

tudy has shown the need of the introduction of a new
are very promising.
1. Introduction

Composite structures are widely used in industry due to their
excellent weight-specific mechanical properties. However, the
price to be paid is a more complex behavior with respect to classi-
cal monolithic ones. In particular, a high computational effort is
required for obtaining accurate stress fields due to material heter-
ogeneity and anisotropy, even if their geometry often calls for the
application of structural models of reduced dimensionality like
beams (slender solids) and plate/shells (thin solids). Nevertheless,
in many cases high stress gradients are limited to several local
domains of interest, while large portions of the structure can effec-
tively profit of the global geometric slenderness and/or thinness. In
light of an optimization of the computational effort, it appears thus
interesting to model these large portions of the structure by means
of classical structural models, which rely on low-order kinematics
assumptions such as Euler–Bernoulli’s or Kirchhoff–Love’s, and to
employ a refined description for the local regions in which an ade-
quate resolution of the stress gradients is required. Such global–
local analysis technique is well known, in which most often a solid
(3D) model is used for the local domains [1]. Instead of using a full
3D model, in many cases it is however possible to employ struc-
tural models of lower dimensionality and refined, higher-order
kinematics. This way, a further reduction of the computational
effort may be achieved without degrading the local accuracy in
the framework of a global–local analysis method. Within this
scope, the present work aims at developing a dedicated technique
to couple beam Finite Elements formulated with heterogeneous
kinematics, where a low-order classical kinematics is used in a glo-
bal, ‘‘simple’’ sub-domain and a refined, higher-order one in a local,
‘‘complex’’ sub-domain.

First applied to the multiphysics environment, the coupling of
different sub-domains has been a subject of several research activ-
ities from which different techniques are available today. These can
take into account the coupling of domains of homogeneous dimen-
sionality but heterogeneous kinematical description, or domains of
heterogeneous dimensionality and homogeneous kinematical
description. In the following, the commonly used techniques shall
be classified following the topology of the arrangement of the
domains: sub-domains with complete and partial overlap as well
as non-overlapping sub-domains will be distinguished. Such a clas-
sification appears in fact more intuitive than a comparison includ-
ing the question of homogeneous or heterogeneous dimensionality.

The complete overlap is first considered. Fish et al. [2,3]
improved the accuracy of results by superimposing additional
mesh of higher-order hierarchical elements in the region of inter-
est. This method is called the superposition version of the Finite
Element Method (FEM), also known as the s-Version of the FEM.
Homogeneous boundary conditions along the common boundary
are applied to keep the C0 continuity of the displacements. The dis-
placement field in the local area is thus obtained as the sum of the
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higher order mesh and the global mesh. The solution for homoge-
neous dimensional problems is obtained directly with incompati-
ble meshes. Reddy and Robbins [4] proposed to combine the
variable kinematics Finite Elements with the s-Version approach.
This represents an extension of Fish’s method in that it couples
Finite Elements with different mathematical model types. So, the
local overlay mesh of variable kinematic elements can include both
Equivalent Single Layer and LayerWise approaches. While both
mentioned techniques resort to a simultaneous solution of the
overlapping domains, Gendre et al. [5] developed an iterative
method for domains with different description. Their two-scale
analysis method for local sub-domains combines local and global
contributions. The global domain is assumed to have linear elastic
properties, which can be also homogenized, while material and
geometric non-linearity can be included for the local domain. It
uses a two-scale approximation of the Schur complement of the
local domain’s stiffness matrix. The use of a weighted combination
of Dirichlet and Neumann boundary conditions on the local
domain enables relatively low number of iterations and assures
the convergence of the solution.

As far as the techniques with partial overlap are concerned, Ben
Dhia et al. [6] proposed the so-called Arlequin method. Three
regions are here considered: a domain using a simple kinematical
model, a domain using a complex kinematical model and the
sub-domain where both domains overlap. The connection in the
superposition zone is performed in a weak sense via Lagrange Mul-
tipliers, and the total internal energy is partitioned between the
overlapping models. The Arlequin method was systematically used
by Hu and coworkers to analyze sandwich structures for both lin-
ear [7] and nonlinear applications [8,9]. In these applications, the
Arlequin framework has been used to couple coarse and refined
models, including both dimensionally homogeneous and heteroge-
neous models, as well as a FE model with a known solution. Biscani
and coworkers continued this approach by referring to dimension-
ally homogeneous sub-domains with low-order and high-order
kinematics for beams [10] and plates [11]. Note that the superpo-
sition volume of the Arlequin method can be degenerated to a sur-
face coupling of the domains. However, some perturbations are
induced close to the interface due to the coupling formulation
between the domains.

Finally, non-overlapping techniques are widely used in open lit-
erature. The classical Lagrange Multipliers method allows to link
the displacements between two adjacent subdomains by adding
an interface constraint functional in the mechanical formulation
of the problem. The interface potential was first proposed by Prag-
er [12] to treat internal physical discontinuities by linking the
unknowns of the sub-domains through a single Lagrange Multipli-
ers field. This classical, two-fields formulation was used in [13] to
combine variable kinematic models in the framework of the Carre-
ra’s Unified Formulation for beam structures. The mortar method is
also mentioned, which provides the well-suited Lagrange Multipli-
ers space [14]. The Lagrange Multipliers method was also
employed for a global/local approach with incompatible FE meshes
by introducing an independent displacement field at the interface
(three-fields formulation) [15]. Ransom extended this technique
for different solution methods, like finite differences, Finite Ele-
ments and finite volumes [16]. Note the substantial works of Park
and Felippa and their systematic development of hybrid function-
als for the analysis of partitioned systems with Lagrange Multipli-
ers [17,18]. In these works, the rigid-body modes in the governing
equation of floating subdomains are explicitly separated in order to
attain the solvability condition. Both static and dynamic problems
are addressed. However, these approaches require a degree of free-
dom compatibility.

As an alternative, Blanco et al. [19] developed the so-called
eXtended Variational Formulation (XVF), in which two Lagrange
Multipliers fields are introduced. It allows to couple structural
models with different dimensionality involving different types of
degrees of freedom. As Lagrange Multipliers can disturb the
banded form of the linear system describing the mechanical prob-
lem, Kim [20] developed a special interface element, avoiding
Lagrange Multipliers. The continuity of the displacements is
ensured through the interface element domain with new specific
shape functions constructing by moving least square approxima-
tions. The numerical integration is a difficult task in this approach.

In commercial FE codes, global/local analysis can be performed.
The overall domain is described with a simple or low order kine-
matical model, and local sub-domains can be modeled by refined
descriptions. At the common border, the results of the simple
model are used as boundary conditions of the local sub-domain.
Calculations are usually carried out in at least two subsequently
steps, but iterative methods can also be applied. We can also men-
tion Multiple Point Constraints (MPC) which are available in com-
mercial codes. A kinematics constraint on the degrees of freedom
(dofs) can be imposed at the common interface between two mod-
els. This technique does not require additional dofs. Nevertheless,
it does not rely on an energy principle. Recently, a MPC formulation
for eigenfrequency calculation and dynamic contact problems was
developed by Hetherington et al. [21].

In the present work, the so-called XVF approach is extended to
couple heterogeneous kinematics for the modeling of composite
structures within a non-overlapping scheme. The local region of
interest is modeled with a refined Sinus approach previously intro-
duced in [22], which has shown very interesting features, while
classical simple models can be used for the ‘‘global’’ portion of
the structure. A compatibility condition is imposed at the common
interface by introducing two Lagrange Multipliers fields that are to
be chosen according to the specific kinematics used in the adjacent
sub-domains. No additional unknown has to be introduced. The
standard MPC approach via penalty method will be addressed for
the sake of comparison.

We now outline the remainder of the article. The formulation of
the XVF approach is first given. The classical models (namely Euler
Bernoulli and Timoshenko) as well as the refined Sinus model are
subsequently described. Note that all these models have very dif-
ferent features. The transverse shear stress deduced from these
approaches are rather different. Moreover, only the refined model
takes into account the transverse normal deformation. We finally
focus on the coupling of these different models within the particu-
lar XVF framework and on the resulting FEM formulation. Numer-
ical assessments are provided on homogeneous and sandwich
beams for both XVF and penalty methods. A preliminary study is
devoted to the evaluation of each model without coupling. The
influence of the position and the size of the complex zones are dis-
cussed. Special attention is also dedicated to the influence of this
coupling on the results close to the interface between the domains.

2. eXtended Variational Formulation (XVF)

Let us consider an elastic structure defined in a domain X � R3

bounded by C ¼ CD [ CN with CD \ CN ¼ ;. The structure is sub-
mitted to prescribed body forces f on X and surface forces t applied
on CN . The displacement �u is imposed on CD. In the present scope, a
beam structure occupying the domain X ¼ 0; l½ � � S is addressed,
where S is the constant cross-section of the beam, and l is the
length. Using the variational formulation, one can state:

Find u 2 U such that:Z
X
rðuÞd�ðuÞdX ¼

Z
X

f � dudXþ
Z

CN

t � dud@X 8du 2 dU ð1Þ

where



Table 1
Overview of variables in the two subdomains.

Xs Xc

Stress tensor sr cr
Strain tensor s� c�
Displacement su cu
Virtual displacement dsu dcu
External traction st ct
External force sf cf
Lagrange Multiplier at interface sk ck

Virtual Lagrange Multiplier at interface dsk dck
U ¼ fu 2 H1ðXÞ; ujCD ¼ �ug ð2Þ

is the space of admissible displacements, dU the space obtained
from differences between elements of U;r is the stress tensor and
� is the strain tensor.

In the following, let us denote

dPintðu; duÞ ¼
Z

X
rðuÞd�ðuÞdX ð3Þ

dPextðduÞ ¼
Z

X
f � dudXþ

Z
CN

t � dud@X ð4Þ

The domain X is divided by a smooth artificial internal boundary or
interface Ca into Xc and Xs such that X ¼ Xs [Xc and Ca ¼ Xs \Xc

(See Fig. 1). So, the new displacement fields su and cu, solution of
the problem (1), can be defined in each region. They also have to
satisfy the following conditions over the boundary Ca:

su ¼ cu in H1=2ðCaÞ ð5Þ
sr sn ¼ cr cn in H�1=2ðCaÞ ð6Þ

In the work of Blanco et al. [19], XVF was used to couple dimen-
sionally heterogeneous subdomains, which is not the case for the
present work. Here, the coupling of different kinematics is our
main topics. The subdomain Xc , called complex zone, is modeled
with the refined theory, and Xs, called simple zone, is modeled
with a simpler one. The connection between the subdomains is
established via Lagrange Multipliers k at the interface Ca.

The variational formulation in Eq. (1) is thus expanded taking
into account the terms regarding the interface Ca. These additional
interface terms establish a vanishing difference in weak sense
between the displacements at the interface. A scalar parameter c
is also introduced which permits to tune whether simple or com-
plex formulation is used for the connection via Lagrange Multipli-
ers. So, the additional coupling terms, with c 2 ½0;1� are written as:

dPcoupleðsu; cu; sk; ck; dsu; dcu; dsk; dckÞ

¼ c
Z

Ca

sk � ðdsu� dcuÞdCþ ð1� cÞ
Z

Ca

ck � ðdsu� dcuÞdC

þ c
Z

Ca

dsk � ðsu� cuÞdCþ ð1� cÞ
Z

Ca

dck � ðsu� cuÞdC ð7Þ

The notations for this eXtended Variational Formulation are given
in Table 1.

Finally, since the subdomains share one common interface, the
variational statement of the mechanical problem can be written as
follows:

For a given c 2 ½0;1�, find ðsu; cu; sk; ckÞ 2 Us � Uc � Ls � Lc such
that:

dPintðsu;dsuÞþ dPintðcu;dcuÞ ¼ dPextðsuÞþ dPextðcuÞ
þ dPcoupleðsu; cu; sk; ck;dsu;dcu;dsk;dckÞ
8ðdsu;dcu;dsk;dckÞ 2 dUs� dUc

� dLs� dLc ð8Þ
Fig. 1. Complex and simple domains with common interface Ca in a beam
structure.
where we have the following definitions:

Us ¼ fsu 2 H1ðXsÞ; sujCD ¼ sug
Uc ¼ fcu 2 H1ðXcÞ; cujCD ¼ cug

ð9Þ

Us and Uc are the spaces of the admissible displacements.
Ls ¼ Lc ¼ H�1=2ðCaÞ.

The Euler–Lagrange equations, derived from Eq. (7), at the inter-
face provide the following relations:

c ðsu� cuÞ ¼ 0 on Ca

ð1� cÞ ðsu� cuÞ ¼ 0 on Ca

sr sn ¼ c skþ ð1� cÞ ck on Ca

cr cn ¼ c skþ ð1� cÞ ck on Ca

8>>><
>>>: ð10Þ

The Euler–Lagrange equations identify the Lagrange Multipliers as
the tractions at the interface and impose the continuity of the
displacements in the integral sense. It can be noticed that these
tractions correspond to sk for c ¼ 1 and ck for c ¼ 0 which charac-
terize the originality of XVF approach.

3. Description of the kinematics

Using a unified formulation, the kinematics of the models in the
ðx; zÞ coordinate system is assumed to be of the following general
form:

u1ðx; zÞ ¼ v0ðxÞ � zv1ðxÞ þ f ðzÞ ðv1ðxÞ þ hðxÞÞ
u3ðx; zÞ ¼ w0ðxÞ þ zw1ðxÞ þ z2 w2ðxÞ

�
ð11Þ

where v0;w0 are the axial and normal displacement while v1; h are
associated with the rotation of the cross-section. w1;w2 are the
linear and the quadratic expansion terms for the transverse
displacement.

The components of the strains � can be deduced as:

�11ðx; zÞ ¼ v 00ðxÞ � zv 01ðxÞ þ f ðzÞ v 01ðxÞ þ h0ðxÞ
� �

c13ðx; zÞ ¼ w00ðxÞ þ zw01ðxÞ þ z2 w02ðxÞ � v1ðxÞ þ f ðzÞ0 ðv1ðxÞ þ hðxÞÞ
�33ðx; zÞ ¼ w1ðxÞ þ 2zw2ðxÞ

8><
>:

ð12Þ

Note that the functions w1 and w2 allow us to take into account the
transverse normal strain.

To derive the different kinematical models, we will use the fol-
lowing values for the function f ðzÞ, which describe the distribution
over the thickness of the transverse shear stress:

f ðzÞ ¼ 0; w1 ¼ w2 ¼ 0; v1 ¼ w00; recovering the Euler—Bernoulli
theory

f ðzÞ ¼ z; w1 ¼ w2 ¼ 0; recovering the Timoshenko theory

f ðzÞ ¼ h
p

sin
pz
h
; w1 ¼ w2 ¼ 0; for the Touratier Sinus theory

f ðzÞ ¼ h
p

sin
pz
h
; for the Sin-z2 theory

ð13Þ



where h is the thickness of the beam.
Using Eq. (12) and the Hooke’s law r ¼ �C�, the stresses can be

calculated. In the Euler–Bernoulli theory, no transverse shear stress
is considered, while the Timoshenko model involves a constant
distribution through the thickness. In this case, the classical shear
correction factor of j ¼ 5

6 for rectangular cross-sections is used.
Only kinematical theories based on Touratier Sinus have a non con-
stant distribution of the transverse shear stress. Moreover, the
transverse normal stress is taken into account only in the Sin-z2
theory.

Hereafter, combinations of the Sin-z2 theory (complex model)
with either Euler Bernoulli theory or Timoshenko theory (simple
model) will be considered. The Sin-z2 theory will be used in the
domains of interest (Xc) where the description of the mechanical
quantities must be refined. Therefore, coupling of kinematics with
or without transverse shear stress and transverse normal stress
will be evaluated in the following.

4. XVF for kinematical coupling between Sin-z2 and Euler–
Bernoulli theory

In this section, the coupling between incompatible kinematics,
namely the Sin-z2 and Euler–Bernoulli theory, are described. The
projection between the two spaces are precised deducing the
coupling matrices for the problem (Cf. Eq. (7)). Finally, the role of
the scalar c is discussed.

Eq. (7) implies the computation of several dual products under
the form

R
Ca

dk � udC. Following Blanco’s work, a projection of the
complex space into the simple one has to be defined, as for, e.g.R
Ca

dsk � cudC. In the sense of the dual product, dsk has components
which will deliver no work with cu.

The displacement field cu is split into two parts as follows:
cu ¼ cuk þ cu? ð14Þ

where the orthogonal component with respect to the simple space
cu? is assumed to verifyZ

Ca

dsk � cu? dC ¼ 0 ð15Þ

The projected displacement field cuk is expressed in the same form
as su. Using Eqs. (14) and (15), the relations between the compo-
nents of cuk and cu can be expressed.

4.1. Projection of complex into simple kinematics

The projection is hereafter detailed for the coupling of Euler
Bernoulli and Sin-z2 models. From Eqs. (11) and (13), the displace-
ment fields su and cu of the two models can be expressed as:

� Euler Bernoulli
su1ðx; zÞ ¼ sv0ðxÞ � z sw00ðxÞ
su3ðx; zÞ ¼ sw0ðxÞ

�
ð16Þ
� Sin-z2
cu1ðx; zÞ ¼ v0ðxÞ � zv1ðxÞ þ f ðzÞ ðv1ðxÞ þ hðxÞÞ
cu3ðx; zÞ ¼ w0ðxÞ þ zw1ðxÞ þ z2 w2ðxÞ

�
ð17Þ
with

cu1k ðx; zÞ ¼ cv0k ðxÞ � z cw00k ðxÞ
cu3k ðx; zÞ ¼ cw0k ðxÞ

(
ð18Þ
The Lagrange Multipliers defined on the interface Ca are con-
structed similarly as the corresponding kinematical field. So, the
Lagrange Multipliers field according to the simple kinematics is
expressed as:

sk1ðx; zÞ ¼ skv0 � z skw00
sk3ðx; zÞ ¼ skw0

(
ð19Þ

Using Eqs. (14) and (15), the applied projection implies:

0 ¼
Z

Ca

dsk � cu� cuk
� �

dC

¼
Z

C
dskv0 ðcv0 � cv0k Þ þ f ðzÞ � zð Þcv1 þ f ðzÞ ch� z cw00k

h i
� zdskw00

ðcv0 � cv0k Þ þ f ðzÞ � zð Þcv1 þ f ðzÞ ch� z cw00k

h i
þ dskw0 ðcw0 þ z cw1 þ z2 cw2 � cw0k Þ

h i
dC ð20Þ

Using Eq. (20) and the notations
R
Ca

1dC ¼ A and
R
Ca

z2dC ¼ I, the
following expressions can be deduced:

8dskv0 : cv0k ¼
1
A

Z
Ca

cv0 þ f ðzÞ � zð Þcv1 þ f ðzÞ ch� z cw00k

� �
dC

8dskw0 : cw0k ¼
1
A

Z
Ca

cw0 þ z cw1 þ z2 cw2
� �

dC

8dskw00
: cw00k ¼

1
I

Z
Ca

z ðcv0 � cv0k Þ þ z f ðzÞ � zð Þcv1 þ z f ðzÞ ch
� �

dC

ð21Þ

For a symmetric cross-section (
R
Ca

zdC ¼
R

Ca
f ðzÞdC ¼ 0), Eq. (21)

gives:

8dskv0 : cv0k ¼ cv0

8dskw0 : cw0k ¼ cw0 þ
h2

12
cw2

8dskw0
0

: cw00k ¼ �
24
p3

ch� 24
p3 � 1
� �

cv1

ð22Þ
4.2. Matrix formulation

A compact matrix notation for the fields u and k is introduced.
The displacement field in Eq. (11) is rewritten using a generalized
displacement vector Eu as:

iu ¼ iF iEu; i 2 fc; sg with cEu ¼ v0 w0 v1 hw1 w2½ �T ; sEu

¼ v0 w0 w00
	 
T ð23Þ

and

cF ¼
1 0 f ðzÞ � z f ðzÞ 0 0
0 1 0 0 z z2

� �
sF ¼

1 0 �z

0 1 0

� �
ð24Þ

Similarly, the expression of the Lagrange Multipliers are as follows:

ik ¼ iF iEk with cEk ¼ kv0 kw0 kv1 kh kw1 kw2

	 
T and

sEk ¼ kv0 kw0 kw00

h iT
ð25Þ

These expressions are particularized for the involved kinematics to
deduce the coupling matrices B��:Z

Ca

dsk � sudC ¼
Z

C
dsET

k
sFT sF sEudC ¼ dsET

k Bss
sEu with

Bss ¼
Z h

2

�h
2

1 0 �z

0 1 0

�z 0 z2

0
BB@

1
CCAdz

ð26Þ



andZ
Ca

dsk � cudC ¼
Z

C
dsET

k
sFT cF cEudC ¼ dsET

k Bsc
cEu with

Bsc ¼
Z h

2

�h
2

1 0 �z

0 1 0

� 24 z
p3 0 � 24 z2

p3

1� 24
p3

� �
z 0 � 1� 24

p3

� �
z2

0 z 0

0 z2 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

dz

ð27Þ

Bcc can also be calculated as:Z
Ca

dck � cudC ¼ dcET
k Bcc

cEu with

Bcc ¼
Z h

2

�h
2

1 0 f ðzÞ � z f ðzÞ 0 0

0 1 0 0 z z2

f ðzÞ � z 0 ðf ðzÞ � zÞ2 ðf ðzÞ � zÞf ðzÞ 0 0

f ðzÞ 0 ðf ðzÞ � zÞf ðzÞ ðf ðzÞÞ2 0 0

0 z 0 0 z2 z3

0 z2 0 0 z3 z4

0
BBBBBBBBBB@

1
CCCCCCCCCCA

dz

ð28Þ

We also have Bcs ¼ BT
sc. So, the matrix expression of Eq. (7) can be

written as:

dPcoupleðsEu;
cEu;

sEk;
cEk; d

sEu; d
cEu; d

sEk; d
cEkÞ ¼

dsEu

dcEu

dsEk

dcEk

2
6664

3
7775

T

0 0 cBss ð1� cÞBsc

0 0 cBT
sc ð1� cÞBcc

cBss cBsc 0 0
ð1� cÞBT

sc ð1� cÞBcc 0 0

2
6664

3
7775

sEu

cEu

sEk

cEk

2
6664

3
7775

ð29Þ
4.3. About the choice of c

In Eq. (7), the scalar parameter c 2 ½0;1� is introduced. In order
to evaluate the role of this parameter, Eq. (29) is rewritten consid-
ering the two previously involved kinematics (Sin-z2 and Euler–
Bernoulli) and keeping only the terms associated with the variation
of the Lagrange Multipliers. The following expression is deduced:

dsET
k cBss

sEu�dsET
k cBsc

cEuþdcET
k ð1�cÞBcs

sEu�dcET
k ð1�cÞBcc

cEu

¼cdskv0
sv0� cv0½ �hþð1�cÞdckv0

sv0� cv0½ �h

þcdskw0
sw0� cw0�

h2

12
cw2

" #
hþð1�cÞdckw0

sw0� cw0�
h2

12
cw2

" #
h

þcdskw00

h3

12
sw00�

h3ðp3�24Þ
12p3

cv1þ
2h3

p3
ch

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

þð1�cÞdckh �
2h3

p3
sw00�

h3 p�4ð Þ
2p3

cv1�
h3

2p2
ch

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

þð1�cÞdckv1

h3 p3�24
� �
12p3

sw00�
h3 p3þ6p�48
� �

12p3
cv1�

h3 p�4ð Þ
2p3

ch

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

III

ð30Þ
Applying factorization on the terms I; II and III gives:

I : dskw0
0

sw00� cv1
� � h3

12
þ chþ cv1ð Þ2h3

p3

" #

II : �dckh
sw00� cv1
� �2h3

p3 þ
chþ cv1ð Þ h3

2p2

" #

III : �dckv1 � sw00� cv1
� � h3

12
þ sw00� ch�2cv1
� �2h3

p3 þ
chþ cv1ð Þ h3

2p2

" #

ð31Þ

Therefore, we can identify the restrictions satisfying the conditions
at the interface. The deduced sets of relations on the displacement
components are now discussed. From Eq. (30), two cases can be
distinguished:

(i) For c 2 ½0;1½

sv0 ¼ cv0

sw0 ¼ cw0 þ
h2

12
cw2

cv1 ¼ �ch ¼ sw00

ð32Þ
For this case, the conditions show that the rotation of the cross-sec-
tion and the unknown v1 of the complex model have the same value
as the derivative of the deflection of the simple model at the inter-
face. It seems to be a strong restriction, the additional variable of
the complex model being reduced as only one unique variable of
the simple one.

(ii) For c ¼ 1
sv0 ¼ cv0

sw0 ¼ cw0 þ
h2

12
cw2

sw00 ¼ 1� 24
p3

� �
cv1 �

24
p3

ch

ð33Þ
We can notice that the first case (c 2 ½0;1½) implies the most
constrained conditions as it involves 4 conditions at the interface
compared with the only 3 ones of the second case (c ¼ 1). Hence,
only two cases will be considered in the numerical examples: (i)
c ¼ 0 and (ii) c ¼ 1.

5. Finite Element formulation

The Finite Element approximations are presented for the gener-
alized displacement and Lagrange Multiplier field (Eqs. (23) and
(25)). The description is limited to the elementary stiffness matrix
and coupling matrix for brevity reason.

The strain � is expressed as:

� ¼ F�E� with E� ¼ v 00 w00 w000 v1 v 01 hh0w1 w01 w2 w02
	 
T ð34Þ

Introducing expression (34) into Eq. (3), we can write:

dPintðuÞ ¼
Z

l
dET

� kE� dx ð35Þ

where k is obtained from the following integration over the cross-
section:

k ¼
Z

S
FT
� C F� dS ð36Þ

The expressions of the vector F� and the matrix k are given in
Appendices A and B for the three different models considered in this
work.



The Finite Element approximation can be now introduced in Eqs.
(29) and (35). The interpolation of the unknowns is based on qua-
dratic C0 continuous Lagrange polynomials (using 3 nodes) for the
in-plane displacements or rotations, or by cubic C1 continuous Her-
mite polynomials (using two nodes) for the transverse displace-
ment of the Euler–Bernoulli model. For the functions of the
higher-order terms of the transverse displacement, a linear C0 con-
tinuous interpolation at the 2 inner nodes is used, which allow to
condense the dofs at the elementary level. The different FE approx-
imations for the kinematical theories are precised in Fig. 2. An
extensive study of the performance and convergence of these beam
FEs for the different kinematical models can be found in [23–25]).
Fig. 2. (a): Euler Bernoulli beam element; (b): Timos

Table 2
Homogeneous Material: assessment of Finite Element approximations.

u3

x ¼ l
2 ; z ¼ 0

� �
Nx = 20 �8583.05
Nx = 40 Euler �8583.05
Nx = 60 �8583.05
Nx = 80 �8583.05 9:59%ð Þ

Nx = 20 �9607.01
s = 5 Nx = 40 Timo �9607.01

Nx = 60 �9607.01
Nx = 80 �9607.01 1:19%ð Þ

Nx = 20 �9454.10
Nx = 40 Sin-z2 �9454.10
Nx = 60 �9454.10
Nx = 80 �9454.10 0:42%ð Þ

Ansys �9493.85

Nx = 20 �8582.91
Nx = 40 Euler �8582.91
Nx = 60 �8582.91
Nx = 80 �8582.91 2:37%ð Þ

Nx = 20 �8838.90
s = 10 Nx = 40 Timo �8838.90

Nx = 60 �8838.90
Nx = 80 �8838.90 0:54%ð Þ

Nx = 20 �8783.70
Nx = 40 Sin-z2 �8783.01
Nx = 60 �8783.01
Nx = 80 �8783.01 0:09%ð Þ

Ansys �8791.29

Nx = 20 �8582.91
Nx = 40 Euler �8582.91
Nx = 60 �8582.91
Nx = 80 �8582.91 0:02%ð Þ

Nx = 20 �8582.91
s = 1000 Nx = 40 Timo �8582.91

Nx = 60 �8582.91
Nx = 80 �8582.91 0:02%ð Þ

Nx = 20 �8583.00
Nx = 40 Sin-z2 �8582.91
Nx = 60 �8582.91
Nx = 80 �8582.91 0:02%ð Þ

Ansys �8584.50
Keeping a general notation depending on the used kinematics,
matrices N and dN which contain the interpolation functions of
the chosen FE approximation and their derivatives can be intro-
duced. So, the generalized displacements can be expressed as

Eu ¼ N qe

E� ¼ dN qe

ð37Þ

where qeis the dofs vector for one element e.
Substituting the expression of E� in Eq. (35), the elementary

stiffness matrix can be defined by

dPintðuÞ ¼ dqT
e Ke qe with Ke ¼

Z
l

dNT kdN dx ð38Þ
henko beam element; (c): Sin-z2 beam element.

r11 r13 r13EQ

x ¼ l
2 ; z ¼ � h

2

� � ðx ¼ 0; z ¼ 0Þ ðx ¼ 0; z ¼ 0Þ

0.7141 – �0.3750
0.7129 – �0.3750
0.7127 – �0.3750
0.7126 0:30%ð Þ – �0.3750 1:42%ð Þ

0.7140 �0.2512 �0.3662
0.7129 �0.2503 �0.3690
0.7127 �0.2501 �0.3696
0.7126 0:30%ð Þ �0.2501 34:25%ð Þ �0.3698 2:79%ð Þ

0.7581 �0.3833 �0.4118
0.7565 �0.3822 �0.4120
0.7562 �0.3820 �0.4121
0.7560 6:40%ð Þ �0.3819 0:39%ð Þ �0.4121 8:33%ð Þ

0.7105 �0.3804 –

0.7141 – �0.3750
0.7129 – �0.3750
0.7127 – �0.3750
0.7126 0:67%ð Þ – �0.3750 1:37%ð Þ

0.7140 �0.2550 �0.3735
0.7129 �0.2513 �0.3746
0.7127 �0.2506 �0.3748
0.7126 0:67%ð Þ �0.2503 34:17%ð Þ �0.3749 1:39%ð Þ

0.7272 �0.3879 �0.4111
0.7261 �0.3833 �0.4119
0.7259 �0.3825 �0.4120
0.7258 1:17%ð Þ �0.3822 0:53%ð Þ �0.4120 8:36%ð Þ

0.7174 �0.3802 –

0.7141 – �0.3750
0.7129 – �0.3750
0.7127 – �0.3750
0.7126 0:01%ð Þ – �0.3750 1:03%ð Þ

0.7141 �0.2500 �0.3750
0.7129 �0.2500 �0.3750
0.7127 �0.2500 �0.3750
0.7126 0:01%ð Þ �0.2500 34:02%ð Þ �0.3750 1:03%ð Þ

0.7141 �0.3627 �0.4121
0.7129 �0.3627 �0.4121
0.7127 �0.3627 �0.4121
0.7126 0:01%ð Þ �0.3627 4:28%ð Þ �0.4121 8:76%ð Þ

0.7125 �0.3789 –



In the Finite Element system of the eXtended Variational
Formulation, the stiffness matrices of the domains Xs and Xc are
constructed according to Eq. (38) and are given by:

dPintðsuÞ ¼ dsqKXs
sq for Xs

dPintðcuÞ ¼ dcqKXc
cq for Xc

ð39Þ

As far as the additional coupling terms are concerned, a similar pro-
cedure is carried out to derive the FE expression of Eq. (29) using the
same expression as in Eq. (37) for the Lagrange Multipliers. The dis-
crete expression of B�� is written under the form B�� ¼ NT B��N.

Finally, after a classical assembling procedure, the global Finite
Element system can be deduced for the coupling of two sub-
domains with one interface:

KXs 0 cBss ð1� cÞBsc

0 KXc cBT
sc ð1� cÞBcc

cBss cBT
sc 0 0

ð1� cÞBsc ð1� cÞBcc 0 0

0
BBB@

1
CCCA

sq
cq
sL
cL

0
BBB@

1
CCCA ¼

sf
cf
0
0

0
BBB@

1
CCCA
ð40Þ

where the global Lagrange Multiplier dofs are denoted sL and cL.
Table 3
Sandwich Material: assessment of Finite Element approximations.

u3

ðx ¼ l
2 ; z ¼ 0Þ

Nx = 20 �0.26832
Nx = 40 Euler �0.26832
Nx = 60 �0.26832
Nx = 80 �0.26832 80:95%ð Þ

Nx = 20 �1.01485
s = 5 Nx = 40 Timo �1.01485

Nx = 60 �1.01485
Nx = 80 �1.01485 27:95%ð Þ

Nx = 20 �1.32690
Nx = 40 Sin-z2 �1.32690
Nx = 60 �1.32690
Nx = 80 �1.32690 5:80%ð Þ

Ansys �1.40859

Nx = 20 �0.26831
Nx = 40 Euler �0.26831
Nx = 60 �0.26831
Nx = 80 �0.26831 52:31%ð Þ

Nx = 20 �0.45494
s = 10 Nx = 40 Timo �0.45494

Nx = 60 �0.45494
Nx = 80 �0.45494 19:13%ð Þ

Nx = 20 �0.53710
Nx = 40 Sin-z2 �0.53709
Nx = 60 �0.53709
Nx = 80 �0.53709 4:53%ð Þ

Ansys �0.56258

Nx = 20 �0.26831
Nx = 40 Euler �0.26831
Nx = 60 �0.26831
Nx = 80 �0.26831 0:02%ð Þ

Nx = 20 �0.26833
s = 1000 Nx = 40 Timo �0.26833

Nx = 60 �0.26833
Nx = 80 �0.26833 0:01%ð Þ

Nx = 20 �0.26833
Nx = 40 Sin-z2 �0.26833
Nx = 60 �0.26833
Nx = 80 �0.26833 0:01%ð Þ

Ansys �0.26836
6. Results and discussion

The numerical tests are carried out using the following data:

� Geometry: rectangular beam with l ¼ 10 mm and slenderness
ratio s ¼ l

h of 5, 10 and 1000, where h is the thickness of the
beam.
� Boundary conditions: simply-supported beam.
� Load: uniform patch load q0 on 10% of the beam length located

at the beam center.
� Material properties:

1. Homogeneous Material: E ¼ 1 MPa and m ¼ 0:3.
2. Sandwich Material:
(a) Face: E11¼131:1 GPa, E22¼ E33 ¼6:9 GPa, G12¼3:588 GPa,

G13¼3:088 GPa, G23¼2:3322 GPa, m12¼ m13¼0:32,
m23¼ 0:49.

(b) Core: E11¼0:2208 MPa, E22¼0:2001 MPa, E33 ¼2760 MPa,
G12¼16:56 MPa, G13¼545:1 MPa, G23¼ 455:4 MPa,
m12¼ 0:99, m13¼0:00003, m23¼0:00003.

The thicknesses of the layers are: 0:1h=0:8h=0:1h.
� Mesh: half of the beam is meshed, Nx = 20, 40, 60, 80 (Nx is the

number of FEs).
r11 r13 r13EQ

ðx ¼ l
2 ; z ¼ � h

2Þ ðx ¼ 0; z ¼ 0Þ ðx ¼ 0; z ¼ 0Þ

0.29265 – �0.05533
0.29217 – �0.05533
0.29208 – �0.05533
0.29205 37:29%ð Þ – �0.05533 0:02%ð Þ

0.29265 �0.02587 �0.05533
0.29217 �0.02587 �0.05533
0.29208 �0.02587 �0.05533
0.29205 37:29%ð Þ �0.02587 53:24%ð Þ �0.05533 0:02%ð Þ

0.53668 �0.06613 �0.05562
0.53388 �0.06612 �0.05563
0.53336 �0.06612 �0.05563
0.53316 14:48%ð Þ �0.06612 19:52%ð Þ �0.05563 0:56%ð Þ

0.46572 �0.05532 –

0.29265 – �0.05533
0.29217 – �0.05533
0.29208 – �0.05533
0.29205 21:40%ð Þ – �0.05533 0%ð Þ

0.29265 �0.02589 �0.05532
0.29217 �0.02587 �0.05533
0.29208 �0.02587 �0.05533
0.29205 21:40%ð Þ �0.02587 53:24%ð Þ �0.05533 0%ð Þ

0.37522 �0.06615 �0.05562
0.37388 �0.06613 �0.05563
0.37365 �0.06613 �0.05563
0.37357 0:54%ð Þ �0.06613 19:52%ð Þ �0.05563 0:54%ð Þ

0.37157 �0.05533 –

0.29265 � �0.05533
0.29217 – �0.05533
0.29208 – �0.05533
0.29205 0:01%ð Þ – �0.05533 0%ð Þ

0.29265 �0.02587 �0.05533
0.29217 �0.02587 �0.05533
0.29208 �0.02587 �0.05533
0.29205 0:01%ð Þ �0.02587 53:24%ð Þ �0.05533 0%ð Þ

0.29266 �0.06761 �0.05563
0.29218 �0.06761 �0.05563
0.29209 �0.06761 �0.05563
0.29206 0:01%ð Þ �0.06761 22:19%ð Þ �0.05563 0:54%ð Þ

0.29203 �0.05533 –



� Results are normalized using: u3 ¼ 100u3ðl=2; 0Þ Y0

hs4q0
,

r11 ¼ r11ðl=2;�h=2Þ
s2q0

, r13 ¼ r13ð0;0Þ
sq0

, with Y0 ¼ EFace
33 . r13EQ will identify

the transverse shear stress computed from the integration of
the equilibrium equations.

6.1. Assessment of models

In this section, only one model will be used for the whole struc-
ture (denoted monomodel) avoiding the kinematical coupling
effect of the XVF. It allows us to highlight the effect of each model
on the results. The different models (Euler–Bernoulli denoted
Euler, Timoshenko denoted Timo, Sin-z2) are assessed on both a
homogeneous and a sandwich beam for various slenderness ratios
and for different meshes. The results are summarized in Tables 2
and 3. They are compared with FE results issued from a 2D analysis
using PLANE82 elements, performed with the commercial code
ANSYS with converged meshes. These are reported in Table 4.
These tables show that a mesh of Nx ¼ 20 elements provides con-
verged results for thick to very thin beams with s ¼ 5;10;1000. For
the very thin case, the results are rather similar for the three mod-
els except for the transverse shear stress. The Sin-z2 yield more
accurate results. For very thick and moderately thick structures,
the accuracy of the deflection and the transverse shear stress is
also improved by the use of the Sin-z2 model.

For further comparison, Figs. 3 and 4 show the deflection of the
beam for the two materials. The main differences occur for the
sandwich structure. Euler–Bernoulli model yields poor results.
The maximum deflection of the Timoshenko model is 20% greater
than the reference solution, whereas the Sin-z2 results are satisfac-
tory with error rate less than 4.5%. The distribution of the trans-
verse shear stress along the thickness is also represented in
Figs. 5 and 6. As expected, the results computed from the constitu-
tive relation for the Sin-z2 model are closer to the reference
solution than those obtained from the simple models. Using the
Fig. 3. Homogeneous Material: deflection of the different Kinematics; s ¼ 5.

Table 4
ANSYS meshes with PLANE82 elements for homogeneous and sandwich beams.

Homogeneous Sandwich

s Nx Nz Nx Nface / Ncore / Nface

5 80 20 80 12/48/12
10 80 10 80 6/24/6
1000 720 6 720 2/4/2

Nz is the number of elements across the thickness.
integration of the equilibrium equations, all the results are in
rather good agreement with the ANSYS solutions.

In the following, the simple kinematical model will be either
Euler–Bernoulli or Timoshenko kinematics; the complex model
will be the Sin-z2 kinematics. While Tables 2 and 3 show that a
Nx ¼ 20 mesh is converged, Nx ¼ 40 will be used in the following
in order to ensure that all the observed effects are due to the cou-
pling method only.

6.2. Homogeneous Material structures

6.2.1. One interface
For a preliminary assessment, only one interface is considered.

So, two configurations are possible, as illustrated in Fig. 7: the com-
plex zone, namely the region associated with the complex model,
can include either the support, or the load. Both configurations are
tested with the three coupling approaches: XVF with c ¼ 0; c ¼ 1
and the penalty method.

In Fig. 8, both configurations are tested with the interface
located at �x ¼ l

4. Euler–Bernoulli kinematics is used as simple
model and Sin-z2 kinematics as complex model. This figure repre-
sents the displacement over the length for c ¼ 1. The same tenden-
cies are obtained for c ¼ 0 and penalty method. The displacements
Fig. 4. Sandwich Material: deflection of the different Kinematics; s ¼ 10.

ig. 5. Homogeneous Material: r13 through thickness for different kinematics;
F

s ¼ 5.



Fig. 6. Sandwich Material: r13 through thickness for different kinematics; s ¼ 10.
Fig. 8. Homogeneous Material: deflection for c ¼ 1; Ca at �x ¼ 2:5; s ¼ 5.
of the monomodel are also drawn to measure the influence of the
coupling. This figure shows that the tendency of the involved
model in each subdomain is kept. Moreover, the maximum deflec-
tion is influenced by the coupling. The maximum values are in
between the results of the two monomodels.

In Table 5, the three computational approaches are assessed for
the thick structure which is the most severe case. The deflection
and only the maximum stresses computed by the complex model
are given. They are compared with the monomodel results. First
of all, it can be noticed that the XVF approach with c ¼ 0 and the
penalty method gives always the same results. Furthermore, only
the value of the maximal deflection changes with the involved
technique of coupling. Since the displacement is a global quantity,
it depends on both the choice of the simple model (Euler–Bernoulli
or Timoshenko) and the domain modeled by the complex kinemat-
ics. On the contrary, the stresses computed in the complex domain
Fig. 7. One interface: configuration o
is independent of the coupling of kinematics and of the choice of
the simple model. The accuracy of its value corresponds only to
these of the complex kinematics. This feature is very attractive in
the framework of the design of composite structures in which
the computation of the stresses in the region of interest is of major
importance. Moreover, the number of dofs for the monomodels
and the coupling of different kinematics are also compared in
Table 5. For this simple example, the decreasing of the computa-
tional cost is up to about 60%.

In this first test, the interface position has been kept fixed. In
order to assess the sensitivity of the size of the complex zone on
the results, the interface will now be located at different positions
along beam’s axis. The size of the complex subdomain is chosen
proportional to the thickness h of the beam and is denoted ah, with
a 2 f0:5;1;1:5;2g, as illustrated in Fig. 9. Since s ¼ l

h ¼ 5, the size of
the domain is a l

5. The results are summarized in Tables 6–8.
f simple and complex domains.



Table 5
Homogeneous Material: values of u3 ;r11 and r13 for Ca at �x ¼ 2:5 and for
monomodels, s = 5.

Type

Euler–Sin-z2 Sin-z2–Euler Nb of dofs

u3 r11 u3 r13

Penalty �8904.31 0.7564 �9111.31 �0.3821
c ¼ 0 �8904.31 0.7564 �9111.31 �0.3821 199
c ¼ 1 �8915.35 0.7565 �9121.80 �0.3822

Type

Timo–Sin-z2 Sin-z2–Timo

u3 r11 u3 r13

Penalty �9443.62 0.7564 �9595.97 �0.3821
c ¼ 0 �9443.62 0.7564 �9595.97 �0.3821 271
c ¼ 1 �9454.10 0.7565 �9607.01 �0.3822

Type

Monomodel

u3 r11 r13

Euler Bernoulli �8583.05 0.7129 – 163
Timoshenko �9607.01 0.7129 �0.2503 243
Sin-z2 �9454.10 0.7565 �0.3822 484

Fig. 9. Size of the complex zone (several times the beam height).

Table 6
Homogeneous Material: values of u3; Timo–Sin-z2 or Sin-z2–Timo, s = 5.

Complex zone at support

Type u3

0:5 � h 1 � h 1:5 � h 2 � h

Penalty �9596.52 �9596.52 �9595.97 �9595.97
c ¼ 0 �9596.52 �9596.52 �9595.97 �9595.97
c ¼ 1 �9607.01 �9607.01 �9607.01 �9606.46

Complex zone under load

Type 0:5 � h 1 � h 1:5 � h 2 � h

Penalty �9445.80 �9443.62 �9443.62 �9443.62
c ¼ 0 �9445.80 �9443.62 �9443.62 �9443.62
c ¼ 1 �9454.66 �9454.10 �9454.10 �9454.10

Table 7
Homogeneous Material: values of r11; Timo–Sin-z2, s = 5.

Complex zone under load

Type 0:5 � h 1 � h 1:5 � h 2 � h

Penalty 0.7502 0.7562 0.7565 0.7565
c ¼ 0 0.7502 0.7562 0.7565 0.7565
c ¼ 1 0.7561 0.7565 0.7565 0.7565

Table 8
Homogeneous Material: values of r13; Sin-z2–Timo, s = 5.

Refined at support

Type r13

0:5 � h 1 � h 1:5 � h 2 � h

Penalty �0.3731 �0.3819 �0.3822 �0.3822
c ¼ 0 �0.3731 �0.3819 �0.3822 �0.3822
c ¼ 1 �0.3822 �0.3822 �0.3822 �0.3822
We notice that the size of the complex zone has small influence on
the deflection and the in-plane stress regardless of the technique of
coupling. The transverse shear stress seems to be a little more sen-
sitive for the penalty and XVF approach with c ¼ 0, see Fig. 10.

6.2.2. Two interfaces
As the general interest is to obtain reliable results at the support

and under the load simultaneously, complex models will be
applied hereafter at both ends. Hence, two interfaces are needed
as shown in Fig. 11. The Nx ¼ 40 mesh is divided into 20 elements
in the central part of the beam associated with the simple model
and 10 elements on each end of the beam for the complex model.
For a regular mesh, the two interfaces are located at �x1 ¼ l

8 and
�x2 ¼ 3l

8. Here, the aim is to study the impact of the local refinements
on the results of the whole beam structure. Therefore results
obtained by Ansys are given for comparison.

Fig. 12 shows the distribution of r13 at the beam mid fiber,
z ¼ 0, along the beam’s axis for monomodels and coupling models.
The penalty technique is not presented as it provides the same
results as the XVF approach with c ¼ 0. For c ¼ 0, the coupling of
the models does not influence the results far from the interface,
that is to say, the results at a given point correspond to those of
the local model. For c ¼ 1, the same comment can be made even
near the interface, the transition between one model to another
one being very rapid. So, the quality of the stress obtained by the
refined model in the region of interest is affected by neither the
introduction of coupling of multi-models nor the choice of the sim-
ple model.

6.3. Layered structures

In this section, layered structures are addressed. First, we show
that is needed to introduce a new coupling operator which takes
into account the material characteristics of the layers by consider-
ing a highly anisotropic sandwich beam. Then, it is applied to the
sandwich structure previously described in Section 6 for further
assessment.

6.3.1. The coupling operator
In this section, two different dual products are used: one

using the original form as given in Eq. (7) and one modified by
including also the stiffness coefficient C11. This latter is described
as follows:

The four dual products of the Eqs. (26)–(28) for the layered
structures are integrated over all the layers, denoted f1; . . . ;NLg:
diET
k Bijmod

jEu with Bijmod
¼
XNL

k¼1

CðkÞ11

Z hk

hk�1

iFT jF dz ð41Þ
The sandwich test described in Section 6 is considered with two
interfaces, but the material properties is chosen such that
C11face

¼ 1000 � C11core so as to highlight the interest of the new cou-
pling operator. In Fig. 13, the distribution of the transverse shear
stress r13 through the beam length is given. For c ¼ 1 without the
modified dual product, the distribution of the stress has a severe
peak close to the interface, while the same abrupt change from
one model to another one as in the homogeneous material case
can be observed with the modified duality product. In the Euler
Lagrange Eq. (10), the Lagrange Multipliers were identified as stres-
ses. For the proper establishment of the Multipliers not only the
geometric informations are needed but also about the materials



(a)

(b)

Fig. 10. Homogeneous Material: (a): r13 for Xc ¼ 1 � h ; (b): r13 for Xc ¼ 2 � h; refined model at support; s ¼ 5.

Fig. 11. Position of complex zones in beam model.
stiffness. As a consequence the origin of the peak is a ill-conditioned
problem of the original dual product formulation. The values of the
Lagrange Multipliers of the original dual product are excessive and,
as shown, do not fulfill their role as to satisfactorily minimize the
difference in the two displacement fields. Here, the mechanical
description of the layered structure is given by an equivalent single
layer formulation. It is not visible for homogenous materials, as the
stiffness coefficient C11 is only a constant factor, regardless of the
kinematical model chosen. In contrast, for layered structures, differ-
ent layers contribute with their geometrical share of the compound
as well as with their stiffness. The modification of the formulation is
made according to a proposition of Hu [26,7] for the Arlequin
Method.

6.3.2. Sandwich beam
The sandwich structure having two thin rigid outer faces and a

soft core, as shown in Fig. 14 and given in Section 6, is addressed.
Two interfaces are considered as shown in Fig. 11, and the new
coupling dual product given in Eq. (41) is used.

The distributions of r11 and r13 along the beam length are
represented in Figs. 15 and 16 for the monomodels, the Sin-z2–
Euler–Sin-z2 and Sin-z2–Timo–Sin-z2 couplings. For the in-plane
stress, the choice of the simple model has no influence, so only



Fig. 12. Homogeneous Material: r13 at z ¼ 0 for different kinematical models (s = 10).

Fig. 13. Sandwich Material: r13 over length for c ¼ 1; 1000 � C11core ¼ C11face
; s = 10.

Fig. 14. Sandwich beam configuration with local pressure load.
one result with the Euler model is represented. We can observe
from Fig. 15 that the use of XVF with c ¼ 0 makes the variation
of r11 discontinuous at the interfaces while the results remain con-
tinuous for c ¼ 1 and the influence of the localized pressure is also
well captured. Again, a transition zone from the complex to the
simple model for c ¼ 0 can be observed for r13. In the domain
using the simple kinematics or in the domain using the Sin-z2
kinematic, but far from the interface, values are in good agreement
with the monomodel results. For c ¼ 1, the same abrupt change at
the interfaces as for the homogeneous beam occurs, which allows
to recover the distributions of the involved monomodel at any
points of the structure.

In Fig. 17, the distributions of the stresses through the thickness
at the middle of the beam and at the support show that the local
response of the refined Sin-z2 model is preserved. It is also the case
for c ¼ 0, the end of the beam being not affected by the transition
zone of the coupling.
As seen before, the coupling of different kinematics can induce a
transition zone which must not disturb the results in the region of
interest. Hence, the influence of the size of the complex zone is
next studied for two cases c ¼ 0 and c ¼ 1. A regular mesh consist-
ing of 20 elements is used for the half of the beam. By varying the
number of elements in the central portion of the half-beam, the
size of the simple and complex subregion is, therefore, varied.
The number of elements in the central part of the beam corre-
sponding to the simple kinematics is increased from 0 (Sinus z2

monomodel) to 18. For this latter, only one element at each end
of the beam is associated with the refined kinematics. Figs. 18
and 19 represent the variation of the error rate on the maximal
value of r11 and r13 with respect to the number of simple elements
(i.e. the size of the central simple zone). This error rate is defined as

Drij ¼ 100
�rij��rSin-z2

ij

�rSin-z2
ij

. It can be inferred from these figures that c ¼ 1

yields better results, in particular for the transverse shear stress.
Only one complex element can be used without affecting the qual-
ity of the results at the end of the beam. For c ¼ 0, the size of the
complex zone must be multiplied by four to achieve an error rate
of 2%. As far as the normal stress is concerned, a gain of 2 can be



Fig. 15. Sandwich Material: r11 at z ¼ � h
2 with Euler combinations over beam length; s ¼ 10.

Fig. 16. Sandwich Material: r13 at z ¼ 0 with Timoshenko and Euler combinations over beam length; s ¼ 10.
obtained. In contrast to the transverse shear stress, which is
affected mainly by local effects, the in-plan stress is dominated
by the global behavior of the whole model, here especially in terms
of the deflection u3. An unbalanced kinematically heterogenous
model will not provide a smooth global behavior.

To illustrate the efficiency of the XVF approach with c ¼ 1, the
distribution of the transverse shear stress is shown in Fig. 20 with
a mesh including 16 simple elements. We see clearly that the var-
iation of the stress is perturbed for 0 < x < l

20 ¼ h
2 in the region of

interest for c ¼ 0. This is not the case for c ¼ 1 where the results
of the complex models are recovered in this region.

This attractive feature allows us to confine the richer model in a
very small region where accurate stresses must be recovered. It can
yield to a drastic reduction of the computational cost.



Fig. 17. Sandwich Material: (a): r11 with Euler; (b): r13 with Timoshenko; s ¼ 10.

Fig. 18. Sandwich Material: error rate on r11 for increasing number of simple
elements; s = 10.

Fig. 19. Sandwich Material: Error rate on r13 for increasing number of simple
elements; s = 10.

Fig. 20. Sandwich Material: r13 over beam length with 16 Timoshenko theory elements; s = 10.



7. Conclusions

In this work, the XVF method is used to couple heterogeneous
kinematics with homogeneous dimensionality to derive an efficient
numerical tool for the modeling of composite beams. For that, the
refined Sinus model including the transverse normal deformation
is coupled with classical simple models (Euler–Bernoulli, Timo-
shenko). A new coupling operator is introduced to take into account
the layered structures without decreasing the performance of the
method. It has been analytically shown that two coupling schemes
can be distinguished based on the values of the weighting scalar
parameter c. The presented results lead to following statements:

� the penalty technique is included in XVF (for c 2 ½0;1½);
� for c 2 ½0;1½, the accuracy of the results is affected by the coupling

in the vicinity of the interface, in particular in the complex zone;
� for c ¼ 1, an abrupt change from the complex model level

towards the simple model level is obtained without affecting
the results of the refined model. It allows us to reduce the size
of the complex zone;
� the stresses are accurate in the complex sub-domain (only far

from the interface if c 2 ½0;1½) because they are only related to
the gradient of the displacement, i.e., a local behavior; on the
contrary, the global response (displacement) is in all case influ-
enced by the coupling.

Therefore, the proposed approach allows us to decrease the
computational cost for the analysis of composite structures by
confining the refined and accurate models in the zone of interest.
Further studies must be investigated. In particular, it would be
interesting to extend the present approach to the coupling of ESL
and LayerWise models: these latter, more expensive kinematics
may be limited to a small region hosting important stress gradients
(e.g., free-edge effects).

Appendix A. Expressions of F

The expressions of F� are given for the three models of the pres-
ent work:

Euler–Bernoulli

F� ¼
1 0 �z 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

2
64

3
75 ðA:1Þ
Timoshenko

F� ¼
1 0 0 0 0 0 z 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

2
64

3
75 ðA:2Þ
Sin-z2

F� ¼
1 0 0 0 f ðzÞ � z 0 f ðzÞ 0 0 0 0
0 1 0 f 0ðzÞ � 1 0 f 0ðzÞ 0 0 z 0 z2

0 0 0 0 0 0 0 1 0 2z 0

2
64

3
75

ðA:3Þ
Appendix B. Integration of the material behavior over the cross-
section

To compute the elementary stiffness matrices, it is needed to
integrate the material behavior through the cross-section of the
beam. It depends on the involved kinematics. In the following, only
the dofs of each considered kinematics are kept in the expression
of E� (Eq. (34)) to compute k. They are given for the three cases.

For Euler–Bernoulli

k ¼
Z

S

C11 �zC11

sym z2 C11

" #
dS ðB:1Þ

with EEB
� ¼ v 00 w000

	 
T

For Timoshenko

k ¼
Z

S

C11 0 0 zC11

C55 C55 0
C55 0

sym z2 C11

2
6664

3
7775dS ðB:2Þ

with ETimo
� ¼ v 00 w00 hh0

	 
T

For Sin-z2

k¼
Z

S

�C11 0 0 �C11 ðf ðzÞ�zÞ 0 �C11 f ðzÞ . . .
�C55

�C55 ðf 0ðzÞ�1Þ 0 �C55 f 0ðzÞ 0 . . .

�C55 ðf 0ðzÞ�1Þ2 0 �C55ðf 0ðzÞ�1Þf 0ðzÞ 0 . . .

�C11 ðf ðzÞ�zÞ2 0 �C11ðf ðzÞ�zÞf ðzÞ . . .

�C55 f 0ðzÞ2 0 . . .

�C11 f ðzÞ2 . . .

. . .

. . .

sym . . .

. . .

2
66666666666666666664

. . . �C13 0 2�C13z 0

. . . 0 �C55 z 0 �C55 z2

. . . 0 �C55zðf 0ðzÞ�1Þ 0 �C55z2ðf 0ðzÞ�1Þ

. . . �C13ðf ðzÞ�zÞ 0 2�C13zðf ðzÞ�zÞ 0

. . . 0 �C55 zf 0ðzÞ 0 �C55 z2f 0ðzÞ

. . . �C13f ðzÞ 0 2�C13zf ðzÞ 0

. . . �C33 0 2�C33z 0

. . . �C55z2 0 �C55z3

. . . 4�C33z2 0

. . . sym �C55z4

3
77777777777777777775

dS

ðB:3Þ

with ESin-z2
� ¼ v 00 w00 v1 v 01 hh0w1 w01 w2 w02

	 
T
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